Lab-I/termocoppia.py

69 lines
1.7 KiB
Python
Raw Normal View History

2016-06-19 20:37:57 +02:00
# coding: utf-8
from lab import *
import pickle
import numpy as np
import matplotlib.pyplot as plt
def plot((name, points), n):
plt.figure(n+1)
if name == 'azoto':
plt.ylim(-5,-5.5)
elif name == 'acqua':
plt.ylim(4, 4.5)
elif name =='stearico':
name = 'acido stearico'
elif name == 'glicole':
plt.ylim(-0.7,-0.4)
plt.title(name.capitalize())
plt.xlabel('tempo')
plt.ylabel('differenza di potenziale (mV)')
plt.plot(filter(lambda x: x!=0, points), '#44b34e')
plt.show()
set = pickle.load(open('termocoppia.pickle'))
for i, curve in enumerate(set.iteritems()):
#plot(curve, i)
pass
V = map(np.mean,
[ set['stagno'][150:250] # Tf
, set['indio'][125:250] # Tf
, set['acqua'][150:225] # Te
, set['stearico'][80:120] # Tf
, [0] # miscela acqua-ghiaccio
, set['glicole'][130:170] # Tf
, set['etere'][50:150] # Tf
, set['azoto'] # Te
])
T = [ 505.08 # Tf Sn
, 429.75 # Tf In
, 373.15 # Te H2O
, 342.40 # Tf CH3-(CH2)16-COOH
, 273.15 # Tf H2O
, 260.20 # Tf HO-(CH2)2-OH
, 156.80 # Tf CH3CH2-O-CH2CH3
, 77.36 # Te N2
]
x = np.linspace(-6, 6, 100)
a,b,c,d,e = polynomial(V, T, 4)
f = lambda x: a.mean*x**4 + b.mean*x**3 + c.mean*x**2 + d.mean*x + e.mean
g = lambda n,x: sum(a*x**i for i, a in enumerate(polyfit(V,T,n)))
# q(np.sum((np.polyval(np.polyfit(V,T,7), V) - T) ** 2), 1)*100
plt.figure(8)
plt.xlabel('Differenza di potenziale (mV)')
plt.ylabel('Temperatura (K)')
plt.scatter(V, T, color='#6972cc')
plt.plot(x, g(5,x), '#6972cc')
plt.show()
print '''
T(V)={a.n:.3f}V^4+{b.n:.3f}V^3{c.n:.3f}V^2+{d.n:.3f}V+{e.n:.3f}
'''.format(**dict(a=a,b=b,c=c,d=d,e=e))