gray/tests/__init__.py
2024-11-04 12:05:42 +01:00

369 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from pathlib import Path
from typing import Any
from unittest import TestCase
from collections import defaultdict
import numpy as np
import matplotlib.pyplot as plt
import shutil
import unittest
import tempfile
import subprocess
import itertools
import argparse
class GrayTest:
inputs: Path = None # directory of the input files
reference: Path = None # directory of the reference outputs
candidate: Path = None # directory of the candidate outputs
# Extra parameters to pass to gray
gray_params: dict[str, Any] = {}
@classmethod
def setUpClass(cls):
'''
Sets up the test case
'''
# directory of the test case
base = Path().joinpath(*cls.__module__.split('.'))
if cls.inputs is None:
cls.inputs = base / 'inputs'
if cls.reference is None:
cls.reference = base / 'outputs'
# temporary directory holding the candidate outputs
cls._tempdir = tempfile.mkdtemp(prefix=f'gray-test-{base.name}.')
cls.candidate = Path(cls._tempdir)
# replace reference with candidate
if options.update:
print()
print('Setting new reference for ' + cls.__module__)
cls.candidate = cls.reference
# run gray to generate the candidate outputs
proc = run_gray(cls.inputs, cls.candidate, params=cls.gray_params,
binary=options.binary)
# 0: all good, 1: input errors, >1: simulation errors
assert proc.returncode != 1, 'gray failed with exit code 1'
# store the stderr for manual inspection
with open(str(cls.candidate / 'log'), 'w') as log:
log.write(proc.stderr)
@classmethod
def tearDownClass(cls):
'''
Clean up after all tests
'''
# remove temporary directory
if cls._passed or not options.keep_failed:
shutil.rmtree(cls._tempdir)
else:
print()
print('Some tests failed: preserving outputs in', cls._tempdir)
def run(self, result: unittest.runner.TextTestResult):
'''
Override to store the test results for tearDownClass
'''
TestCase.run(self, result)
self.__class__._passed = result.failures == []
def test_eccd_values(self):
'''
Comparing the ECCD values
'''
try:
ref = load_table(self.reference / 'summary.7.txt')
cand = load_table(self.candidate / 'summary.7.txt')
except FileNotFoundError:
raise unittest.SkipTest("ECCD results not available")
# precision as number of decimal places
prec = defaultdict(lambda: 3, [
('dPdV_peak', -2), ('dPdV_max', -2),
('J_φ_peak', -2), ('J_φ_max', -2),
('s_max', -1), ('χ', -1), ('ψ', -1),
])
for val in ref.dtype.names:
with self.subTest(value=val):
for i, ray in enumerate(ref['index_rt']):
ref_val = ref[val][i]
cand_val = cand[val][i]
msg = f"{val} changed (ray {int(ray)})"
self.assertAlmostEqual(ref_val, cand_val, prec[val],
msg=msg)
def test_eccd_profiles(self):
'''
Comparing the ECCD radial profiles
'''
from scipy.stats import wasserstein_distance as emd
import numpy as np
try:
ref = load_table(self.reference / 'ec-profiles.48.txt')
cand = load_table(self.candidate / 'ec-profiles.48.txt')
except FileNotFoundError:
raise unittest.SkipTest("ECCD profiles not available")
beams = np.unique(ref['index_rt'])
for index_rt, val in itertools.product(beams, ['J_cd', 'dPdV', 'J_φ']):
ref_beam = ref[ref['index_rt'] == index_rt]
cand_beam = cand[cand['index_rt'] == index_rt]
# skip if both empty
if np.all(ref_beam[val] == 0) and np.all(cand_beam[val] == 0):
continue
# compare with the earth mover's distance
with self.subTest(profile=val, beam=index_rt):
y1 = abs(ref_beam[val]) / np.sum(abs(ref_beam[val]))
y2 = abs(cand_beam[val]) / np.sum(abs(cand_beam[val]))
dist = emd(ref_beam['ρ_t'], cand_beam['ρ_t'], y1, y2)
self.assertLess(dist, 0.001, f'{val} profile changed')
if options.visual:
for index_rt in beams:
ref_beam = ref[ref['index_rt'] == index_rt]
cand_beam = cand[cand['index_rt'] == index_rt]
fig, axes = plt.subplots(3, 1, sharex=True)
fig.suptitle(self.__module__ + '.test_ec_profiles')
axes[0].set_title(f'beam {int(index_rt)}', loc='right')
axes[0].set_ylabel('$J_\\text{cd}$')
axes[0].plot(ref_beam['ρ_t'], ref_beam['J_cd'],
c='xkcd:red', label='reference')
axes[0].plot(cand_beam['ρ_t'], cand_beam['J_cd'],
c='xkcd:green', ls='-.', label='candidate')
axes[0].legend()
axes[1].set_ylabel('$dP/dV$')
axes[1].plot(ref_beam['ρ_t'], ref_beam['dPdV'],
c='xkcd:red')
axes[1].plot(cand_beam['ρ_t'], cand_beam['dPdV'],
c='xkcd:green', ls='-.')
axes[2].set_xlabel('$ρ_t$')
axes[2].set_ylabel('$J_φ$')
axes[2].plot(ref_beam['ρ_t'], ref_beam['J_φ'],
c='xkcd:red')
axes[2].plot(cand_beam['ρ_t'], cand_beam['J_φ'],
c='xkcd:green', ls='-.')
plt.show()
def test_flux_averages(self):
'''
Comparing the flux averages table
'''
try:
ref = load_table(self.reference / 'flux-averages.56.txt')
cand = load_table(self.candidate / 'flux-averages.56.txt')
except FileNotFoundError:
raise unittest.SkipTest("Flux averages table not available")
# precision as number of decimal places
prec = defaultdict(lambda: 3, [
('J_φ_avg', -3), ('I_pl', -3),
('area', 1), ('vol', 0),
('B_avg', 1), ('B_max', 1), ('B_min', 1),
])
for col in ref.dtype.names:
with self.subTest(value=col):
for row in range(ref.size):
ref_val = ref[col][row]
cand_val = cand[col][row]
line = row + 23
self.assertAlmostEqual(ref_val, cand_val, prec[col],
msg=f"{col} at line {line} changed")
if options.visual:
fig, axes = plt.subplots(4, 3, tight_layout=True)
fig.suptitle(self.__module__ + '.test_flux_averages')
for ax, col in zip(axes.flatten(), ref.dtype.names[2:]):
ax.set_xlabel('$ρ_p$')
ax.set_ylabel(col)
ax.plot(ref['ρ_p'], ref[col], c='xkcd:red')
ax.plot(cand['ρ_p'], cand[col], c='xkcd:green', ls='-.')
axes[3, 2].axis('off')
axes[3, 2].plot(np.nan, np.nan, c='xkcd:red', label='reference')
axes[3, 2].plot(np.nan, np.nan, c='xkcd:green', label='candidate')
axes[3, 2].legend()
plt.show()
def test_final_position(self):
'''
Comparing the final position of the central ray
'''
ref = load_table(self.reference / 'central-ray.4.txt')
cand = load_table(self.candidate / 'central-ray.4.txt')
# coordinates
self.assertAlmostEqual(ref['R'][-1], cand['R'][-1], 1)
self.assertAlmostEqual(ref['z'][-1], cand['z'][-1], 1)
self.assertAlmostEqual(ref['φ'][-1], cand['φ'][-1], 2)
# optical path length
self.assertAlmostEqual(ref['s'][-1], cand['s'][-1], 1)
def test_final_direction(self):
'''
Comparing the final direction of the central ray
'''
ref = load_table(self.reference / 'central-ray.4.txt')
cand = load_table(self.candidate / 'central-ray.4.txt')
self.assertAlmostEqual(ref['N_⊥'][-1], cand['N_⊥'][-1], 1)
self.assertAlmostEqual(ref['N_∥'][-1], cand['N_∥'][-1], 1)
def test_beam_shape(self):
'''
Comparing the final beam shape
'''
try:
ref = load_table(self.reference / 'beam-shape-final.9.txt')
cand = load_table(self.candidate / 'beam-shape-final.9.txt')
except FileNotFoundError:
raise unittest.SkipTest("Beam shape info not available")
if options.visual:
plt.subplot(aspect='equal')
plt.title(self.__module__ + '.test_beam_shape')
plt.xlabel('$x$ / cm')
plt.ylabel('$y$ / cm')
plt.scatter(ref['x'], ref['y'], c='red',
marker='_', label='reference')
plt.scatter(cand['x'], cand['y'], c='green',
alpha=0.6, marker='+', label='candidate')
plt.legend()
plt.show()
for ref, cand in zip(ref, cand):
with self.subTest(ray=(int(ref['j']), int(ref['k']))):
self.assertAlmostEqual(ref['x'], cand['x'], 1)
self.assertAlmostEqual(ref['y'], cand['y'], 1)
def test_error_biased(self):
'''
Test for a proportionality between Λ and any of X, Y, N∥
'''
data = load_table(self.candidate / 'central-ray.4.txt')
# restrict to within the plasma, half of the first pass
in_plasma = data['X'] > 0
first_pass = data['index_rt'] == data['index_rt'].min()
data = data[in_plasma & first_pass]
data = data[:int(data.size // 2)]
if data.size < 2:
self.skipTest("There is no plasma")
if options.visual:
left = plt.subplot()
plt.title(self.__module__ + '.test_error_biased')
left.set_xlabel('$s$ / cm')
left.set_ylabel('$Λ$', color='xkcd:ocean blue')
left.tick_params(axis='y', labelcolor='xkcd:ocean blue')
left.plot(data['s'], data['Λ_r'], color='xkcd:ocean blue')
right1 = left.twinx()
right1.set_ylabel('$X$', color='xkcd:orange')
right1.tick_params(axis='y', labelcolor='xkcd:orange')
right1.plot(data['s'], data['X'], color='xkcd:orange')
right2 = left.twinx()
right2.set_ylabel('$Y$', color='xkcd:vermillion')
right2.tick_params(axis='y', labelcolor='xkcd:vermillion')
right2.plot(data['s'], data['Y'], color='xkcd:vermillion')
right2.spines["right"].set_position(("axes", 1.1))
right3 = left.twinx()
right3.set_ylabel('$N_∥$', color='xkcd:green')
right3.tick_params(axis='y', labelcolor='xkcd:green')
right3.spines["right"].set_position(("axes", 1.2))
right3.plot(data['s'], data['N_∥'], color='xkcd:green')
plt.subplots_adjust(right=0.78)
plt.show()
err = data['Λ_r'].var() / 10
self.assertGreater(err, 0, msg="Λ is exactly constant")
for var in ['X', 'Y', 'N_⊥']:
# Minimise the χ²(k) = |(Λ_r - k⋅var) / err|² / (n - 1)
# The solution is simply: k = (Λ⋅var)/var⋅var
k = np.dot(data['Λ_r'], data[var]) / np.linalg.norm(data[var])**2
with self.subTest(var=var):
res = (data['Λ_r'] - k*data[var]) / err
χ2 = np.linalg.norm(res)**2 / (data.size - 1)
self.assertGreater(χ2, 1)
# Command line options
options = argparse.Namespace()
def get_basedir(module: str) -> Path:
"""
Given a module name (es. tests.03-TCV) returns its
base directory as a path (es. tests/03-TCV).
"""
return Path().joinpath(*module.split('.'))
def run_gray(inputs: Path, outputs: Path,
# extra gray parameters
params: dict[str, Any] = {},
# which tables to generate
tables: list[int] = [4, 7, 8, 9, 48, 56, 33, 70, 71],
# which gray binary to use
binary: str = 'gray',
# extra options
options: [str] = []
) -> subprocess.CompletedProcess:
'''
Runs gray on the inputs from the `inputs` directory and storing the results
in the `outputs` directory.
'''
outputs.mkdir(exist_ok=True, parents=True)
params = [['-g', f'{k}={v}'] for k, v in params.items()]
args = [
binary,
'-c', str(inputs / 'gray.ini'),
'-t', ','.join(map(str, tables)),
'-o', str(outputs),
'-v'
] + list(itertools.chain(*params)) + options
proc = subprocess.run(args, capture_output=True, text=True)
print()
if proc.returncode != 0:
# show the log on errors
print(f'Errors occurred (exit status {proc.returncode}), showing log:')
print(*proc.args)
print(proc.stderr)
print(proc.stdout)
return proc
def load_table(fname: Path) -> np.array:
'''
Loads a GRAY output file as a structured numpy array
(columns are named as in the file header)
'''
return np.genfromtxt(fname, names=True, skip_header=21, ndmin=1)