gray/src/polarization.f90
Michele Guerini Rocco f82f91bc8d
fix coupling for subsequent beams
In situations when multiple beams are traced, either when allowing
multiple plasma crossings (raytracing.ipass > 0) or the initial polarisation
is mixed (raytracing.ipol == .true.), the couplings of all but the first
beam (with least index_rt) were invalid.

The bug is due to the re-use of the psipol,chipol variables as the beams
are traced sequentially over the beam_loop. For the first beam being
traced the psipol,chipol are correctly initialised to the user-defined
value and the resulting coupling is correct.
However, in each subsequent beam the values were not set to those of the
parent beam (or to the user-defined value in the case of the first X
mode beam), but to those of the previous beams (current index_rt - 1).

This change repurposes the psipv,chipv arrays to store the polarisation
of the parent beams, including the initial user-defined value and makes
plasma_in always use these to compute the coupling.

In addition, in the case the polarisation is not immediately known (i.e.
if raytracing.ipol == .false.), this change postpones the computation of
the Jones vector (ext, eyt) from the launch point, if the magnetic
equilibrium is available, to when the ray actually crosses the
plasma boundary.
The original code, besides being strictly incorrect, can lead to
non-negligible alterations to the coupling. This change also mean:

1. most of the functionality of `set_pol` has been merged with
   `plasma_in`
2. the polarisation is undefined and the Jones vector is set to the
   placeholder value [1, 0] till `plasma_im` is called

Finally, `polarcold` is removed because it's unused.
2024-04-11 18:06:46 +02:00

101 lines
2.5 KiB
Fortran

module polarization
implicit none
interface stokes
module procedure stokes_ce,stokes_ell
end interface
contains
subroutine stokes_ce(ext,eyt,qq,uu,vv)
use const_and_precisions, only : wp_
! arguments
complex(wp_), intent(in) :: ext,eyt
real(wp_), intent(out) :: qq,uu,vv
qq = abs(ext)**2 - abs(eyt)**2
uu = 2*real(ext*conjg(eyt))
vv = 2*imag(ext*conjg(eyt))
end subroutine stokes_ce
subroutine stokes_ell(chi,psi,qq,uu,vv)
use const_and_precisions, only : wp_,two
! arguments
real(wp_), intent(in) :: chi,psi
real(wp_), intent(out) :: qq,uu,vv
qq=cos(two*chi)*cos(two*psi)
uu=cos(two*chi)*sin(two*psi)
vv=sin(two*chi)
end subroutine stokes_ell
subroutine polellipse(qq,uu,vv,psi,chi)
use const_and_precisions, only : wp_,half
! arguments
real(wp_), intent(in) :: qq,uu,vv
real(wp_), intent(out) :: psi,chi
! real(wp_) :: ll,aa,bb,ell
! ll = sqrt(qq**2 + uu**2)
! aa = sqrt(half*(1 + ll))
! bb = sqrt(half*(1 - ll))
! ell = bb/aa
psi = half*atan2(uu,qq)
chi = half*asin(vv)
end subroutine polellipse
subroutine pol_limit(anv,bv,bres,sox,ext,eyt) !,gam)
use const_and_precisions, only : wp_,ui=>im,zero,one
! arguments
real(wp_), dimension(3), intent(in) :: anv,bv
real(wp_), intent(in) :: bres
integer, intent(in) :: sox
complex(wp_), intent(out) :: ext,eyt
! real(wp_), optional, intent(out) :: gam
! local variables
real(wp_), dimension(3) :: bnv
real(wp_) :: anx,any,anz,an2,an,anpl2,anpl,anpr,anxy, &
btot,yg,den,dnl,del0,ff,ff2,sngam,csgam
!
btot = sqrt(bv(1)**2+bv(2)**2+bv(3)**2)
bnv = bv/btot
yg = btot/bres
anx = anv(1)
any = anv(2)
anz = anv(3)
an2 = anx**2 + any**2 + anz**2
an = sqrt(an2)
anxy = sqrt(anx**2 + any**2)
anpl = (anv(1)*bnv(1) + anv(2)*bnv(2) + anv(3)*bnv(3))
anpl2= anpl**2
anpr = sqrt(an2 - anpl2)
dnl = one - anpl2
del0 = sqrt(dnl**2 + 4.0_wp_*anpl2/yg**2)
sngam = (anz*anpl - an2*bnv(3))/(an*anxy*anpr)
csgam = -(any*bnv(1) - anx*bnv(2))/ (anxy*anpr)
ff = 0.5_wp_*yg*(dnl - sox*del0)
ff2 = ff**2
den = ff2 + anpl2
if (den>zero) then
ext = (ff*csgam - ui*anpl*sngam)/sqrt(den)
eyt = (-ff*sngam - ui*anpl*csgam)/sqrt(den)
den = sqrt(abs(ext)**2+abs(eyt)**2)
ext = ext/den
eyt = eyt/den
else ! only for XM (sox=+1) when N//=0
ext = -ui*sngam
eyt = -ui*csgam
end if
! gam = atan2(sngam,csgam)/degree
end subroutine pol_limit
end module polarization