Lab-I/corda.py

146 lines
3.3 KiB
Python
Raw Permalink Normal View History

2016-06-19 20:37:57 +02:00
# coding: utf-8
from __future__ import division, unicode_literals
from lab import *
import numpy as np
import matplotlib.pyplot as plt
import uncertainties.umath as u
mass = lambda x: ufloat(x, 0.01)*0.001
length = lambda x: ufloat(x, 0.5)*0.01
##
## Costants
##
mL = [ (16.47, 251.0) # violet
, (5.49, 252.7) # black
, (6.16, 287.7) # green
, (1.48, 188.8) # white
]
mu = [mass(m)/length(l) for m,l in mL] # linear density (kg/m)
pp = mass(50.03) # tare mass (kg)
g = 9.80665 # acceleration due to gravity (m/s^2)
sigma = 0.8 # frequency uncertainty
## green string
## T,L,μ constant, plot ν(n)
m = mass(400.21) + pp
L = length(98.5)
T = m*g
n = np.arange(1,8)
nu = np.array([23.97, 48.20, 72.54, 96.97, 122.20, 147.10, 171.30])
# linear regression y=kx where
# y=ν, x=n, k=1/(2L)√(T/μ)
x = np.linspace(0,8,100)
k = simple_linear(n, nu, sigma)
f = lambda x: k.n*x
plt.figure(1)
plt.xlim(0,8)
plt.ylim(0,200)
plt.xlabel('n armonica')
plt.ylabel('frequenza di risonanza (Hz)')
plt.scatter(n, nu, color='#468174')
plt.plot(x, f(x), '#5ca897')
plt.show()
# χ² test
alpha = chi_squared_fit(n, nu, f, sigma, s=1)
v0 = 2*L*k # actual propagation velocity
v = u.sqrt(T/mu[2]) # theoretical propagation velocity
print '''
χ²: α={:.3f}, α>ε: {}
k: ({})1/s
v°: ({})m/s
v: ({})m/s
'''.format(alpha, alpha>epsilon, k, v0, v)
##
## green string
## T,μ,n constant, plot ν(T), n=2
M = [mass(i)+pp for i in [700.45, 499.95, 450.16, 400.19, 200.16, 140.92]]
T = np.array([g*i.n for i in M])
nu = np.array([60.26, 52.20, 49.70, 47.06, 34.96, 31.22])
# linear regression y=kx where
# y=ν, x=√T, k=1/(L√μ)
x = np.linspace(1, 8, 100)
k = simple_linear(np.sqrt(T), nu, sigma)
f = lambda x: k.n*np.sqrt(x)
plt.figure(2)
plt.xlabel('Tensione (N)')
plt.ylabel('Frequenza 2ª armonica (Hz)')
plt.scatter(T, nu, color='#673f73')
plt.plot(x, f(x), '#975ca8')
plt.show()
# χ² test
alpha = chi_squared_fit(T, nu, f, sigma, s=1)
print "χ²: α={}, α>ε: {}".format(alpha, alpha>epsilon)
##
## green string
## T,μ,n constant, plot ν(L), n=2
m = mass(400.21) + pp
T = m*g
L = np.array([116.5, 104.5, 95.4, 82.2, 75.0, 64.5, 54.7])*0.01
nu = np.array([44.58, 49.43, 54.60, 63.58, 69.34, 80.75, 96.40])
# linear regression y=kx where
# y=ν, x=1/L, k=n/2 √(T/μ)
x = np.linspace(0.5, 1.25, 100)
k = simple_linear(1/L, nu, sigma)
f = lambda x: k.n/x
plt.figure(3)
plt.xlabel('Lunghezza corda (m)')
plt.ylabel('Frequenza 2ª armonica (Hz)')
plt.scatter(L, nu, color='#844855')
plt.plot(x, f(x), '#a85c6c')
plt.show()
# χ² test
alpha = chi_squared_fit(L, nu, f, sigma, s=1)
print "χ^2: α={}, α>ε: {}".format(alpha, alpha>epsilon)
##
## every string
## T,n,L constant, plot ν(μ), n=2
m = mass(400.21) + pp
L = length(98.5)
n = 2
mu = np.array([i.n for i in mu])
nu = np.array([26.90, 47.23, 47.60, 78.20])
# linear regression y=kx where
# y=ν, x=1/√μ, k=√T/L
x = np.linspace(0.0005,0.007,100)
k = simple_linear(1/np.sqrt(mu), nu, sigma)
f = lambda x: k.n/np.sqrt(x)
plt.figure(4)
plt.xlabel('Densità lineare (kg/m)')
plt.ylabel('Frequenza 2ª armonica')
plt.scatter(mu, nu, color='#44507c')
plt.plot(x, f(x), '#5c6ca8')
plt.show()
# χ² test
alpha = chi_squared_fit(mu, nu, f, sigma, s=1)
print "χ²: α={}, α>ε: {}".format(alpha, alpha>epsilon)