gray/src/reflections.f90

210 lines
5.6 KiB
Fortran

module reflections
use const_and_precisions, only : wp_, comp_tiny, comp_eps, comp_huge, zero, one
implicit none
private
public :: reflect,inters_linewall,inside
public :: linecone_coord,interssegm_coord,interssegm
contains
subroutine reflect(ki,nsurf,ko)
implicit none
real(wp_), intent(in), dimension(3) :: ki
real(wp_), intent(in), dimension(3) :: nsurf
real(wp_), intent(out), dimension(3) :: ko
real(wp_) :: twokn,norm2
norm2 = dot_product(nsurf,nsurf)
if (norm2>zero) then
twokn = 2.0_wp_*dot_product(ki,nsurf)/norm2
ko=ki-twokn*nsurf
else
ko=ki
end if
end subroutine reflect
subroutine inters_linewall(xv,kv,rw,zw,nw,sint,normw)
implicit none
real(wp_), intent(in), dimension(3) :: xv,kv
integer, intent(in) :: nw
real(wp_), dimension(nw), intent(in) :: rw,zw
real(wp_), intent(out) :: sint
real(wp_), dimension(3), intent(out) :: normw
integer :: i,j,ni,iint
real(wp_), dimension(2) :: si,ti
real(wp_) :: drw,dzw,xint,yint,rint,l,kxy
real(wp_) :: tol
tol=sqrt(comp_eps)
sint=comp_huge
iint=0
normw=zero
do i=1,nw-1
!search intersections with i-th wall segment
call linecone_coord(xv,kv,rw(i:i+1),zw(i:i+1),si,ti,ni)
do while (ni>0 .and. si(1)<=tol)
!remove solutions with s<=0
ni = ni-1
si(1) = si(2)
ti(1) = ti(2)
end do
do j=1,ni
if ((si(j)<sint .or. iint==0) .and. ti(j)>=zero .and. ti(j)<=one) then
!check intersection is in r,z range and keep the closest
sint = si(j)
iint = i
end if
end do
end do
if (iint==0) return
!calculate wall normal at intersection point
drw = rw(iint+1)-rw(iint)
dzw = zw(iint+1)-zw(iint)
xint = xv(1) + sint*kv(1)
yint = xv(2) + sint*kv(2)
rint = sqrt(xint**2+yint**2)
l = sqrt(drw**2+dzw**2)
kxy = sqrt(kv(1)**2+kv(2)**2)
normw(3) = -drw/l
if (rint>zero) then
normw(1) = xint/rint*dzw/l
normw(2) = yint/rint*dzw/l
else
normw(1) = kv(1)/kxy*dzw/l
normw(2) = kv(2)/kxy*dzw/l
end if
!reverse normal if k.n>0
if (dot_product(normw,kv)>zero) normw=-normw
end subroutine inters_linewall
subroutine linecone_coord(xv,kv,rs,zs,s,t,n)
use utils, only : bubble
implicit none
real(wp_), intent(in), dimension(3) :: xv,kv
real(wp_), intent(in), dimension(2) :: rs,zs
real(wp_), dimension(2), intent(out) :: s,t
integer, intent(out) :: n
real(wp_) :: x0,y0,z0,kx,ky,kz
real(wp_) :: dr,dz,r,a,bhalf,c,delta,tvertex,zvertex,srmin,rmin,zrmin
x0=xv(1)
y0=xv(2)
z0=xv(3)
kx=kv(1)
ky=kv(2)
kz=kv(3)
dr = rs(2)-rs(1)
dz = zs(2)-zs(1)
s = 0
t = 0
if (abs(dz)<comp_tiny) then
!surface in horizontal plane
if (abs(kz)<comp_tiny .or. abs(dr)<comp_tiny) then
n = 0
else
s(1) = (zs(1)-z0)/kz
r = sqrt((x0+s(1)*kx)**2+(y0+s(1)*ky)**2)
t(1) = (r-rs(1))/dr
n = 1
end if
else
a = (kx**2+ky**2) - (dr/dz*kz)**2
bhalf = -dr/dz*kz*rs(1) + (kx*x0 + ky*y0) - (dr/dz)**2*kz*(z0-zs(1))
c = (x0**2+y0**2) - (rs(1) + dr/dz*(z0-zs(1)))**2
if (abs(a)<comp_tiny) then
!line parallel to cone generator
if (abs(dr)<comp_tiny) then
!cylinder and vertical line
n = 0
else
tvertex = -rs(1)/dr
zvertex = zs(1) + tvertex*dz
srmin = -(kx*x0 + ky*y0)/(kx**2+ky**2)
rmin = sqrt((x0+srmin*kx)**2+(y0+srmin*ky)**2)
zrmin = z0 + srmin*kz
if (rmin<comp_tiny .and. abs(zrmin-zvertex)<comp_tiny) then
!line passing by cone vertex
!s(1) = srmin
!t(1) = tvertex
!n = 1
n = 0
else
s(1) = -0.5_wp_*c/bhalf
t(1) = (kz*s(1)+(z0-zs(1)))/dz
n = 1
end if
end if
else
delta = bhalf**2 - a*c
if (delta<0) then
n = 0
else
s(1) = (-bhalf+sqrt(delta))/a
s(2) = (-bhalf-sqrt(delta))/a
call bubble(s,2)
t(:) = (kz*s(:)+(z0-zs(1)))/dz
n = 2
end if
end if
end if
end subroutine linecone_coord
subroutine interssegm_coord(xa,ya,xb,yb,s,t,ierr)
implicit none
real(wp_), dimension(2), intent(in) :: xa,ya,xb,yb
real(wp_), intent(out) :: s,t
integer, intent(out) :: ierr
real(wp_) :: crossprod,dxa,dya,dxb,dyb
dxa = xa(2)-xa(1)
dya = ya(2)-ya(1)
dxb = xb(2)-xb(1)
dyb = yb(2)-yb(1)
crossprod = dxb*dya - dxa*dyb
if (abs(crossprod)<comp_tiny) then
s = zero
t = zero
ierr = 1
else
s = (dyb*(xa(1)-xb(1)) - dxb*(ya(1)-yb(1)))/crossprod
t = (dya*(xa(1)-xb(1)) - dxa*(ya(1)-yb(1)))/crossprod
ierr = 0
end if
end subroutine interssegm_coord
function interssegm(xa,ya,xb,yb)
implicit none
real(wp_), dimension(2), intent(in) :: xa,ya,xb,yb
logical :: interssegm
real(wp_) :: s,t
integer :: ierr
interssegm = .false.
call interssegm_coord(xa,ya,xb,yb,s,t,ierr)
if (ierr==0 .and. s>=zero .and. s<=one .and. &
t>=zero .and. t<=one) interssegm = .true.
end function interssegm
function inside(xc,yc,n,x,y)
use utils, only : locatef, locate_unord, intlinf, bubble
implicit none
integer, intent(in) :: n
real(wp_), dimension(n), intent(in) :: xc,yc
real(wp_), intent(in) :: x,y
logical :: inside
integer, dimension(n) :: jint
real(wp_), dimension(n) :: xint
real(wp_), dimension(n+1) :: xclosed,yclosed
integer :: i,nj
xclosed(1:n)=xc(1:n)
yclosed(1:n)=yc(1:n)
xclosed(n+1)=xc(1)
yclosed(n+1)=yc(1)
call locate_unord(yclosed,n+1,y,jint,n,nj)
inside=.false.
if (nj==0) return
do i=1,nj
xint(i)=intlinf(yclosed(jint(i)),xclosed(jint(i)), &
yclosed(jint(i)+1),xclosed(jint(i)+1),y)
end do
call bubble(xint,nj)
inside=(mod(locatef(xint,nj,x),2)==1)
end function inside
end module reflections