gray/src/gray_core.f90
Michele Guerini Rocco eb64803913
replace coreprofiles module with an object
This change replaces the `coreprofiles` module with a new `gray_plasma`
module providing the same functionality without using global variables.

  - `read_profiles`, `read_profiles_an` are replaced by a single `load_plasma`
    routines that handles both profiles kind (numerical, analytical).

  - `scale_profiles` is merged into `load_plasma`, which besides reading
    the profiles from file peforms the rescaling and interpolation based
    on the `gray_parameters` settings.

  - `set_profiles_spline`, `set_profiles_an`, `unset_profiles_spline`
     are completely removed as the module no longer has any internal state.

  - `density`, `ftemp`, `fzeff` are replaced by the `abstract_plasma`
    type which provides the `dens`, `temp` and `zeff` methods for
    either `numeric_plasma` or `analytic_plasma` subtypes.
2024-08-30 10:36:51 +02:00

1907 lines
76 KiB
Fortran
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

! This modules contains the core GRAY routines
module gray_core
use const_and_precisions, only : wp_
implicit none
contains
subroutine gray_main(params, data, plasma, results, error, rhout)
use const_and_precisions, only : zero, one, comp_tiny
use polarization, only : ellipse_to_field
use types, only : table, wrap
use gray_params, only : gray_parameters, gray_data, gray_results, EQ_VACUUM
use gray_plasma, only : abstract_plasma
use gray_tables, only : init_tables, store_ec_profiles, store_ray_data, &
store_beam_shape, find_flux_surfaces, &
kinetic_profiles, ec_resonance, inputs_maps
use gray_errors, only : is_critical, print_err_raytracing, print_err_ecrh_cd
use beams, only : xgygcoeff, launchangles2n
use beamdata, only : pweight
use magsurf_data, only : compute_flux_averages, dealloc_surfvec
use pec, only : pec_init, spec, postproc_profiles, dealloc_pec, &
rhop_tab, rhot_tab
use utils, only : vmaxmin, inside
use multipass, only : initbeam, initmultipass, turnoffray, &
plasma_in, plasma_out, wall_out
use logger, only : log_info, log_debug
! subroutine arguments
type(gray_parameters), intent(inout) :: params
type(gray_data), intent(in) :: data
class(abstract_plasma), intent(in) :: plasma
type(gray_results), intent(out) :: results
! Predefined grid for the output profiles (optional)
real(wp_), dimension(:), intent(in), optional :: rhout
! Exit code
integer, intent(out) :: error
! local variables
real(wp_), parameter :: taucr = 12._wp_, etaucr = exp(-taucr)
character, dimension(2), parameter :: mode=['O','X']
integer :: sox
real(wp_) :: ak0,bres,xgcn,xg,yg,rrm,zzm,alpha,didp,anpl,anpr,anprim,anprre
real(wp_) :: chipol,psipol,btot,psinv,dens,tekev,dersdst,derdnm
real(wp_) :: tau,pow,dids,ddr,ddi,taumn,taumx
real(wp_) :: rhotpav,drhotpav,rhotjava,drhotjava,dpdvp,jphip
real(wp_) :: rhotp,drhotp,rhotj,drhotj,dpdvmx,jphimx,ratjamx,ratjbmx
real(wp_) :: pabs_beam,icd_beam,cpl_beam1,cpl_beam2,cpl_cbeam1,cpl_cbeam2
integer :: iox,nharm,nhf,iokhawa,ierrn,ierrhcd, index_rt, parent_index_rt
integer :: ip,ib,iopmin,ipar,child_index_rt
integer :: igrad_b,istop_pass,nbeam_pass
logical :: ins_pl,ins_wl,ent_pl,ext_pl,ent_wl,ext_wl,iboff
! i: integration step, jk: global ray index
integer :: i, jk
! buffer for formatting log messages
character(256) :: msg
real(wp_), dimension(2) :: pabs_pass,icd_pass,cpl
real(wp_), dimension(3) :: xv,anv0,anv,bv,derxg
associate (nray => params%raytracing%nray, &
nrayr => params%raytracing%nrayr, &
nrayth => params%raytracing%nrayth, &
nstep => params%raytracing%nstep, &
npass => params%raytracing%ipass, &
nbeam_tot => 2**(params%raytracing%ipass+1)-2, &
nbeam_max => 2**(params%raytracing%ipass))
block
! ray variables
real(wp_), dimension(6, nray) :: yw, ypw
real(wp_), dimension(3, nray) :: gri
real(wp_), dimension(3, 3, nray) :: ggri
real(wp_), dimension(3, nrayth, nrayr) :: xc, du1
real(wp_), dimension(nray) :: ccci0, p0jk
real(wp_), dimension(nray) :: tau0, alphaabs0
real(wp_), dimension(nray) :: dids0
integer, dimension(nray) :: iiv
real(wp_), dimension(nray, nstep) :: psjki, ppabs, ccci
complex(wp_), dimension(nray) :: ext, eyt
! multipass variables
logical, dimension(nray) :: iwait
integer, dimension(nray) :: iow, iop
logical, dimension(nray, nbeam_tot) :: iroff
real(wp_), dimension(6, nray, nbeam_max-2) :: yynext, yypnext
real(wp_), dimension(6, nray) :: yw0, ypw0
real(wp_), dimension(nray, nbeam_tot) :: stnext
real(wp_), dimension(nray) :: stv, p0ray
real(wp_), dimension(nray, nbeam_tot) :: taus, cpls
real(wp_), dimension(nray) :: tau1, etau1, cpl1, lgcpl1
real(wp_), dimension(0:nbeam_tot) :: psipv, chipv
! beam variables
real(wp_), dimension(params%output%nrho) :: jphi_beam, pins_beam
real(wp_), dimension(params%output%nrho) :: currins_beam, dpdv_beam, jcd_beam
! ======== set environment BEGIN ========
! Compute X=ω/ω_ce and Y=(ω/ω_pe)² (with B=1)
call xgygcoeff(params%antenna%fghz, ak0, bres, xgcn)
! Initialise the output tables
call init_tables(params, results%tables)
! Compute the initial cartesian wavevector (anv0)
! from launch angles α,β and the position
call launchangles2n(params%antenna, anv0)
if (params%equilibrium%iequil /= EQ_VACUUM) then
! Initialise the magsurf_data module
call compute_flux_averages(params, results%tables)
! Initialise the output profiles
call pec_init(params%output, rhout)
end if
! Allocate memory for the results...
allocate(results%dpdv(params%output%nrho))
allocate(results%jcd(params%output%nrho))
! ...and initialise them
results%pabs = zero
results%icd = zero
results%dpdv = zero
results%jcd = zero
! ========= set environment END =========
! Pre-determinted tables
results%tables%kinetic_profiles = kinetic_profiles(params, plasma)
results%tables%ec_resonance = ec_resonance(params, bres)
results%tables%inputs_maps = inputs_maps(params, plasma, bres, xgcn)
! print ψ surface for q=3/2 and q=2/1
call find_flux_surfaces( &
qvals=[1.5_wp_, 2.0_wp_], params=params, &
tbl=results%tables%flux_surfaces)
! print initial position
write (msg, '("initial position:",3(x,g0.3))') params%antenna%pos
call log_info(msg, mod='gray_core', proc='gray_main')
write (msg, '("initial direction:",2(x,a,"=",g0.2))') &
'α', params%antenna%alpha, 'β', params%antenna%beta
call log_info(msg, mod='gray_core', proc='gray_main')
! =========== main loop BEGIN ===========
call initmultipass(params, iroff, yynext, yypnext, yw0, ypw0, &
stnext, p0ray, taus, tau1, etau1, cpls, &
cpl1, lgcpl1, psipv, chipv)
sox=1 ! mode inverted for each beam
iox=2 ! start with O: sox=-1, iox=1
call pweight(params%raytracing, params%antenna%power, p0jk)
! Set original polarisation
psipv(0) = params%antenna%psi
chipv(0) = params%antenna%chi
nbeam_pass=1 ! max n of beam per pass
index_rt=0 ! global beam index: 1,O 2,X 1st pass
! | | | |
call log_debug('pass loop start', mod='gray_core', proc='gray_main') ! 3,O 4,X 5,O 6,X 2nd pass
main_loop: do ip=1,params%raytracing%ipass
write (msg, '("pass: ",g0)') ip
call log_info(msg, mod='gray_core', proc='gray_main')
pabs_pass = zero
icd_pass = zero
istop_pass = 0 ! stop flag for current pass
nbeam_pass = 2*nbeam_pass ! max n of beams in current pass
if(ip > 1) then
du1 = zero
gri = zero
ggri = zero
if(ip == params%raytracing%ipass) cpl = [zero, zero] ! no successive passes
end if
! =========== beam loop BEGIN ===========
call log_debug('beam loop start', mod='gray_core', proc='gray_main')
beam_loop: do ib=1,nbeam_pass
sox = -sox ! invert mode
iox = 3-iox ! O-mode at ip=1,ib=1
index_rt = index_rt +1
child_index_rt = 2*index_rt + 1 ! * index_rt of O-mode child beam
parent_index_rt = ceiling(index_rt / 2.0_wp_) - 1 ! * index_rt of parent beam
call initbeam(index_rt,iroff,iboff,iwait,stv,jphi_beam, &
pins_beam,currins_beam,dpdv_beam,jcd_beam)
write(msg, '(" beam: ",g0," (",a1," mode)")') index_rt, mode(iox)
call log_info(msg, mod='gray_core', proc='gray_main')
if(iboff) then ! no propagation for current beam
istop_pass = istop_pass +1 ! * +1 non propagating beam
call log_info(" beam is off", mod='gray_core', proc='gray_main')
cycle
end if
call vectinit(psjki,ppabs,ccci,tau0,alphaabs0,dids0,ccci0,iiv)
if(ip == 1) then ! 1st pass
igrad_b = params%raytracing%igrad ! * input value, igrad_b=0 from 2nd pass
tau1 = zero ! * tau from previous passes
etau1 = one
cpl1 = one ! * coupling from previous passes
lgcpl1 = zero
p0ray = p0jk ! * initial beam power
call ic_gb(params, anv0, ak0, yw, ypw, stv, xc, du1, &
gri, ggri, index_rt, results%tables) ! * initial conditions
do jk=1,params%raytracing%nray
zzm = yw(3,jk)*0.01_wp_
rrm = sqrt(yw(1,jk)*yw(1,jk)+yw(2,jk)*yw(2,jk))*0.01_wp_
if (data%equilibrium%limiter%contains(rrm, zzm)) then ! * start propagation in/outside vessel?
iow(jk) = 1 ! + inside
else
iow(jk) = 0 ! + outside
end if
end do
else ! 2nd+ passes
ipar = (index_rt+1)/2-1 ! * parent beam index
yw = yynext(:,:,ipar) ! * starting coordinates from
ypw = yypnext(:,:,ipar) ! parent beam last step
stv = stnext(:,ipar) ! * starting step from parent beam last step
iow = 1 ! * start propagation inside vessel
tau1 = taus(:,index_rt) ! * tau from previous passes
etau1 = exp(-tau1)
cpl1 = cpls(:,index_rt) ! * coupling from previous passes
lgcpl1 = -log(cpl1)
p0ray = p0jk * etau1 * cpl1 ! * initial beam power
end if
iop = 0 ! start propagation outside plasma
if(params%raytracing%nray>1 .and. all(.not.iwait)) & ! iproj=0 ==> nfilp=8
call store_beam_shape(params%raytracing, results%tables, stv, yw)
! ======= propagation loop BEGIN =======
call log_debug(' propagation loop start', mod='gray_core', proc='gray_main')
propagation_loop: do i=1,params%raytracing%nstep
! advance one step with "frozen" grad(S_I)
do jk=1,params%raytracing%nray
if(iwait(jk)) cycle ! jk ray is waiting for next pass
stv(jk) = stv(jk) + params%raytracing%dst ! current ray step
call rkstep(params, plasma, sox, bres, xgcn, yw(:,jk), &
ypw(:,jk), gri(:,jk), ggri(:,:,jk), igrad_b)
end do
! update position and grad
if(igrad_b == 1) call gradi_upd(params%raytracing, yw, ak0, xc, du1, gri, ggri)
error = 0
iopmin = 10
! =========== rays loop BEGIN ===========
rays_loop: do jk=1,params%raytracing%nray
if(iwait(jk)) cycle ! jk ray is waiting for next pass
! compute derivatives with updated gradient and local plasma values
xv = yw(1:3,jk)
anv = yw(4:6,jk)
call ywppla_upd(params, plasma, xv, anv, gri(:,jk), ggri(:,:,jk), &
sox, bres, xgcn,ypw(:,jk), psinv, dens, btot, bv, &
xg, yg, derxg, anpl, anpr, ddr, ddi, dersdst, &
derdnm, ierrn, igrad_b)
! update global error code and print message
if(ierrn/=0) then
error = ior(error,ierrn)
call print_err_raytracing(ierrn, i, anpl)
end if
! check entrance/exit plasma/wall
zzm = xv(3)*0.01_wp_
rrm = sqrt(xv(1)*xv(1)+xv(2)*xv(2))*0.01_wp_
ins_pl = (psinv>=zero .and. psinv<params%profiles%psnbnd) ! in/out plasma?
ins_wl = data%equilibrium%limiter%contains(rrm, zzm) ! in/out vessel?
ent_pl = (mod(iop(jk),2) == 0 .and. ins_pl) ! enter plasma
ext_pl = (mod(iop(jk),2) == 1 .and. .not.ins_pl) ! exit plasma
ent_wl = (mod(iow(jk),2) == 0 .and. ins_wl) ! enter vessel
ext_wl = (mod(iow(jk),2) == 1 .and. .not.ins_wl) ! exit vessel
if(ent_pl) then ! ray enters plasma
write (msg, '(" ray ",g0," entered plasma (",g0," steps)")') jk, i
call log_debug(msg, mod='gray_core', proc='gray_main')
call ellipse_to_field(psipv(parent_index_rt), chipv(parent_index_rt), & ! compute polarisation and couplings
ext, eyt)
call plasma_in(jk, xv, anv, bres, sox, cpl, psipol, chipol, iop, ext, eyt, &
perfect=.not. params%raytracing%ipol &
.and. params%antenna%iox == iox &
.and. iop(jk) == 0 .and. ip==1)
if(iop(jk) == 1 .and. ip==1) then ! * 1st entrance on 1st pass (ray hasn't entered in plasma yet) => continue current pass
if(cpl(iox) < etaucr) then ! + IF low coupled power for current mode => de-activate derived rays
call turnoffray(jk,ip+1,npass,2*ib+2-iox,iroff)
iwait(jk) = .true. ! . stop advancement and H&CD computation for current ray
if(cpl(iox).le.comp_tiny) cpl(iox)=etaucr
else ! + ELSE assign coupled power to current ray
p0ray(jk) = p0ray(jk)*cpl(iox)
end if
cpls(jk,index_rt) = cpl(iox)
if(jk == 1) then
write (msg,'(" 1st pass - central ray (",a1,"-mode) c=",g0.4)') &
mode(iox), cpl(iox)
call log_info(msg, mod='gray_core', proc='gray_main')
write (msg,'(" polarisation: ψ=",g0.5,"°, χ=",g0.5,"°")') &
psipol, chipol
call log_debug(msg, mod='gray_core', proc='gray_main')
psipv(index_rt) = psipol ! + polarization angles at plasma boundary for central ray
chipv(index_rt) = chipol
end if
else if(iop(jk) > 2) then ! * 2nd entrance on 1st pass / entrance on 2nd+ pass => end of current pass for ray jk
igrad_b = 0 ! + switch to ray-tracing
iwait(jk) = .true. ! + stop advancement and H&CD computation for current ray
if(ip < params%raytracing%ipass) then ! + not last pass
yynext(:,jk,index_rt) = yw0(:,jk) ! . copy starting coordinates
yypnext(:,jk,index_rt) = ypw0(:,jk) ! for next pass from last step
stnext(jk,index_rt) = stv(jk) - params%raytracing%dst ! . starting step for next pass = last step
if(cpl(1) < etaucr) then ! . low coupled power for O-mode => de-activate derived rays
call turnoffray(jk,ip+1,npass,2*ib-1,iroff)
if(cpl(1).le.comp_tiny) cpl(1)=etaucr
end if
if(cpl(2) < etaucr) then ! . low coupled power for X-mode => de-activate derived rays
call turnoffray(jk,ip+1,npass,2*ib,iroff)
if(cpl(2).le.comp_tiny) cpl(2)=etaucr
end if
taus(jk,child_index_rt:child_index_rt+1) = tau1(jk) + tau0(jk) ! . starting tau for next O-mode pass
cpls(jk,child_index_rt) = cpl1(jk) * cpl(1) ! . cumulative coupling for next O-mode pass
cpls(jk,child_index_rt+1) = cpl1(jk) * cpl(2) ! . cumulative coupling for next X-mode pass
if(jk == 1) then ! . polarization angles at plasma boundary for central ray
psipv(child_index_rt:child_index_rt+1) = psipol
chipv(child_index_rt:child_index_rt+1) = chipol
end if
else ! * 1st entrance on 2nd+ pass (ray hasn't entered in plasma since end of previous pass) => continue current pass
cpl = [zero, zero]
end if
end if
else if(ext_pl) then ! ray exits plasma
write (msg, '(" ray ", g0, " left plasma")') jk
call log_debug(msg, mod='gray_core', proc='gray_main')
call plasma_out(jk,xv,anv,bres,sox,iop,ext,eyt)
end if
if(ent_wl) then ! ray enters vessel
iow(jk)=iow(jk)+1 ! * out->in
else if(ext_wl) then ! ray exit vessel
call wall_out(jk, data%equilibrium%limiter, ins_pl, xv, anv, &
params%raytracing%dst, bres, sox, psipol, chipol, &
iow, iop, ext, eyt)
yw(:,jk) = [xv, anv] ! * updated coordinates (reflected)
igrad_b = 0 ! * switch to ray-tracing
call ywppla_upd(params, plasma, xv, anv, gri(:,jk), ggri(:,:,jk), &
sox, bres, xgcn, ypw(:,jk), psinv, dens, btot, &
bv, xg, yg, derxg, anpl, anpr, ddr, ddi, dersdst, &
derdnm, ierrn, igrad_b) ! * update derivatives after reflection
if(ierrn/=0) then ! * update global error code and print message
error = ior(error,ierrn)
call print_err_raytracing(ierrn, i, anpl)
end if
if(jk == 1 .and. ip == 1) then ! * 1st pass, polarization angles at reflection for central ray
psipv(index_rt) = psipol
chipv(index_rt) = chipol
end if
if(ins_pl) then ! * plasma-wall overlapping => wall+plasma crossing => end of current pass
iwait(jk) = .true. ! + stop advancement and H&CD computation for current ray
if(ip < params%raytracing%ipass) then ! + not last pass
yynext(:,jk,index_rt) = [xv, anv] ! . starting coordinates
yypnext(:,jk,index_rt) = ypw(:,jk) ! for next pass = reflection point
stnext(jk,index_rt) = stv(jk) ! . starting step for next pass = step after reflection
call plasma_in(jk, xv, anv, bres, sox, cpl, psipol, chipol, & ! . ray re-enters plasma after reflection
iop, ext, eyt, perfect=.false.)
if(cpl(1) < etaucr) then ! . low coupled power for O-mode? => de-activate derived rays
call turnoffray(jk,ip+1,npass,2*ib-1,iroff)
if(cpl(1).le.comp_tiny) cpl(1)=etaucr
end if
if(cpl(2) < etaucr) then ! . low coupled power for X-mode? => de-activate derived rays
call turnoffray(jk,ip+1,npass,2*ib,iroff)
if(cpl(2).le.comp_tiny) cpl(2)=etaucr
end if
taus(jk,child_index_rt:child_index_rt+1) = tau1(jk) + tau0(jk) ! . starting tau for next O-mode pass
cpls(jk,child_index_rt) = cpl1(jk) * cpl(1) ! . cumulative coupling for next O-mode pass
cpls(jk,child_index_rt+1) = cpl1(jk) * cpl(2) ! . cumulative coupling for next X-mode pass
if(jk == 1) then ! + polarization angles at plasma boundary for central ray
psipv(child_index_rt:child_index_rt+1) = psipol
chipv(child_index_rt:child_index_rt+1) = chipol
end if
end if
end if
end if
iopmin = min(iopmin,iop(jk))
if(ip < params%raytracing%ipass) then ! not last pass
yw0(:,jk) = yw(:,jk) ! * store current coordinates in case
ypw0(:,jk) = ypw(:,jk) ! current pass ends on next step
end if
! Compute ECRH&CD if (inside plasma & power available>0 & ray still active)
! Note: power check is τ + τ₀ + log(coupling O/X) < τ_critic
if(ierrn==0 .and. params%ecrh_cd%iwarm>0 .and. ins_pl .and. &
(tau1(jk)+tau0(jk)+lgcpl1(jk))<=taucr .and. .not.iwait(jk)) then ! H&CD computation check
tekev = plasma%temp(psinv)
block
complex(wp_) :: Npr_warm
call alpha_effj(params%ecrh_cd, plasma, psinv, xg, yg, dens, &
tekev, ak0, bres, derdnm, anpl, anpr, sox, &
Npr_warm, alpha, didp, nharm, nhf, iokhawa, &
ierrhcd)
anprre = Npr_warm%re
anprim = Npr_warm%im
if(ierrhcd /= 0) then
error = ior(error, ierrhcd)
call print_err_ecrh_cd(ierrhcd, i, Npr_warm, alpha)
end if
end block
else
tekev=zero
alpha=zero
didp=zero
anprim=zero
anprre=anpr
nharm=0
nhf=0
iokhawa=0
end if
if(nharm>0) iiv(jk)=i
psjki(jk,i) = psinv
! Computation of the ray τ, dP/ds, P(s), dI/ds, I(s)
! optical depth: τ = ∫α(s)ds using the trapezoid rule
tau = tau0(jk) + 0.5_wp_*(alphaabs0(jk) + alpha) * dersdst * params%raytracing%dst
pow = p0ray(jk) * exp(-tau) ! residual power: P = P₀exp(-τ)
ppabs(jk,i) = p0ray(jk) - pow ! absorbed power: P_abs = P₀ - P
dids = didp * pow * alpha ! current driven: dI/ds = dI/dP⋅dP/ds = dI/dP⋅P⋅α
! current: I = ∫dI/ds⋅ds using the trapezoid rule
ccci(jk,i) = ccci0(jk) + 0.5_wp_*(dids0(jk) + dids) * dersdst * params%raytracing%dst
tau0(jk) = tau
alphaabs0(jk) = alpha
dids0(jk) = dids
ccci0(jk) = ccci(jk,i)
if(iwait(jk)) then ! copy values from last pass for inactive ray
ppabs(jk,i:params%raytracing%nstep) = ppabs(jk,i-1)
ccci(jk,i:params%raytracing%nstep) = ccci(jk,i-1)
psjki(jk,i:params%raytracing%nstep) = psjki(jk,i-1)
else
call store_ray_data(params, results%tables, &
i, jk, stv(jk), p0ray(jk), xv, psinv, btot, bv, ak0, &
anpl, anpr, anv, anprim, dens, tekev, alpha, tau, dids, &
nharm, nhf, iokhawa, index_rt, ddr, ddi, xg, yg, derxg) ! p0ray/etau1 [dids normalization] = fraction of p0 coupled to this ray (not including absorption from previous passes)
end if
end do rays_loop
! ============ rays loop END ============
if(i==params%raytracing%nstep) then ! step limit reached?
do jk=1,params%raytracing%nray
if(iop(jk)<3) call turnoffray(jk,ip,npass,ib,iroff) ! * ray hasn't exited+reentered the plasma by last step => stop ray
end do
end if
! print ray positions for j=nrayr in local reference system
if(mod(i,params%output%istpr) == 0) then
if(params%raytracing%nray > 1 .and. all(.not.iwait)) &
call store_beam_shape(params%raytracing, results%tables, stv, yw)
end if
! test whether further trajectory integration is unnecessary
call vmaxmin(tau1+tau0+lgcpl1,params%raytracing%nray,taumn,taumx) ! test on tau + coupling
if(is_critical(error)) then ! stop propagation for current beam
istop_pass = istop_pass +1 ! * +1 non propagating beam
if(ip < params%raytracing%ipass) call turnoffray(0,ip,npass,ib,iroff) ! * de-activate derived beams
exit
else if(all(iwait)) then ! all rays in current beam are waiting for next pass => do not increase istop_pass
exit
end if
end do propagation_loop
call log_debug(' propagation loop end', mod='gray_core', proc='gray_main')
! ======== propagation loop END ========
! print all ray positions in local reference system
if(params%raytracing%nray > 1 .and. all(.not.iwait)) &
call store_beam_shape(params%raytracing, results%tables, &
stv, yw, full=.true.)
! =========== post-proc BEGIN ===========
! compute total absorbed power and driven current for current beam
if(i>params%raytracing%nstep) i=params%raytracing%nstep
pabs_beam = sum(ppabs(:,i))
icd_beam = sum(ccci(:,i))
call vmaxmin(tau0,params%raytracing%nray,taumn,taumx) ! taumn,taumx for print
if (params%equilibrium%iequil /= EQ_VACUUM) then
! compute power and current density profiles for all rays
call spec(psjki, ppabs, ccci, iiv, pabs_beam, &
icd_beam, dpdv_beam, jphi_beam, jcd_beam, &
pins_beam, currins_beam)
end if
pabs_pass(iox) = pabs_pass(iox) + pabs_beam ! 0D results for current pass, sum on O/X mode beams
icd_pass(iox) = icd_pass(iox) + icd_beam
if(ip < params%raytracing%ipass .and. iopmin > 2) then ! not last pass AND at least one ray re-entered plasma
cpl_beam1 = sum(&
p0ray * exp(-tau0) * cpls(:,child_index_rt)/cpl1, MASK=iop > 2) / &
sum(p0ray * exp(-tau0), MASK=iop > 2) ! * average O-mode coupling for next beam (on active rays)
cpl_beam2 = one - cpl_beam1 ! * average X-mode coupling for next beam
if(iop(1) > 2) then ! * central ray O/X-mode coupling for next beam
cpl_cbeam1 = cpls(1,child_index_rt)/cpl1(1)
cpl_cbeam2 = one - cpl_cbeam1
end if
else ! last pass OR no ray re-entered plasma
cpl_beam1 = zero
cpl_beam2 = zero
end if
! print final results for pass on screen
call log_info(' partial results:', mod='gray_core', proc='gray_main')
write(msg, '(" final step:", x,a,g0, x,a,g0.4)') 'n=', i, '(s, ct, Sr)=', stv(1)
call log_info(msg, mod='gray_core', proc='gray_main')
write(msg, '(3x,a,2(x,a,"=",g0.4))') 'optical depth:', 'τ_min', taumn, 'τ_max', taumx
call log_info(msg, mod='gray_core', proc='gray_main')
write(msg, '(3x,a,g0.3," MW")') 'absoption: P=', pabs_beam
call log_info(msg, mod='gray_core', proc='gray_main')
write(msg, '(3x,a,g0.3," kA")') 'current drive: I=', icd_beam*1.0e3_wp_
call log_info(msg, mod='gray_core', proc='gray_main')
if(ip < params%raytracing%ipass) then
write (msg,'(3x,a,(g0.4,", ",g0.4))') & ! average coupling for next O/X beams (=0 if no ray re-entered plasma)
'next couplings [O,X mode]: c=', cpl_beam1, cpl_beam2
call log_info(msg, mod='gray_core', proc='gray_main')
if(iop(1) > 2) then
write(msg, '(3x,a,(g0.4,", ",g0.4))') &
'coupling [ctr ray, O/X]:', cpl_cbeam1, cpl_cbeam2 ! central ray coupling for next O/X beams
call log_info(msg, mod='gray_core', proc='gray_main')
end if
end if
if (params%equilibrium%iequil /= EQ_VACUUM) then
call store_ec_profiles( &
results%tables%ec_profiles, rhop_tab, rhot_tab, jphi_beam, &
jcd_beam, dpdv_beam, currins_beam, pins_beam, ip)
call postproc_profiles(pabs_beam,icd_beam,rhot_tab,dpdv_beam, &
jphi_beam, rhotpav,drhotpav,rhotjava,drhotjava,dpdvp,jphip, &
rhotp,drhotp,rhotj,drhotj,dpdvmx,jphimx,ratjamx,ratjbmx) ! *compute profiles width for current beam
if (results%tables%summary%active) then
call results%tables%summary%append([ &
wrap(icd_beam), wrap(pabs_beam), wrap(jphip), wrap(dpdvp), &
wrap(rhotj), wrap(rhotjava), wrap(rhotp), wrap(rhotpav), &
wrap(drhotjava), wrap(drhotpav), wrap(ratjamx), wrap(ratjbmx), &
wrap(stv(1)), wrap(psipv(index_rt)), wrap(chipv(index_rt)), &
wrap(index_rt), wrap(jphimx), wrap(dpdvmx), wrap(drhotj), &
wrap(drhotp), wrap(sum(p0ray)), wrap(cpl_beam1), wrap(cpl_beam2)]) ! *print 0D results for current beam
end if
end if
! ============ post-proc END ============
end do beam_loop
call log_debug('beam loop end', mod='gray_core', proc='gray_main')
! ============ beam loop END ============
! ======= cumulative prints BEGIN =======
results%pabs = results%pabs + sum(pabs_pass) ! *final results (O+X) [gray_main output]
results%icd = results%icd + sum(icd_pass)
! print final results for pass on screen
call log_info(' comulative results:', mod='gray_core', proc='gray_main')
write(msg, '(" absoption [O,X mode] P=",g0.4,", ",g0.4," MW")') &
pabs_pass(1), pabs_pass(2)
call log_info(msg, mod='gray_core', proc='gray_main')
write(msg, '(" current drive [O,X mode] I=",g0.4,", ",g0.4," kA")') &
icd_pass(1)*1.0e3_wp_, icd_pass(2)*1.0e3_wp_
call log_info(msg, mod='gray_core', proc='gray_main')
! ======== cumulative prints END ========
if(istop_pass == nbeam_pass) exit ! no active beams
end do main_loop
call log_debug('pass loop end', mod='gray_core', proc='gray_main')
! ============ main loop END ============
! Free memory
call dealloc_surfvec
call dealloc_pec
end block
end associate
end subroutine gray_main
subroutine vectinit(psjki,ppabs,ccci,tau0,alphaabs0,dids0,ccci0,iiv)
use const_and_precisions, only : zero
! arguments
real(wp_), dimension(:,:), intent(out) :: psjki,ppabs,ccci
real(wp_), dimension(:), intent(out) :: tau0,alphaabs0,dids0,ccci0
integer, dimension(:), intent(out) :: iiv
!! common/external functions/variables
! integer :: jclosest
! real(wp_), dimension(3) :: anwcl,xwcl
!
! common/refln/anwcl,xwcl,jclosest
!
! jclosest=nrayr+1
! anwcl(1:3)=0.0_wp_
! xwcl(1:3)=0.0_wp_
psjki = zero
ppabs = zero
ccci = zero
tau0 = zero
alphaabs0 = zero
dids0 = zero
ccci0 = zero
iiv = 1
end subroutine vectinit
subroutine ic_gb(params, anv0c, ak0, ywrk0, ypwrk0, &
stv, xc0, du10, gri, ggri, index_rt, &
tables)
! beam tracing initial conditions igrad=1
! !!!!!! check ray tracing initial conditions igrad=0 !!!!!!
use const_and_precisions, only : zero,one,pi,half,two,degree,ui=>im
use gray_params, only : gray_parameters, gray_tables
use types, only : table
use gray_tables, only : store_ray_data
! subroutine arguments
type(gray_parameters), intent(in) :: params
real(wp_), dimension(3), intent(in) :: anv0c
real(wp_), intent(in) :: ak0
real(wp_), dimension(6, params%raytracing%nray), intent(out) :: ywrk0, ypwrk0
real(wp_), dimension(params%raytracing%nrayth * params%raytracing%nrayr), intent(out) :: stv
real(wp_), dimension(3, params%raytracing%nrayth, params%raytracing%nrayr), intent(out) :: xc0, du10
real(wp_), dimension(3, params%raytracing%nray), intent(out) :: gri
real(wp_), dimension(3, 3, params%raytracing%nray), intent(out) :: ggri
integer, intent(in) :: index_rt
! tables for storing initial rays data
type(gray_tables), intent(inout), optional :: tables
! local variables
real(wp_), dimension(3) :: xv0c
real(wp_) :: wcsi,weta,rcicsi,rcieta,phiw,phir
integer :: j,k,jk
real(wp_) :: csth,snth,csps,snps,phiwrad,phirrad,csphiw,snphiw,alfak
real(wp_) :: wwcsi,wweta,sk,sw,dk,dw,rci1,ww1,rci2,ww2,wwxx,wwyy,wwxy
real(wp_) :: rcixx,rciyy,rcixy,dwwxx,dwwyy,dwwxy,d2wwxx,d2wwyy,d2wwxy
real(wp_) :: drcixx,drciyy,drcixy,dr,da,ddfu,dcsiw,detaw,dx0t,dy0t
real(wp_) :: x0t,y0t,z0t,dx0,dy0,dz0,x0,y0,z0,gxt,gyt,gzt,gr2
real(wp_) :: gxxt,gyyt,gzzt,gxyt,gxzt,gyzt,dgr2xt,dgr2yt,dgr2zt
real(wp_) :: dgr2x,dgr2y,dgr2z,pppx,pppy,denpp,ppx,ppy
real(wp_) :: anzt,anxt,anyt,anx,any,anz,an20,an0
real(wp_) :: du1tx,du1ty,du1tz,denom,ddr,ddi
real(wp_), dimension(params%raytracing%nrayr) :: uj
real(wp_), dimension(params%raytracing%nrayth) :: sna,csa
complex(wp_) :: sss,ddd,phic,qi1,qi2,tc,ts,qqxx,qqxy,qqyy,dqi1,dqi2
complex(wp_) :: dqqxx,dqqyy,dqqxy,d2qi1,d2qi2,d2qqxx,d2qqyy,d2qqxy
! initial beam parameters
xv0c = params%antenna%pos
wcsi = params%antenna%w(1)
weta = params%antenna%w(2)
rcicsi = params%antenna%ri(1)
rcieta = params%antenna%ri(2)
phiw = params%antenna%phi(1)
phir = params%antenna%phi(2)
csth=anv0c(3)
snth=sqrt(one-csth**2)
if(snth > zero) then
csps=anv0c(2)/snth
snps=anv0c(1)/snth
else
csps=one
snps=zero
end if
! Gaussian beam: exp[-ik0 zt] exp[-i k0/2 S(xt,yt,zt)]
! xt,yt,zt, cartesian coordinate system with zt along the beamline and xt in the z = 0 plane
! S(xt,yt,zt) = S_real +i S_imag = Qxx(zt) xt^2 + Qyy(zt) yt^2 + 2 Qxy(zt) xt yt
! (csiw, etaw) and (csiR, etaR) intensity and phase ellipse, rotated by angle phiw and phiR
! S(xt,yt,zt) = csiR^2 / Rccsi +etaR^2 /Rceta - i (csiw^2 Wcsi +etaw^2 Weta)
! Rccsi,eta curvature radius at the launching point
! Wcsi,eta =2/(k0 wcsi,eta^2) with wcsi,eta^2 beam size at the launching point
phiwrad = phiw*degree
phirrad = phir*degree
csphiw = cos(phiwrad)
snphiw = sin(phiwrad)
!csphir = cos(phirrad)
!snphir = sin(phirrad)
wwcsi = two/(ak0*wcsi**2)
wweta = two/(ak0*weta**2)
if(phir/=phiw) then
sk = rcicsi + rcieta
sw = wwcsi + wweta
dk = rcicsi - rcieta
dw = wwcsi - wweta
ts = -(dk*sin(2*phirrad) - ui*dw*sin(2*phiwrad))
tc = (dk*cos(2*phirrad) - ui*dw*cos(2*phiwrad))
phic = half*atan(ts/tc)
ddd = dk*cos(2*(phirrad+phic)) - ui*dw*cos(2*(phiwrad+phic))
sss = sk - ui*sw
qi1 = half*(sss + ddd)
qi2 = half*(sss - ddd)
rci1 = real(qi1)
rci2 = real(qi2)
ww1 = -imag(qi1)
ww2 = -imag(qi2)
else
rci1 = rcicsi
rci2 = rcieta
ww1 = wwcsi
ww2 = wweta
phic = -phiwrad
qi1 = rci1 - ui*ww1
qi2 = rci2 - ui*ww2
end if
!w01=sqrt(2.0_wp_/(ak0*ww1))
!d01=-rci1/(rci1**2+ww1**2)
!w02=sqrt(2.0_wp_/(ak0*ww2))
!d02=-rci2/(rci2**2+ww2**2)
qqxx = qi1*cos(phic)**2 + qi2*sin(phic)**2
qqyy = qi1*sin(phic)**2 + qi2*cos(phic)**2
qqxy = -(qi1 - qi2)*sin(phic)*cos(phic)
wwxx = -imag(qqxx)
wwyy = -imag(qqyy)
wwxy = -imag(qqxy)
rcixx = real(qqxx)
rciyy = real(qqyy)
rcixy = real(qqxy)
dqi1 = -qi1**2
dqi2 = -qi2**2
d2qi1 = 2*qi1**3
d2qi2 = 2*qi2**3
dqqxx = dqi1*cos(phic)**2 + dqi2*sin(phic)**2
dqqyy = dqi1*sin(phic)**2 + dqi2*cos(phic)**2
dqqxy = -(dqi1 - dqi2)*sin(phic)*cos(phic)
d2qqxx = d2qi1*cos(phic)**2 + d2qi2*sin(phic)**2
d2qqyy = d2qi1*sin(phic)**2 + d2qi2*cos(phic)**2
d2qqxy = -(d2qi1 - d2qi2)*sin(phic)*cos(phic)
dwwxx = -imag(dqqxx)
dwwyy = -imag(dqqyy)
dwwxy = -imag(dqqxy)
d2wwxx = -imag(d2qqxx)
d2wwyy = -imag(d2qqyy)
d2wwxy = -imag(d2qqxy)
drcixx = real(dqqxx)
drciyy = real(dqqyy)
drcixy = real(dqqxy)
if(params%raytracing%nrayr > 1) then
dr = params%raytracing%rwmax / (params%raytracing%nrayr - 1)
else
dr = 1
end if
ddfu = 2*dr**2/ak0
do j = 1, params%raytracing%nrayr
uj(j) = real(j-1, wp_)
end do
da=2*pi/params%raytracing%nrayth
do k=1,params%raytracing%nrayth
alfak = (k-1)*da
sna(k) = sin(alfak)
csa(k) = cos(alfak)
end do
! central ray
jk=1
gri(:,1) = zero
ggri(:,:,1) = zero
ywrk0(1:3,1) = xv0c
ywrk0(4:6,1) = anv0c
ypwrk0(1:3,1) = anv0c
ypwrk0(4:6,1) = zero
do k=1,params%raytracing%nrayth
dcsiw = dr*csa(k)*wcsi
detaw = dr*sna(k)*weta
dx0t = dcsiw*csphiw - detaw*snphiw
dy0t = dcsiw*snphiw + detaw*csphiw
du1tx = (dx0t*wwxx + dy0t*wwxy)/ddfu
du1ty = (dx0t*wwxy + dy0t*wwyy)/ddfu
xc0(:,k,1) = xv0c
du10(1,k,1) = du1tx*csps + snps*du1ty*csth
du10(2,k,1) = -du1tx*snps + csps*du1ty*csth
du10(3,k,1) = -du1ty*snth
end do
ddr = zero
ddi = zero
! loop on rays jk>1
j=2
k=0
do jk = 2, params%raytracing%nray
k=k+1
if(k > params%raytracing%nrayth) then
j=j+1
k=1
end if
!csiw=u*dcsiw
!etaw=u*detaw
!csir=x0t*csphir+y0t*snphir
!etar=-x0t*snphir+y0t*csphir
dcsiw = dr*csa(k)*wcsi
detaw = dr*sna(k)*weta
dx0t = dcsiw*csphiw - detaw*snphiw
dy0t = dcsiw*snphiw + detaw*csphiw
x0t = uj(j)*dx0t
y0t = uj(j)*dy0t
z0t = 0
dx0 = x0t*csps + snps*(y0t*csth + z0t*snth)
dy0 = -x0t*snps + csps*(y0t*csth + z0t*snth)
dz0 = z0t*csth - y0t*snth
x0 = xv0c(1) + dx0
y0 = xv0c(2) + dy0
z0 = xv0c(3) + dz0
gxt = x0t*wwxx + y0t*wwxy
gyt = x0t*wwxy + y0t*wwyy
gzt = half*(x0t**2*dwwxx + y0t**2*dwwyy ) + x0t*y0t*dwwxy
gr2 = gxt*gxt + gyt*gyt + gzt*gzt
gxxt = wwxx
gyyt = wwyy
gzzt = half*(x0t**2*d2wwxx + y0t**2*d2wwyy) + x0t*y0t*d2wwxy
gxyt = wwxy
gxzt = x0t*dwwxx + y0t*dwwxy
gyzt = x0t*dwwxy + y0t*dwwyy
dgr2xt = 2*(gxt*gxxt + gyt*gxyt + gzt*gxzt)
dgr2yt = 2*(gxt*gxyt + gyt*gyyt + gzt*gyzt)
dgr2zt = 2*(gxt*gxzt + gyt*gyzt + gzt*gzzt)
dgr2x = dgr2xt*csps + snps*(dgr2yt*csth + dgr2zt*snth)
dgr2y = -dgr2xt*snps + csps*(dgr2yt*csth + dgr2zt*snth)
dgr2z = dgr2zt*csth - dgr2yt*snth
gri(1,jk) = gxt*csps + snps*(gyt*csth + gzt*snth)
gri(2,jk) = -gxt*snps + csps*(gyt*csth + gzt*snth)
gri(3,jk) = gzt*csth - gyt*snth
ggri(1,1,jk) = gxxt*csps**2 &
+ snps**2 *(gyyt*csth**2 + gzzt*snth**2 + 2*snth*csth*gyzt) &
+2*snps*csps*(gxyt*csth + gxzt*snth)
ggri(2,1,jk) = csps*snps &
*(-gxxt+csth**2*gyyt + snth**2*gzzt + 2*csth*snth*gyzt) &
+(csps**2 - snps**2)*(snth*gxzt + csth*gxyt)
ggri(3,1,jk) = csth*snth*snps*(gzzt - gyyt) + (csth**2 - snth**2) &
*snps*gyzt + csps*(csth*gxzt - snth*gxyt)
ggri(1,2,jk) = ggri(2,1,jk)
ggri(2,2,jk) = gxxt*snps**2 &
+ csps**2 *(gyyt*csth**2 + gzzt*snth**2 + 2*snth*csth*gyzt) &
-2*snps*csps*(gxyt*csth + gxzt*snth)
ggri(3,2,jk) = csth*snth*csps*(gzzt - gyyt) + (csth**2-snth**2) &
*csps*gyzt + snps*(snth*gxyt - csth*gxzt)
ggri(1,3,jk) = ggri(3,1,jk)
ggri(2,3,jk) = ggri(3,2,jk)
ggri(3,3,jk) = gzzt*csth**2 + gyyt*snth**2 - 2*csth*snth*gyzt
du1tx = (dx0t*wwxx + dy0t*wwxy)/ddfu
du1ty = (dx0t*wwxy + dy0t*wwyy)/ddfu
du1tz = half*uj(j)*(dx0t**2*dwwxx + dy0t**2*dwwyy + 2*dx0t*dy0t*dwwxy)/ddfu
du10(1,k,j) = du1tx*csps + snps*(du1ty*csth + du1tz*snth)
du10(2,k,j) = -du1tx*snps + csps*(du1ty*csth + du1tz*snth)
du10(3,k,j) = du1tz*csth - du1ty*snth
pppx = x0t*rcixx + y0t*rcixy
pppy = x0t*rcixy + y0t*rciyy
denpp = pppx*gxt + pppy*gyt
if (denpp/=zero) then
ppx = -pppx*gzt/denpp
ppy = -pppy*gzt/denpp
else
ppx = zero
ppy = zero
end if
anzt = sqrt((one + gr2)/(one + ppx**2 + ppy**2))
anxt = ppx*anzt
anyt = ppy*anzt
anx = anxt*csps + snps*(anyt*csth + anzt*snth)
any =-anxt*snps + csps*(anyt*csth + anzt*snth)
anz = anzt*csth - anyt*snth
an20 = one + gr2
an0 = sqrt(an20)
xc0(1,k,j) = x0
xc0(2,k,j) = y0
xc0(3,k,j) = z0
ywrk0(1,jk) = x0
ywrk0(2,jk) = y0
ywrk0(3,jk) = z0
ywrk0(4,jk) = anx
ywrk0(5,jk) = any
ywrk0(6,jk) = anz
! integration variable
select case(params%raytracing%idst)
case(0)
! optical path: s
stv(jk) = 0
denom = an0
case(1)
! "time": c⋅t
stv(jk) = 0
denom = one
case(2)
! real eikonal: S_R
stv(jk) = half*(rcixx*x0t**2 + rciyy*y0t**2) + rcixy*x0t*y0t
denom = an20
end select
ypwrk0(1,jk) = anx/denom
ypwrk0(2,jk) = any/denom
ypwrk0(3,jk) = anz/denom
ypwrk0(4,jk) = dgr2x/(2*denom)
ypwrk0(5,jk) = dgr2y/(2*denom)
ypwrk0(6,jk) = dgr2z/(2*denom)
ddr = anx**2 + any**2 + anz**2 - an20
ddi = 2*(anxt*gxt + anyt*gyt + anzt*gzt)
! save step "zero" data
if (present(tables)) &
call store_ray_data(params, tables, &
i=0, jk=jk, s=stv(jk), P0=one, pos=xc0(:,k,j), &
psi_n=-one, B=zero, b_n=[zero,zero,zero], k0=ak0, &
N_pl=zero, N_pr=zero, N=ywrk0(:, jk), N_pr_im=zero, &
n_e=zero, T_e=zero, alpha=zero, tau=zero, dIds=zero, &
nhm=0, nhf=0, iokhawa=0, index_rt=index_rt, &
lambda_r=ddr, lambda_i=ddi, X=zero, Y=zero, &
grad_X=[zero,zero,zero])
end do
end subroutine ic_gb
subroutine rkstep(params, plasma, sox, bres, xgcn, y, yp, dgr, ddgr, igrad)
! Runge-Kutta integrator
use gray_params, only : gray_parameters
use gray_plasma, only : abstract_plasma
! subroutine arguments
type(gray_parameters), intent(in) :: params
class(abstract_plasma), intent(in) :: plasma
real(wp_), intent(in) :: bres, xgcn
real(wp_), intent(inout) :: y(6)
real(wp_), intent(in) :: yp(6)
real(wp_), intent(in) :: dgr(3)
real(wp_), intent(in) :: ddgr(3,3)
integer, intent(in) :: igrad,sox
! local variables
real(wp_), dimension(6) :: k1, k2, k3, k4
associate (h => params%raytracing%dst)
k1 = yp
k2 = f(y + k1*h/2)
k3 = f(y + k2*h/2)
k4 = f(y + k3*h)
y = y + h * (k1/6 + k2/3 + k3/3 + k4/6)
end associate
contains
function f(y)
real(wp_), intent(in) :: y(6)
real(wp_) :: f(6)
call rhs(params, plasma, sox, bres, xgcn, y, dgr, ddgr, f, igrad)
end function
end subroutine rkstep
subroutine rhs(params, plasma, sox, bres, xgcn, y, dgr, ddgr, dery, igrad)
! Compute right-hand side terms of the ray equations (dery)
! used in R-K integrator
use gray_params, only : gray_parameters
use gray_plasma, only : abstract_plasma
! subroutine arguments
type(gray_parameters), intent(in) :: params
class(abstract_plasma), intent(in) :: plasma
real(wp_), intent(in) :: y(6)
real(wp_), intent(in) :: bres, xgcn
real(wp_), intent(in) :: dgr(3)
real(wp_), intent(in) :: ddgr(3,3)
real(wp_), intent(out) :: dery(6)
integer, intent(in) :: igrad, sox
! local variables
real(wp_) :: dens,btot,xg,yg
real(wp_), dimension(3) :: xv,anv,bv,derxg,deryg
real(wp_), dimension(3,3) :: derbv
xv = y(1:3)
call plas_deriv(params, plasma, xv, bres, xgcn, dens, btot, &
bv, derbv, xg, yg, derxg, deryg)
anv = y(4:6)
call disp_deriv(params, anv, sox, xg, yg, derxg, deryg, &
bv, derbv, dgr, ddgr, igrad, dery)
end subroutine rhs
subroutine ywppla_upd(params, plasma, xv, anv, dgr, ddgr, sox, bres, xgcn, dery, &
psinv, dens, btot, bv, xg, yg, derxg, anpl, anpr, &
ddr, ddi, dersdst, derdnm, error, igrad)
! Compute right-hand side terms of the ray equations (dery)
! used after full R-K step and grad(S_I) update
use gray_errors, only : raise_error, large_npl
use gray_params, only : gray_parameters
use gray_plasma, only : abstract_plasma
! subroutine rguments
type(gray_parameters), intent(in) :: params
class(abstract_plasma), intent(in) :: plasma
real(wp_), intent(in) :: xv(3), anv(3)
real(wp_), intent(in) :: dgr(3)
real(wp_), intent(in) :: ddgr(3,3)
integer, intent(in) :: sox
real(wp_), intent(in) :: bres,xgcn
real(wp_), intent(out) :: dery(6)
real(wp_), intent(out) :: psinv, dens, btot, xg, yg, anpl, anpr
real(wp_), intent(out) :: ddr, ddi, dersdst, derdnm
real(wp_), intent(out) :: bv(3)
integer, intent(out) :: error
real(wp_), intent(out) :: derxg(3)
integer, intent(in) :: igrad
! local variables
real(wp_), dimension(3) :: deryg
real(wp_), dimension(3,3) :: derbv
real(wp_), parameter :: anplth1 = 0.99_wp_, anplth2 = 1.05_wp_
call plas_deriv(params, plasma, xv,bres,xgcn,dens,btot,bv,derbv,xg,yg,derxg,deryg,psinv)
call disp_deriv(params, anv,sox,xg,yg,derxg,deryg,bv,derbv,dgr,ddgr,igrad, &
dery,anpl,anpr,ddr,ddi,dersdst,derdnm)
if (abs(anpl) > anplth2) then
error = raise_error(error, large_npl, 1)
else if (abs(anpl) > anplth1) then
error = raise_error(error, large_npl, 0)
else
error = 0
end if
end subroutine ywppla_upd
subroutine gradi_upd(params, ywrk,ak0,xc,du1,gri,ggri)
use const_and_precisions, only : zero, half
use gray_params, only : raytracing_parameters
! subroutine parameters
type(raytracing_parameters), intent(in) :: params
real(wp_), intent(in) :: ak0
real(wp_), dimension(6,params%nray), intent(in) :: ywrk
real(wp_), dimension(3,params%nrayth,params%nrayr), intent(inout) :: xc, du1
real(wp_), dimension(3,params%nray), intent(out) :: gri
real(wp_), dimension(3,3,params%nray), intent(out) :: ggri
! local variables
real(wp_), dimension(3,params%nrayth,params%nrayr) :: xco, du1o
integer :: jk, j, jm, jp, k, km, kp
real(wp_) :: ux, uxx, uxy, uxz, uy, uyy, uyz, uz, uzz
real(wp_) :: dr, dfuu, dffiu, gx, gxx, gxy, gxz, gy, gyy, gyz, gz, gzz
real(wp_), dimension(3) :: dxv1, dxv2, dxv3, dgu
real(wp_), dimension(3,3) :: dgg, dff
! update position and du1 vectors
xco = xc
du1o = du1
jk = 1
do j=1,params%nrayr
do k=1,params%nrayth
if(j>1) jk=jk+1
xc(1:3,k,j)=ywrk(1:3,jk)
end do
end do
! compute grad u1 for central ray
j = 1
jp = 2
do k=1,params%nrayth
if(k == 1) then
km = params%nrayth
else
km = k-1
end if
if(k == params%nrayth) then
kp = 1
else
kp = k+1
end if
dxv1 = xc(:,k ,jp) - xc(:,k ,j)
dxv2 = xc(:,kp,jp) - xc(:,km,jp)
dxv3 = xc(:,k ,j) - xco(:,k ,j)
call solg0(dxv1,dxv2,dxv3,dgu)
du1(:,k,j) = dgu
end do
gri(:,1) = zero
! compute grad u1 and grad(S_I) for all the other rays
if (params%nrayr > 1) then
dr = params%rwmax / (params%nrayr - 1)
else
dr = 1
end if
dfuu=2*dr**2/ak0
jm=1
j=2
k=0
dffiu = dfuu
do jk=2,params%nray
k=k+1
if(k > params%nrayth) then
jm = j
j = j+1
k = 1
dffiu = dfuu*jm
end if
kp = k+1
km = k-1
if (k == 1) then
km=params%nrayth
else if (k == params%nrayth) then
kp=1
end if
dxv1 = xc(:,k ,j) - xc(:,k ,jm)
dxv2 = xc(:,kp,j) - xc(:,km,j)
dxv3 = xc(:,k ,j) - xco(:,k ,j)
call solg0(dxv1,dxv2,dxv3,dgu)
du1(:,k,j) = dgu
gri(:,jk) = dgu(:)*dffiu
end do
! compute derivatives of grad u and grad(S_I) for rays jk>1
ggri(:,:,1) = zero
jm=1
j=2
k=0
dffiu = dfuu
do jk=2,params%nray
k=k+1
if(k > params%nrayth) then
jm=j
j=j+1
k=1
dffiu = dfuu*jm
end if
kp=k+1
km=k-1
if (k == 1) then
km=params%nrayth
else if (k == params%nrayth) then
kp=1
end if
dxv1 = xc(:,k ,j) - xc(:,k ,jm)
dxv2 = xc(:,kp,j) - xc(:,km,j)
dxv3 = xc(:,k ,j) - xco(:,k ,j)
dff(:,1) = du1(:,k ,j) - du1(:,k ,jm)
dff(:,2) = du1(:,kp,j) - du1(:,km,j)
dff(:,3) = du1(:,k ,j) - du1o(:,k ,j)
call solg3(dxv1,dxv2,dxv3,dff,dgg)
! derivatives of u
ux = du1(1,k,j)
uy = du1(2,k,j)
uz = du1(3,k,j)
uxx = dgg(1,1)
uyy = dgg(2,2)
uzz = dgg(3,3)
uxy = (dgg(1,2) + dgg(2,1))*half
uxz = (dgg(1,3) + dgg(3,1))*half
uyz = (dgg(2,3) + dgg(3,2))*half
! derivatives of S_I and Grad(S_I)
gx = ux*dffiu
gy = uy*dffiu
gz = uz*dffiu
gxx = dfuu*ux*ux + dffiu*uxx
gyy = dfuu*uy*uy + dffiu*uyy
gzz = dfuu*uz*uz + dffiu*uzz
gxy = dfuu*ux*uy + dffiu*uxy
gxz = dfuu*ux*uz + dffiu*uxz
gyz = dfuu*uy*uz + dffiu*uyz
ggri(1,1,jk)=gxx
ggri(2,1,jk)=gxy
ggri(3,1,jk)=gxz
ggri(1,2,jk)=gxy
ggri(2,2,jk)=gyy
ggri(3,2,jk)=gyz
ggri(1,3,jk)=gxz
ggri(2,3,jk)=gyz
ggri(3,3,jk)=gzz
end do
end subroutine gradi_upd
subroutine solg0(dxv1,dxv2,dxv3,dgg)
! solution of the linear system of 3 eqs : dgg . dxv = dff
! input vectors : dxv1, dxv2, dxv3, dff
! output vector : dgg
! dff=(1,0,0)
! arguments
real(wp_), dimension(3), intent(in) :: dxv1,dxv2,dxv3
real(wp_), dimension(3), intent(out) :: dgg
! local variables
real(wp_) :: denom,aa1,aa2,aa3
aa1 = (dxv2(2)*dxv3(3) - dxv3(2)*dxv2(3))
aa2 = (dxv1(2)*dxv3(3) - dxv3(2)*dxv1(3))
aa3 = (dxv1(2)*dxv2(3) - dxv2(2)*dxv1(3))
denom = dxv1(1)*aa1 - dxv2(1)*aa2 + dxv3(1)*aa3
dgg(1) = aa1/denom
dgg(2) = -(dxv2(1)*dxv3(3) - dxv3(1)*dxv2(3))/denom
dgg(3) = (dxv2(1)*dxv3(2) - dxv3(1)*dxv2(2))/denom
end subroutine solg0
subroutine solg3(dxv1,dxv2,dxv3,dff,dgg)
! rhs "matrix" dff, result in dgg
! arguments
real(wp_), dimension(3), intent(in) :: dxv1,dxv2,dxv3
real(wp_), dimension(3,3), intent(in) :: dff
real(wp_), dimension(3,3), intent(out) :: dgg
! local variables
real(wp_) denom,a11,a21,a31,a12,a22,a32,a13,a23,a33
a11 = (dxv2(2)*dxv3(3) - dxv3(2)*dxv2(3))
a21 = (dxv1(2)*dxv3(3) - dxv3(2)*dxv1(3))
a31 = (dxv1(2)*dxv2(3) - dxv2(2)*dxv1(3))
a12 = (dxv2(1)*dxv3(3) - dxv3(1)*dxv2(3))
a22 = (dxv1(1)*dxv3(3) - dxv3(1)*dxv1(3))
a32 = (dxv1(1)*dxv2(3) - dxv2(1)*dxv1(3))
a13 = (dxv2(1)*dxv3(2) - dxv3(1)*dxv2(2))
a23 = (dxv1(1)*dxv3(2) - dxv3(1)*dxv1(2))
a33 = (dxv1(1)*dxv2(2) - dxv2(1)*dxv1(2))
denom = dxv1(1)*a11 - dxv2(1)*a21 + dxv3(1)*a31
dgg(:,1) = ( dff(:,1)*a11 - dff(:,2)*a21 + dff(:,3)*a31)/denom
dgg(:,2) = (-dff(:,1)*a12 + dff(:,2)*a22 - dff(:,3)*a32)/denom
dgg(:,3) = ( dff(:,1)*a13 - dff(:,2)*a23 + dff(:,3)*a33)/denom
end subroutine solg3
subroutine plas_deriv(params, plasma, xv, bres, xgcn, dens, btot, bv, &
derbv, xg, yg, derxg, deryg, psinv_opt)
use const_and_precisions, only : zero, cm
use gray_params, only : gray_parameters, EQ_VACUUM
use gray_plasma, only : abstract_plasma
use equilibrium, only : psia, pol_flux, pol_curr, sgnbphi
! subroutine arguments
type(gray_parameters), intent(in) :: params
class(abstract_plasma), intent(in) :: plasma
real(wp_), dimension(3), intent(in) :: xv
real(wp_), intent(in) :: xgcn, bres
real(wp_), intent(out) :: dens, btot, xg, yg
real(wp_), dimension(3), intent(out) :: bv, derxg, deryg
real(wp_), dimension(3,3), intent(out) :: derbv
real(wp_), optional, intent(out) :: psinv_opt
! local variables
integer :: jv
real(wp_) :: xx,yy,zz
real(wp_) :: psinv
real(wp_) :: csphi,drrdx,drrdy,dphidx,dphidy,rr,rr2,rrm,snphi,zzm
real(wp_), dimension(3) :: dbtot,bvc
real(wp_), dimension(3,3) :: dbvcdc,dbvdc,dbv
real(wp_) :: brr,bphi,bzz,dxgdpsi
real(wp_) :: dpsidr,dpsidz,ddpsidrr,ddpsidzz,ddpsidrz,fpolv,dfpv,ddensdpsi
xg = zero
yg = 99._wp_
psinv = -1._wp_
dens = zero
btot = zero
derxg = zero
deryg = zero
bv = zero
derbv = zero
if (params%equilibrium%iequil == EQ_VACUUM) then
! copy optional output
if (present(psinv_opt)) psinv_opt = psinv
return
end if
dbtot = zero
dbv = zero
dbvcdc = zero
dbvcdc = zero
dbvdc = zero
xx = xv(1)
yy = xv(2)
zz = xv(3)
! cylindrical coordinates
rr2 = xx**2 + yy**2
rr = sqrt(rr2)
csphi = xx/rr
snphi = yy/rr
bv(1) = -snphi*sgnbphi
bv(2) = csphi*sgnbphi
! convert from cm to meters
zzm = 1.0e-2_wp_*zz
rrm = 1.0e-2_wp_*rr
call pol_flux(rrm, zzm, psinv, dpsidr, dpsidz, ddpsidrr, ddpsidzz, ddpsidrz)
call pol_curr(psinv, fpolv, dfpv)
! copy optional output
if (present(psinv_opt)) psinv_opt = psinv
! compute yg and derivative
if(psinv < zero) then
bphi = fpolv/rrm
btot = abs(bphi)
yg = btot/bres
return
end if
! compute xg and derivative
call plasma%density(psinv, dens, ddensdpsi)
xg = xgcn*dens
dxgdpsi = xgcn*ddensdpsi
! B = f(psi)/R e_phi+ grad psi x e_phi/R
bphi = fpolv/rrm
brr = -dpsidz*psia/rrm
bzz = +dpsidr*psia/rrm
! bvc(i) = B_i in cylindrical coordinates
bvc = [brr, bphi, bzz]
! bv(i) = B_i in cartesian coordinates
bv(1)=bvc(1)*csphi - bvc(2)*snphi
bv(2)=bvc(1)*snphi + bvc(2)*csphi
bv(3)=bvc(3)
! dbvcdc(iv,jv) = d Bcil(iv) / dxvcil(jv)
dbvcdc(1,1) = -ddpsidrz*psia/rrm - brr/rrm
dbvcdc(1,3) = -ddpsidzz*psia/rrm
dbvcdc(2,1) = dfpv*dpsidr/rrm - bphi/rrm
dbvcdc(2,3) = dfpv*dpsidz/rrm
dbvcdc(3,1) = +ddpsidrr*psia/rrm - bzz/rrm
dbvcdc(3,3) = +ddpsidrz*psia/rrm
! dbvdc(iv,jv) = d Bcart(iv) / dxvcil(jv)
dbvdc(1,1) = dbvcdc(1,1)*csphi - dbvcdc(2,1)*snphi
dbvdc(2,1) = dbvcdc(1,1)*snphi + dbvcdc(2,1)*csphi
dbvdc(3,1) = dbvcdc(3,1)
dbvdc(1,2) = -bv(2)
dbvdc(2,2) = bv(1)
dbvdc(3,2) = dbvcdc(3,2) ! = 0
dbvdc(1,3) = dbvcdc(1,3)*csphi - dbvcdc(2,3)*snphi
dbvdc(2,3) = dbvcdc(1,3)*snphi + dbvcdc(2,3)*csphi
dbvdc(3,3) = dbvcdc(3,3)
drrdx = csphi
drrdy = snphi
dphidx = -snphi/rrm
dphidy = csphi/rrm
! dbv(iv,jv) = d Bcart(iv) / dxvcart(jv)
dbv(:,1) = drrdx*dbvdc(:,1) + dphidx*dbvdc(:,2)
dbv(:,2) = drrdy*dbvdc(:,1) + dphidy*dbvdc(:,2)
dbv(:,3) = dbvdc(:,3)
! B magnitude and derivatives
btot = norm2(bv)
! dbtot(i) = d |B| / dxvcart(i)
dbtot = matmul(bv, dbv)/btot
yg = btot/Bres
! convert spatial derivatives from dummy/m -> dummy/cm
! to be used in rhs
! bv(i) = B_i / B ; derbv(i,j) = d (B_i / B) /d x,y,z
deryg = 1.0e-2_wp_*dbtot/Bres
bv = bv/btot
do jv=1,3
derbv(:,jv) = cm * (dbv(:,jv) - bv(:)*dbtot(jv))/btot
end do
derxg(1) = cm * drrdx*dpsidr*dxgdpsi
derxg(2) = cm * drrdy*dpsidr*dxgdpsi
derxg(3) = cm * dpsidz *dxgdpsi
end subroutine plas_deriv
subroutine disp_deriv(params, anv, sox, xg, yg, derxg, deryg, bv, derbv, &
dgr, ddgr, igrad, dery, anpl_, anpr, ddr, ddi, &
dersdst, derdnm_)
! Computes the dispersion relation, derivatives and other
! related quantities
!
! The mandatory outputs are used for both integrating the ray
! trajectory (`rhs` subroutine) and updating the ray state
! (`ywppla_upd` suborutine); while the optional ones are used for
! computing the absoprtion and current drive.
use const_and_precisions, only : zero, one, half, two
use gray_params, only : gray_parameters, STEP_ARCLEN, &
STEP_TIME, STEP_PHASE
! subroutine arguments
! Inputs
type(gray_parameters), intent(in) :: params
! refractive index N̅ vector, b̅ = B̅/B magnetic field direction
real(wp_), dimension(3), intent(in) :: anv, bv
! sign of polarisation mode: -1 ⇒ O, +1 ⇒ X
integer, intent(in) :: sox
! CMA diagram variables: X=(ω_pe/ω)², Y=ω_ce/ω
real(wp_), intent(in) :: xg, yg
! gradients of X, Y
real(wp_), dimension(3), intent(in) :: derxg, deryg
! gradients of the complex eikonal
real(wp_), dimension(3), intent(in) :: dgr ! ∇S_I
real(wp_), dimension(3, 3), intent(in) :: ddgr ! ∇∇S_I
! gradient of the magnetic field direction
real(wp_), dimension(3, 3), intent(in) :: derbv ! ∇b̅
! raytracing/beamtracing switch
integer, intent(in) :: igrad
! Outputs
! the actual derivatives: (∂Λ/∂x̅, -∂Λ/∂N̅)
real(wp_), dimension(6), intent(out) :: dery
! additional quantities:
! refractive index
real(wp_), optional, intent(out) :: anpl_, anpr ! N∥, N⊥
! real and imaginary part of the dispersion
real(wp_), optional, intent(out) :: ddr, ddi ! Λ, ∂Λ/∂N̅⋅∇S_I
! Jacobian ds/dσ, where s arclength, σ integration variable
real(wp_), optional, intent(out) :: dersdst
! |∂Λ/∂N̅|
real(wp_), optional, intent(out) :: derdnm_
! Note: assign values to missing optional arguments results in a segfault.
! Since some are always needed anyway, we store them here and copy
! them later, if needed:
real(wp_) :: anpl, derdnm
! local variables
real(wp_) :: gr2, yg2, anpl2, del, dnl, duh, dan2sdnpl, an2, an2s
real(wp_) :: dan2sdxg, dan2sdyg, denom
real(wp_) :: derdom, dfdiadnpl, dfdiadxg, dfdiadyg, fdia, bdotgr
real(wp_), dimension(3) :: derdxv, danpldxv, derdnv, dbgr
an2 = dot_product(anv, anv) ! N²
anpl = dot_product(anv, bv) ! N∥ = N̅⋅B̅
! Shorthands used in the expressions below
yg2 = yg**2 ! Y²
anpl2 = anpl**2 ! N∥²
dnl = one - anpl2 ! 1 - N∥²
duh = one - xg - yg2 ! UH denom (duh=0 on the upper-hybrid resonance)
! Compute/copy optional outputs
if (present(anpr)) anpr = sqrt(max(an2 - anpl2, zero)) ! N⊥
if (present(anpl_)) anpl_ = anpl ! N∥
an2s = one
dan2sdxg = zero
dan2sdyg = zero
dan2sdnpl = zero
del = zero
fdia = zero
dfdiadnpl = zero
dfdiadxg = zero
dfdiadyg = zero
if(xg > zero) then
! Derivatives of the cold plasma refractive index
!
! N²s = 1 - X - XY²⋅(1 + N∥² ± √Δ)/[2(1 - X - Y²)]
!
! where Δ = (1 - N∥²)² + 4N∥²⋅(1 - X)/Y²
! + for the X mode, - for the O mode
! √Δ
del = sqrt(dnl**2 + 4.0_wp_*anpl2*(one - xg)/yg2)
! ∂(N²s)/∂X
! Note: this term is nonzero for X=0, but it multiplies terms
! proportional to X or ∂X/∂ψ which are zero outside the plasma.
dan2sdxg = - half*yg2*(one - yg2)*(one + anpl2 + sox*del)/duh**2 &
+ sox*xg*anpl2/(del*duh) - one
! ∂(N²s)/∂Y
dan2sdyg = - xg*yg*(one - xg)*(one + anpl2 + sox*del)/duh**2 &
+ two*sox*xg*(one - xg)*anpl2/(yg*del*duh)
! ∂(N²s)/∂N∥
dan2sdnpl = - xg*yg2*anpl/duh &
- sox*xg*anpl*(two*(one - xg) - yg2*dnl)/(del*duh)
if(igrad > 0) then
! Derivatives used in the complex eikonal terms (beamtracing only)
block
real(wp_) :: ddelnpl2, ddelnpl2x, ddelnpl2y, derdel
! ∂²Δ/∂N∥²
ddelnpl2 = two*(two*(one - xg)*(one + 3.0_wp_*anpl2**2) &
- yg2*dnl**3)/yg2/del**3
! ∂²(N²s)/∂N∥²
fdia = - xg*yg2*(one + half*sox*ddelnpl2)/duh
! Intermediates results used right below
derdel = two*(one - xg)*anpl2*(one + 3.0_wp_*anpl2**2) &
- dnl**2*(one + 3.0_wp_*anpl2)*yg2
derdel = 4.0_wp_*derdel/(yg*del)**5
ddelnpl2y = two*(one - xg)*derdel
ddelnpl2x = yg*derdel
! ∂³(N²s)/∂N∥³
dfdiadnpl = 24.0_wp_*sox*xg*(one - xg)*anpl*(one - anpl2**2) &
/(yg2*del**5)
! ∂³(N²s)/∂N∥²∂X
dfdiadxg = - yg2*(one - yg2)/duh**2 - sox*yg2*((one - yg2) &
*ddelnpl2 + xg*duh*ddelnpl2x)/(two*duh**2)
! ∂³(N²s)/∂N∥²∂Y
dfdiadyg = - two*yg*xg*(one - xg)/duh**2 &
- sox*xg*yg*(two*(one - xg)*ddelnpl2 &
+ yg*duh*ddelnpl2y)/(two*duh**2)
end block
end if
end if
! ∇(N∥) = ∇(N̅⋅b̅) = N̅⋅∇b̅
danpldxv = matmul(anv, derbv)
! ∂Λ/∂x̅ = - ∇(N²s) = -∂Λ/∂X ∇X - ∂Λ/∂Y ∇Y - ∂Λ/∂N∥ ∇(N∥)
derdxv = -(derxg*dan2sdxg + deryg*dan2sdyg + danpldxv*dan2sdnpl)
! ∂Λ/∂N̅ = 2N̅ - ∂(N²s)/∂N̅ = 2N̅ - ∂(N²s)/∂N∥ b̅
! Note: we used the identity ∇f(v̅⋅b̅) = f' ∇(v̅⋅b̅) = f'b̅.
derdnv = two*anv - dan2sdnpl*bv
! ∂Λ/∂ω = ∂N²/∂ω - ∂N²s/∂X⋅∂X/∂ω - ∂N²s/∂Y⋅∂Y/∂ω - ∂N²s/∂N∥⋅∂N∥/∂ω
! Notes: 1. N depends on ω: N²=c²k²/ω² ⇒ ∂N²/∂ω = -2N²/ω
! N∥=ck∥/ω ⇒ ∂N∥/∂ω = -N∥/ω
! 2. derdom is actually ω⋅∂Λ/∂ω, see below for the reason.
! 3. N gains a dependency on ω because Λ(∇S, ω) is computed
! on the constrains Λ=0.
derdom = -two*an2 + two*xg*dan2sdxg + yg*dan2sdyg + anpl*dan2sdnpl
if (igrad > 0) then
! Complex eikonal terms added to the above expressions
block
real(wp_) :: dgr2(3)
bdotgr = dot_product(bv, dgr) ! b̅⋅∇S_I
gr2 = dot_product(dgr, dgr) ! |∇S_I|²
dgr2 = 2 * matmul(ddgr, dgr) ! ∇|∇S_I|² = 2 ∇∇S_I⋅∇S_I
! ∇(b̅⋅∇S_I) = ∇b̅ᵗ ∇S_I + b̅ᵗ ∇∇S_I
! Notes: 1. We are using the convention ∇b̅_ij = ∂b_i/∂x_j.
! 2. Fortran doesn't distinguish between column/row vectors,
! so matmul(A, v̅) ≅ Av̅ and matmul(v̅, A) ≅ v̅ᵗA ≅ Aᵗv̅.
dbgr = matmul(dgr, derbv) + matmul(bv, ddgr)
! ∂Λ/∂x̅ += - ∇(|∇S_I|²) + ½ ∇[(b̅⋅∇S_I)² ∂²N²s/∂N∥²]
derdxv = derdxv - dgr2 + fdia*bdotgr*dbgr + half*bdotgr**2 &
* (derxg*dfdiadxg + deryg*dfdiadyg + danpldxv*dfdiadnpl)
! ∂Λ/∂N̅ += ½(b̅⋅∇S_I)² ∂³(N²s)/∂N∥³ b̅
! Note: we used again the identity ∇f(v̅⋅b̅) = f'b̅.
derdnv = derdnv + half*bdotgr**2*dfdiadnpl*bv
! ∂Λ/∂ω += ∂|∇S_I|²/∂ω + ½∂(b⋅∇S_I)²/∂ω + ½(b̅⋅∇S_I)² ∂/∂ω (∂²N²s/∂N∥²)
! Note: as above ∇S_I gains a dependency on ω
derdom = derdom + two*gr2 - bdotgr**2 &
* (fdia + xg*dfdiadxg + half*yg*dfdiadyg &
+ half*anpl*dfdiadnpl)
end block
end if
derdnm = norm2(derdnv)
! Denominator of the r.h.s, depending on the
! choice of the integration variable σ:
!
! dx̅/dσ = + ∂Λ/∂N̅ / denom
! dN̅/dσ = - ∂Λ/∂x̅ / denom
!
select case (params%raytracing%idst)
case (STEP_ARCLEN) ! σ=s, arclength
! denom = |∂Λ/∂N̅|
! Proof: Normalising ∂Λ/∂N̅ (∥ to the group velocity)
! simply makes σ the arclength parameter s.
denom = derdnm
case (STEP_TIME) ! σ=ct, time
! denom = -ω⋅∂Λ/∂ω
! Proof: The Hamilton equations are
!
! dx̅/dt = + ∂H/∂k̅ (H=ℏΩ, p=ℏk̅)
! dp̅/dt = - ∂H/∂x̅
!
! where Ω(x̅, k̅) is implicitely defined by the dispersion
! D(k̅, ω, x̅) = 0. By differentiating the latter we get:
!
! ∂Ω/∂x̅ = - ∂D/∂x̅ / ∂D/∂ω = - ∂Λ/∂x̅ / ∂Λ/∂ω
! ∂Ω/∂k̅ = - ∂D/∂k̅ / ∂D/∂ω = - ∂Λ/∂k̅ / ∂Λ/∂ω
!
! with Λ=D/k₀, k₀=ω/c. Finally, substituting k̅=k₀N̅:
!
! dx̅/d(ct) = + ∂Λ/∂N̅ / (-ω⋅∂Λ/∂ω)
! dN̅/d(ct) = - ∂Λ/∂x̅ / (-ω⋅∂Λ/∂ω)
!
denom = -derdom
case (STEP_PHASE) ! s=S_R, phase
! denom = N̅⋅∂Λ/∂N̅
! Note: This parametrises the curve by the value
! of the (real) phase, with the wave frozen in time.
! Proof: By definition N̅ = k̅/k₀ = ∇S. Using the gradient
! theorem on the ray curve parametrised by the arclength
!
! S(s) = ∫₀^x̅(s) N̅⋅dl̅ = ∫₀^s N̅(σ)⋅dx̅/ds ds
!
! Differentiating gives dS = N̅⋅dx̅/ds ds, so
!
! dS = N̅⋅∂Λ/∂N̅ / |∂Λ/∂N̅| ds ⇒
!
! dx̅/dS = + ∂Λ/∂N̅ / N̅⋅∂Λ/∂N̅
! dN̅/dS = - ∂Λ/∂x̅ / N̅⋅∂Λ/∂N̅
!
denom = dot_product(anv, derdnv)
end select
! Jacobian ds/dσ, where s is the arclength,
! for computing integrals in dσ, like:
!
! τ = ∫α(s)ds = ∫α(σ)(ds/dσ)dσ
!
if (present(dersdst)) dersdst = derdnm/denom
! |∂Λ/∂N̅|: used in the α computation (see alpha_effj)
if (present(derdnm_)) derdnm_ = derdnm
! r.h.s. vector
dery(1:3) = derdnv(:)/denom ! +∂Λ/∂N̅
dery(4:6) = -derdxv(:)/denom ! -∂Λ/∂x̅
if (present(ddr) .or. present(ddi)) then
! Dispersion relation (geometric optics)
! ddr ← Λ = N² - N²s(X,Y,N∥) = 0
an2s = one - xg - half*xg*yg2*(one + anpl2 + sox*del)/duh
ddr = an2 - an2s
end if
if (present(ddr) .and. igrad > 0) then
! Dispersion relation (complex eikonal)
! ddr ← Λ = N² - N²s - |∇S_I|² + ½ (b̅⋅∇S_I)² ∂²N²s/∂N∥²
ddr = ddr - gr2 - half*bdotgr**2*fdia ! real part
end if
! Note: we have to return ddi even for igrad=0 because
! it's printed to udisp unconditionally
if (present(ddi)) then
! Dispersion relation (complex eikonal)
! ddi ← ∂Λ/∂N̅⋅∇S_I
ddi = merge(dot_product(derdnv, dgr), zero, igrad > 0) ! imaginary part
end if
end subroutine disp_deriv
subroutine alpha_effj(params, plasma, psinv, X, Y, density, temperature, &
k0, Bres, derdnm, Npl, Npr_cold, sox, Npr, &
alpha, dIdp, nhmin, nhmax, iokhawa, error)
! Computes the absorption coefficient and effective current
use const_and_precisions, only : pi, mc2=>mc2_
use gray_params, only : ecrh_cd_parameters
use gray_plasma, only : abstract_plasma
use equilibrium, only : sgnbphi
use dispersion, only : harmnumber, warmdisp
use eccd, only : setcdcoeff, eccdeff, fjch0, fjch, fjncl
use gray_errors, only : negative_absorption, raise_error
use magsurf_data, only : fluxval
! subroutine arguments
! Inputs
! ECRH & CD parameters
type(ecrh_cd_parameters), intent(in) :: params
! plasma object
class(abstract_plasma), intent(in) :: plasma
! poloidal flux ψ
real(wp_), intent(in) :: psinv
! CMA diagram variables: X=(ω_pe/ω)², Y=ω_ce/ω
real(wp_), intent(in) :: X, Y
! densityity [10¹⁹ m⁻³], temperature [keV]
real(wp_), intent(in) :: density, temperature
! vacuum wavenumber k₀=ω/c, resonant B field
real(wp_), intent(in) :: k0, Bres
! group velocity: |∂Λ/∂N̅| where Λ=c²/ω²⋅D_R
real(wp_), intent(in) :: derdnm
! refractive index: N∥, N⊥ (cold dispersion)
real(wp_), intent(in) :: Npl, Npr_cold
! sign of polarisation mode: -1 ⇒ O, +1 ⇒ X
integer, intent(in) :: sox
! Outputs
! orthogonal refractive index N⊥ (solution of the warm dispersion)
complex(wp_), intent(out) :: Npr
! absorption coefficient, current density
real(wp_), intent(out) :: alpha, dIdp
! lowest/highest resonant harmonic numbers
integer, intent(out) :: nhmin, nhmax
! ECCD/overall error codes
integer, intent(out) :: iokhawa, error
! local variables
real(wp_) :: rbavi, rrii, rhop
integer :: nlarmor, ithn, ierrcd
real(wp_) :: mu, rbn, rbx
real(wp_) :: zeff, cst2, bmxi, bmni, fci
real(wp_), dimension(:), allocatable :: eccdpar
real(wp_) :: effjcd, effjcdav, Btot
complex(wp_) :: e(3)
alpha = 0
Npr = 0
dIdp = 0
nhmin = 0
nhmax = 0
iokhawa = 0
error = 0
! Absorption computation
! Skip when the temperature is zero (no plasma)
if (temperature <= 0) return
! Skip when the lowest resonant harmonic number is zero
mu = mc2/temperature ! μ=(mc²/kT)
call harmnumber(Y, mu, Npl**2, params%iwarm == 1, nhmin, nhmax)
if (nhmin <= 0) return
! Solve the full dispersion only when needed
if (params%iwarm /= 4 .or. params%ieccd /= 0) then
nlarmor = max(params%ilarm, nhmax)
if (params%ieccd /= 0) then
! Compute the polarisation vector only when current drive is on
call warmdisp(X, Y, mu, Npl, Npr_cold, sox, error, Npr, e, &
model=params%iwarm, nlarmor=nlarmor, &
max_iters=abs(params%imx), fallback=params%imx < 0)
else
call warmdisp(X, Y, mu, Npl, Npr_cold, sox, error, Npr, &
model=params%iwarm, nlarmor=nlarmor, &
max_iters=abs(params%imx), fallback=params%imx < 0)
end if
end if
! Compute α from the solution of the dispersion relation
! The absoption coefficient is defined as
!
! α = 2 Im(k̅)⋅s̅
!
! where s̅ = v̅_g/|v_g|, the direction of the energy flow.
! Since v̅_g = - ∂Λ/∂N̅ / ∂Λ/∂ω, using the cold dispersion
! relation, we have that
!
! s̅ = ∂Λ/∂N̅ / |∂Λ/∂N̅|
! = [2N̅ - ∂(N²s)/∂N∥ b̅
! + ½(b̅⋅∇S_I)² ∂³(N²s)/∂N∥³ b̅] / |∂Λ/∂N̅|
!
! Assuming Im(k∥)=0:
!
! α = 4 Im(k⊥)⋅N⊥ / |∂Λ/∂N̅|
!
block
real(wp_) :: k_im
k_im = k0 * Npr%im ! imaginary part of k⊥
alpha = 4 * k_im*Npr_cold / derdnm
end block
if (alpha < 0) then
error = raise_error(error, negative_absorption)
return
end if
! Current drive computation
if (params%ieccd <= 0) return
zeff = plasma%zeff(psinv)
ithn = 1
if (nlarmor > nhmin) ithn = 2
rhop = sqrt(psinv)
call fluxval(rhop, rri=rrii, rbav=rbavi, bmn=bmni, bmx=bmxi, fc=fci)
Btot = Y*Bres
rbn = Btot/bmni
rbx = Btot/bmxi
select case(params%ieccd)
case(1)
! Cohen model
call setcdcoeff(zeff, rbn, rbx, cst2, eccdpar)
call eccdeff(Y, Npl, Npr%re, density, mu, e, nhmin, nhmax, &
ithn, cst2, fjch, eccdpar, effjcd, iokhawa, ierrcd)
case(2)
! No trapping
call setcdcoeff(zeff, cst2, eccdpar)
call eccdeff(Y, Npl, Npr%re, density, mu, e, nhmin, nhmax, &
ithn, cst2, fjch0, eccdpar, effjcd, iokhawa, ierrcd)
case default
! Neoclassical model
call setcdcoeff(zeff, rbx, fci, mu, rhop, cst2, eccdpar)
call eccdeff(Y, Npl, Npr%re, density, mu, e, nhmin, nhmax, &
ithn, cst2, fjncl, eccdpar, effjcd, iokhawa, ierrcd)
end select
error = error + ierrcd
if (allocated(eccdpar)) deallocate(eccdpar)
! current drive efficiency <j/p> [A⋅m/W]
effjcdav = rbavi*effjcd
dIdp = sgnbphi * effjcdav / (2*pi*rrii)
end subroutine alpha_effj
end module gray_core