210 lines
5.6 KiB
Fortran
210 lines
5.6 KiB
Fortran
module reflections
|
|
use const_and_precisions, only : wp_, comp_tiny, comp_eps, comp_huge, zero, one
|
|
implicit none
|
|
private
|
|
public :: reflect,inters_linewall,inside
|
|
public :: linecone_coord,interssegm_coord,interssegm
|
|
contains
|
|
|
|
subroutine reflect(ki,nsurf,ko)
|
|
implicit none
|
|
real(wp_), intent(in), dimension(3) :: ki
|
|
real(wp_), intent(in), dimension(3) :: nsurf
|
|
real(wp_), intent(out), dimension(3) :: ko
|
|
real(wp_) :: twokn,norm2
|
|
norm2 = dot_product(nsurf,nsurf)
|
|
if (norm2>zero) then
|
|
twokn = 2.0_wp_*dot_product(ki,nsurf)/norm2
|
|
ko=ki-twokn*nsurf
|
|
else
|
|
ko=ki
|
|
end if
|
|
end subroutine reflect
|
|
|
|
subroutine inters_linewall(xv,kv,rw,zw,nw,sint,normw)
|
|
implicit none
|
|
real(wp_), intent(in), dimension(3) :: xv,kv
|
|
integer, intent(in) :: nw
|
|
real(wp_), dimension(nw), intent(in) :: rw,zw
|
|
real(wp_), intent(out) :: sint
|
|
real(wp_), dimension(3), intent(out) :: normw
|
|
integer :: i,j,ni,iint
|
|
real(wp_), dimension(2) :: si,ti
|
|
real(wp_) :: drw,dzw,xint,yint,rint,l,kxy
|
|
real(wp_) :: tol
|
|
tol=sqrt(comp_eps)
|
|
sint=comp_huge
|
|
iint=0
|
|
normw=zero
|
|
do i=1,nw-1
|
|
!search intersections with i-th wall segment
|
|
call linecone_coord(xv,kv,rw(i:i+1),zw(i:i+1),si,ti,ni)
|
|
do while (ni>0 .and. si(1)<=tol)
|
|
!remove solutions with s<=0
|
|
ni = ni-1
|
|
si(1) = si(2)
|
|
ti(1) = ti(2)
|
|
end do
|
|
do j=1,ni
|
|
if ((si(j)<sint .or. iint==0) .and. ti(j)>=zero .and. ti(j)<=one) then
|
|
!check intersection is in r,z range and keep the closest
|
|
sint = si(j)
|
|
iint = i
|
|
end if
|
|
end do
|
|
end do
|
|
if (iint==0) return
|
|
!calculate wall normal at intersection point
|
|
drw = rw(iint+1)-rw(iint)
|
|
dzw = zw(iint+1)-zw(iint)
|
|
xint = xv(1) + sint*kv(1)
|
|
yint = xv(2) + sint*kv(2)
|
|
rint = sqrt(xint**2+yint**2)
|
|
l = sqrt(drw**2+dzw**2)
|
|
kxy = sqrt(kv(1)**2+kv(2)**2)
|
|
normw(3) = -drw/l
|
|
if (rint>zero) then
|
|
normw(1) = xint/rint*dzw/l
|
|
normw(2) = yint/rint*dzw/l
|
|
else
|
|
normw(1) = kv(1)/kxy*dzw/l
|
|
normw(2) = kv(2)/kxy*dzw/l
|
|
end if
|
|
!reverse normal if k.n>0
|
|
if (dot_product(normw,kv)>zero) normw=-normw
|
|
end subroutine inters_linewall
|
|
|
|
subroutine linecone_coord(xv,kv,rs,zs,s,t,n)
|
|
use utils, only : bubble
|
|
implicit none
|
|
real(wp_), intent(in), dimension(3) :: xv,kv
|
|
real(wp_), intent(in), dimension(2) :: rs,zs
|
|
real(wp_), dimension(2), intent(out) :: s,t
|
|
integer, intent(out) :: n
|
|
real(wp_) :: x0,y0,z0,kx,ky,kz
|
|
real(wp_) :: dr,dz,r,a,bhalf,c,delta,tvertex,zvertex,srmin,rmin,zrmin
|
|
x0=xv(1)
|
|
y0=xv(2)
|
|
z0=xv(3)
|
|
kx=kv(1)
|
|
ky=kv(2)
|
|
kz=kv(3)
|
|
dr = rs(2)-rs(1)
|
|
dz = zs(2)-zs(1)
|
|
s = 0
|
|
t = 0
|
|
if (abs(dz)<comp_tiny) then
|
|
!surface in horizontal plane
|
|
if (abs(kz)<comp_tiny .or. abs(dr)<comp_tiny) then
|
|
n = 0
|
|
else
|
|
s(1) = (zs(1)-z0)/kz
|
|
r = sqrt((x0+s(1)*kx)**2+(y0+s(1)*ky)**2)
|
|
t(1) = (r-rs(1))/dr
|
|
n = 1
|
|
end if
|
|
else
|
|
a = (kx**2+ky**2) - (dr/dz*kz)**2
|
|
bhalf = -dr/dz*kz*rs(1) + (kx*x0 + ky*y0) - (dr/dz)**2*kz*(z0-zs(1))
|
|
c = (x0**2+y0**2) - (rs(1) + dr/dz*(z0-zs(1)))**2
|
|
if (abs(a)<comp_tiny) then
|
|
!line parallel to cone generator
|
|
if (abs(dr)<comp_tiny) then
|
|
!cylinder and vertical line
|
|
n = 0
|
|
else
|
|
tvertex = -rs(1)/dr
|
|
zvertex = zs(1) + tvertex*dz
|
|
srmin = -(kx*x0 + ky*y0)/(kx**2+ky**2)
|
|
rmin = sqrt((x0+srmin*kx)**2+(y0+srmin*ky)**2)
|
|
zrmin = z0 + srmin*kz
|
|
if (rmin<comp_tiny .and. abs(zrmin-zvertex)<comp_tiny) then
|
|
!line passing by cone vertex
|
|
!s(1) = srmin
|
|
!t(1) = tvertex
|
|
!n = 1
|
|
n = 0
|
|
else
|
|
s(1) = -0.5_wp_*c/bhalf
|
|
t(1) = (kz*s(1)+(z0-zs(1)))/dz
|
|
n = 1
|
|
end if
|
|
end if
|
|
else
|
|
delta = bhalf**2 - a*c
|
|
if (delta<0) then
|
|
n = 0
|
|
else
|
|
s(1) = (-bhalf+sqrt(delta))/a
|
|
s(2) = (-bhalf-sqrt(delta))/a
|
|
call bubble(s,2)
|
|
t(:) = (kz*s(:)+(z0-zs(1)))/dz
|
|
n = 2
|
|
end if
|
|
end if
|
|
end if
|
|
end subroutine linecone_coord
|
|
|
|
subroutine interssegm_coord(xa,ya,xb,yb,s,t,ierr)
|
|
implicit none
|
|
real(wp_), dimension(2), intent(in) :: xa,ya,xb,yb
|
|
real(wp_), intent(out) :: s,t
|
|
integer, intent(out) :: ierr
|
|
real(wp_) :: crossprod,dxa,dya,dxb,dyb
|
|
dxa = xa(2)-xa(1)
|
|
dya = ya(2)-ya(1)
|
|
dxb = xb(2)-xb(1)
|
|
dyb = yb(2)-yb(1)
|
|
crossprod = dxb*dya - dxa*dyb
|
|
if (abs(crossprod)<comp_tiny) then
|
|
s = zero
|
|
t = zero
|
|
ierr = 1
|
|
else
|
|
s = (dyb*(xa(1)-xb(1)) - dxb*(ya(1)-yb(1)))/crossprod
|
|
t = (dya*(xa(1)-xb(1)) - dxa*(ya(1)-yb(1)))/crossprod
|
|
ierr = 0
|
|
end if
|
|
end subroutine interssegm_coord
|
|
|
|
function interssegm(xa,ya,xb,yb)
|
|
implicit none
|
|
real(wp_), dimension(2), intent(in) :: xa,ya,xb,yb
|
|
logical :: interssegm
|
|
real(wp_) :: s,t
|
|
integer :: ierr
|
|
interssegm = .false.
|
|
call interssegm_coord(xa,ya,xb,yb,s,t,ierr)
|
|
if (ierr==0 .and. s>=zero .and. s<=one .and. &
|
|
t>=zero .and. t<=one) interssegm = .true.
|
|
end function interssegm
|
|
|
|
function inside(xc,yc,n,x,y)
|
|
use utils, only : locatef, locate_unord, intlinf, bubble
|
|
implicit none
|
|
integer, intent(in) :: n
|
|
real(wp_), dimension(n), intent(in) :: xc,yc
|
|
real(wp_), intent(in) :: x,y
|
|
logical :: inside
|
|
integer, dimension(n) :: jint
|
|
real(wp_), dimension(n) :: xint
|
|
real(wp_), dimension(n+1) :: xclosed,yclosed
|
|
integer :: i,nj
|
|
xclosed(1:n)=xc(1:n)
|
|
yclosed(1:n)=yc(1:n)
|
|
xclosed(n+1)=xc(1)
|
|
yclosed(n+1)=yc(1)
|
|
call locate_unord(yclosed,n+1,y,jint,n,nj)
|
|
inside=.false.
|
|
if (nj==0) return
|
|
do i=1,nj
|
|
xint(i)=intlinf(yclosed(jint(i)),xclosed(jint(i)), &
|
|
yclosed(jint(i)+1),xclosed(jint(i)+1),y)
|
|
end do
|
|
call bubble(xint,nj)
|
|
inside=(mod(locatef(xint,nj,x),2)==1)
|
|
end function inside
|
|
|
|
end module reflections
|
|
|