gray/scripts/gray_visual.py
2024-11-04 12:00:19 +01:00

566 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'''
Script to quickly visualise both the inputs and output files of GRAY
Usage: python -m scripts.gray_visual -h
'''
from pathlib import Path
from matplotlib.collections import LineCollection
from matplotlib.contour import ContourSet
import argparse
import matplotlib.pyplot as plt
import numpy as np
import scripts.gray as gray
def cli_args() -> argparse.Namespace:
'''
Command line arguments
'''
parser = argparse.ArgumentParser(
prog='gray_visual',
description='visualises the results of a GRAY simulation')
parser.add_argument('inputs', type=Path,
help='filepath of the inputs directory '
'(containing gray.ini)')
parser.add_argument('outputs', type=Path,
help='filepath of the outputs directory')
parser.add_argument('--kind', '-k', default=['raytracing'], nargs='+',
choices=['raytracing', 'beam', 'profiles', 'inputs'],
help='which kind of information to visualise')
parser.add_argument('--outfile', '-o',
metavar='FILE', type=Path, default=None,
help='save the plot figure to FILE')
parser.add_argument('--interactive', '-i', action='store_true',
help='show the plot in an interactive window')
parser.add_argument('--legend',
action=argparse.BooleanOptionalAction, default=True,
help='whether to show plot legend')
return parser.parse_args()
def align_yaxis(*axes: [plt.Axes]):
'''
Aligns the origins of two axes
'''
extrema = np.array([ax.get_ylim() for ax in axes])
tops = extrema[:, 1] / (extrema[:, 1] - extrema[:, 0])
# Ensure that plots (intervals) are ordered bottom to top:
if tops[0] > tops[1]:
axes, extrema, tops = [a[::-1] for a in (axes, extrema, tops)]
# How much would the plot overflow if we kept current zoom levels?
tot_span = tops[1] + 1 - tops[0]
extrema[0, 1] = extrema[0, 0] + tot_span * (extrema[0, 1] - extrema[0, 0])
extrema[1, 0] = extrema[1, 1] + tot_span * (extrema[1, 0] - extrema[1, 1])
[axes[i].set_ylim(*extrema[i]) for i in range(2)]
def add_alt_axis(ax: plt.Axes, x1: np.array, x2: np.array,
label: str) -> plt.Axes:
'''
Adds an alternative x axis to the top of a plot.
x1: existing variable
x2: new variable
'''
from matplotlib.ticker import AutoMinorLocator
from scipy.interpolate import interp1d
ax.xaxis.set_minor_locator(AutoMinorLocator())
ax.grid()
f = interp1d(x1, x2, fill_value='extrapolate')
g = interp1d(x2, x1, fill_value='extrapolate')
alt = ax.secondary_xaxis('top', functions=(f, g))
alt.set_xlabel(label, labelpad=8)
alt.xaxis.set_minor_locator(AutoMinorLocator())
return alt
def plot_circle(ax: plt.Axes, radius: float, **args) -> plt.Circle:
'''
Plots a circle at the origin
'''
c = plt.Circle((0, 0), radius, linewidth=1.5,
fill=False, **args)
ax.add_patch(c)
ax.autoscale_view()
return c
def plot_line_color(ax: plt.Axes, x: np.array, y: np.array,
c: np.array, **args) -> LineCollection:
'''
Plots a line with variable color
'''
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
lines = LineCollection(segments, **args)
lines.set_array(c)
ax.add_collection(lines)
ax.autoscale_view()
return lines
def plot_poloidal(inputs: Path, outputs: Path, ax: plt.Axes):
'''
Plots raytracing projected in the poloidal plane
'''
conf = gray.read_conf(inputs / 'gray.ini')
central_ray = gray.read_table(outputs / 'central-ray.4.txt')
ax.set_title('poloidal view', loc='right')
ax.set_xlabel('$R$ / m')
ax.set_ylabel('$z$ / m')
# load flux surfaces
surfaces = gray.read_table(outputs / 'flux-surfaces.71.txt')
surfaces = surfaces.reshape(-1, int(surfaces['i'].max()))
# plot plasma boundary
bound = np.argmin(1 - surfaces['ψ_n'][:, 0])
ax.plot(surfaces[bound]['R'], surfaces[bound]['z'],
c='xkcd:slate grey', label='plasma boundary')
# manual contourplot of ψ(R,z)
for i, surf in enumerate(surfaces[:bound]):
ax.plot(surf['R'], surf['z'], c='xkcd:grey',
label='flux surfaces' if i == 0 else '')
# label the rational surfaces
labels = ['q=2', 'q=3/2', 'q=1']
for label, surf in zip(labels, surfaces[1+bound:][::-1]):
line = np.vstack([surf['R'], surf['z']]).T
cont = ContourSet(ax, [1], [[line]], filled=False,
colors='xkcd:ocean blue',
linestyles='--')
ax.clabel(cont, [1], inline=True,
fontsize=10, fmt={1: label})
ax.plot(np.nan, np.nan, '--', color='xkcd:ocean blue',
label='rational surfaces')
# load limiter
limiter = gray.get_limiter(conf, inputs)
ax.plot(*limiter, c='xkcd:black', label='limiter')
# plot cold resonance curve
try:
resonance = gray.read_table(outputs / 'ec-resonance.70.txt')
for n in np.unique(resonance['n']):
harm = resonance['n'] == n
ax.plot(resonance['R'][harm], resonance['z'][harm],
c='xkcd:orange', alpha=n/resonance['n'].max(),
label=f"resonance $n={int(n)}$")
except FileNotFoundError:
pass
# central ray
plot_line_color(ax, central_ray['R'], central_ray['z'],
central_ray['α'] * np.exp(-central_ray['τ']),
cmap='plasma', label='rays')
# plot outer rays
try:
outer_rays = gray.read_table(outputs / 'outer-rays.33.txt')
for k in np.unique(outer_rays['k']):
ray = outer_rays[outer_rays['k'] == k]
plot_line_color(ax, ray['R'], ray['z'], ray['α']*np.exp(-ray['τ']),
cmap='plasma', alpha=0.3)
except FileNotFoundError:
pass
def plot_toroidal(inputs: Path, outputs: Path, ax: plt.Axes):
'''
Plots raytracing projected in the poloidal plane
'''
conf = gray.read_conf(inputs / 'gray.ini')
central_ray = gray.read_table(outputs / 'central-ray.4.txt')
ax.set_title('toroidal view', loc='right')
ax.set_xlabel('$x$ / m')
ax.set_ylabel('$y$ / m')
limiter = gray.get_limiter(conf, inputs)
# plot plasma boundary
surfaces = gray.read_table(outputs / 'flux-surfaces.71.txt')
boundary = surfaces[np.isclose(surfaces['ψ_n'], 1, 1e-3)]
# plot plasma boundary
plot_circle(ax, radius=boundary['R'].min(), color='xkcd:slate gray')
plot_circle(ax, radius=boundary['R'].max(), color='xkcd:slate gray')
# plot limiter
if limiter[0].size > 0:
Rmax = limiter[0].max() * 1.1
plot_circle(ax, radius=limiter[0].min(),
color='xkcd:black')
plot_circle(ax, radius=limiter[0].max(),
color='xkcd:black')
# set bounds
ax.set_xlim(-Rmax, Rmax)
ax.set_ylim(-Rmax, Rmax)
# plot cold resonance curve
try:
resonance = gray.read_table(outputs / 'ec-resonance.70.txt')
for n in np.unique(resonance['n']):
harm = resonance['n'] == n
plot_circle(ax, radius=resonance['R'][harm].max(),
color='xkcd:orange', alpha=n/resonance['n'].max())
except FileNotFoundError:
pass
# central ray
for rt in np.unique(central_ray['index_rt']):
ray = central_ray[central_ray['index_rt'] == rt]
x = ray['R'] * np.cos(np.radians(ray['φ']))
y = ray['R'] * np.sin(np.radians(ray['φ']))
dPds = ray['α'] * np.exp(-ray['τ'])
plot_line_color(ax, x, y, dPds, cmap='plasma')
# outer rays
try:
outer_rays = gray.read_table(outputs / 'outer-rays.33.txt')
for k in np.unique(outer_rays['k']):
for rt in np.unique(outer_rays['index_rt']):
ray = outer_rays[ (outer_rays['k'] == k)
& (outer_rays['index_rt'] == rt)]
dPds = ray['α'] * np.exp(-ray['τ'])
plot_line_color(ax, ray['x'], ray['y'], dPds,
cmap='plasma', alpha=0.3)
except FileNotFoundError:
pass
def plot_beam(outputs: Path, axes: [plt.Axes]):
'''
Plots the outermost rays in the local beam frame
'''
rays = gray.read_table(outputs / 'beam-shape.8.txt')
nrays = int(max(rays['k']))
cm = 0.01 # 1cm in m
cmap = plt.cm.viridis
# side view of rays, y(z)
axes['A'].set_title('rays, side view', loc='right')
axes['A'].set_ylabel('$y$ / cm')
# top view of rays, x(z)
axes['B'].set_title('rays, top view', loc='right')
axes['B'].set_ylabel('$x$ / cm')
axes['B'].set_xlabel('$z$ / m')
# 3D view
axes['C'].set_title('beam surface', loc='right')
axes['C'].set_xlabel('$z$ / m', labelpad=11)
axes['C'].set_ylabel('$x$ / cm', labelpad=-2)
axes['C'].set_zlabel('$y$ / cm', labelpad=-2)
axes['C'].set_box_aspect(aspect=(2.5, 1, 1), zoom=1.2)
axes['C'].view_init(azim=-44)
# plot the beam envelope
try:
size = gray.read_table(outputs / 'beam-size.12.txt')
for i in ['A', 'B']:
style = dict(c='xkcd:grey', ls=':', lw=1)
axes[i].plot(size['s']*cm, +size['r_max'], **style)
axes[i].plot(size['s']*cm, -size['r_max'], **style)
axes[i].plot(size['s']*cm, +size['r_min'], **style)
axes[i].plot(size['s']*cm, -size['r_min'], **style)
except FileNotFoundError:
pass
for k in np.arange(1, nrays+1):
ray = rays[rays['k'] == k]
color = cmap(k / max(rays['k']))
z = (ray['s'] + ray['z']) * cm
# top projections
axes['B'].plot(z, ray['x'], alpha=0.6, c=color, lw=1)
axes['C'].plot(z, ray['x'], zs=rays['y'].min(), zdir='z',
alpha=0.6, c=color, lw=1)
# side projections
axes['A'].plot(z, ray['y'], alpha=0.8, c=color, lw=1)
axes['C'].plot(z, ray['y'], zs=rays['x'].max(), zdir='y',
alpha=0.6, c=color, lw=1)
# adjust ticks spacing
plt.setp(axes['C'].get_yticklabels(), rotation=-25, ha='left')
axes['C'].tick_params(axis='y', pad=-5)
axes['C'].tick_params(axis='z', pad=0)
# wrap arrays into 2D meshes for plot_surface
k = rays['k'].reshape(-1, nrays)
x = rays['x'].reshape(-1, nrays)
y = rays['y'].reshape(-1, nrays)
z = (rays['s'] + rays['z']).reshape(-1, nrays) * cm
# make the xy slices closed
x = np.column_stack([x, x[:, 0]])
y = np.column_stack([y, y[:, 0]])
z = np.column_stack([z, z[:, 0]])
# plot beam surface, colored by ray indices
axes['C'].plot_surface(z, x, y, facecolors=cmap(k/nrays), alpha=0.6)
def plot_profiles(outputs: Path, axes: [plt.Axes]):
'''
Plots the power and current profiles
'''
profiles = gray.read_table(outputs / 'ec-profiles.48.txt')
first = profiles['index_rt'] == profiles['index_rt'].min()
ρ_p, ρ_t = profiles[first]['ρ_p'], profiles[first]['ρ_t']
for _, ax in axes.items():
# set ρ_t to the x axis
ax.set_xlabel('$ρ_t$')
ax.set_xlim(-0.05, 1.05)
ax.ticklabel_format(useMathText=True)
# add secondary x axis for ρ_p
add_alt_axis(ax, ρ_t, ρ_p, label='$ρ_p$')
cur_dens = axes['A']
cur_dens.set_title('current density', loc='right')
cur_dens.set_ylabel(r'$J_\text{CD} \;/\;$ kA/m³')
pow_dens = axes['B']
pow_dens.set_title('power density', loc='right')
pow_dens.set_ylabel(r'$dP/dV \;/\;$ MW/m³')
cur_ins = axes['C']
cur_ins.set_title('current within $ρ$', loc='right')
cur_ins.set_ylabel(r'$I_\text{CD,inside} \;/\;$ kA')
pow_ins = axes['D']
pow_ins.set_title('power within $ρ$', loc='right')
pow_ins.set_ylabel(r'$P_\text{inside} \;/\;$ MW')
styles = [':', '-', '--', '-.']
colors = dict(O='xkcd:orange', X='xkcd:ocean blue')
for i in np.unique(profiles['index_rt']):
mode, passes = gray.decode_index_rt(int(i))
style = dict(c=colors[mode], ls=styles[passes % 4])
slice = profiles[ (profiles['index_rt'] == i)
& (profiles['dPdV'] > 1e-15)]
cur_dens.plot(slice['ρ_p'], slice['J_cdb'], **style)
pow_dens.plot(slice['ρ_p'], slice['dPdV'], **style)
slice = profiles[ (profiles['index_rt'] == i)
& (profiles['P_inside'] > 1e-15)]
cur_ins.plot(slice['ρ_p'], slice['I_cd_inside'], **style)
pow_ins.plot(slice['ρ_p'], slice['P_inside'], **style)
# legend
plt.plot(np.nan, np.nan, label='O mode', c='xkcd:orange')
plt.plot(np.nan, np.nan, label='X mode', c='xkcd:ocean blue')
plt.plot(np.nan, np.nan, label='1° pass', c='xkcd:black', ls=styles[1])
plt.plot(np.nan, np.nan, label='2° pass', c='xkcd:black', ls=styles[2])
plt.plot(np.nan, np.nan, label='3° pass', c='xkcd:black', ls=styles[3])
plt.plot(np.nan, np.nan, label='4° pass', c='xkcd:black', ls=styles[0])
def plot_inputs(inputs: Path, outputs: Path, axes: [plt.Axes]):
'''
Plot the input plasma profiles and MHD equilibrium
'''
from matplotlib.colors import TwoSlopeNorm
maps = gray.read_table(outputs / 'inputs-maps.72.txt')
# filter valid points
maps = maps[maps['ψ_n'] > 0]
flux = maps['R'], maps['z'], maps['ψ_n']
# contour levels
inner_levels = np.linspace(0, 0.99, 8)
outer_levels = np.linspace(0.9991, maps['ψ_n'].max()*0.99, 6)
all_levels = np.concatenate([inner_levels, outer_levels])
# contour style
norm = TwoSlopeNorm(vmin=0, vcenter=1, vmax=maps['ψ_n'].max())
cmap = plt.cm.RdYlGn_r
borders = dict(colors='xkcd:grey', linestyles='-', linewidths=0.8)
# interpolated equilibrium
interp = axes['B']
interp.set_title('poloidal flux', loc='right')
interp.set_xlabel('$R$ / m')
interp.set_ylabel('$z$ / m')
interp.tricontourf(*flux, levels=all_levels, norm=norm, cmap=cmap)
interp.tricontour(*flux, levels=all_levels, **borders)
interp.tricontour(*flux, levels=[1], colors='xkcd:slate gray')
interp.plot(np.nan, np.nan, c='xkcd:slate gray', label='plasma boundary')
# add limiter
conf = gray.read_conf(inputs / 'gray.ini')
limiter = gray.get_limiter(conf, inputs)
interp.plot(*limiter, c='xkcd:black', label='limiter')
# original MHD equilibrium
orig = axes['A']
if conf['equilibrium'].get('iequil') != 'EQ_ANALYTICAL':
file = conf['equilibrium']['filenm'].strip('"')
eqdsk = gray.read_eqdsk(inputs / file)
orig.set_title('input G-EQDSK flux', loc='right')
orig.set_xlabel('$R$ / m')
orig.set_ylabel('$z$ / m')
orig.contourf(*eqdsk.flux, levels=inner_levels, norm=norm, cmap=cmap)
orig.contour(*eqdsk.flux, levels=inner_levels, **borders)
orig.plot(*eqdsk.limiter, c='xkcd:black')
orig.plot(*eqdsk.boundary, c='xkcd:slate gray')
else:
orig.axis('off')
# colorbar
bar = plt.colorbar(plt.cm.ScalarMappable(norm, cmap), cax=axes['C'])
bar.set_label(label='normalised poloidal flux', labelpad=10)
# Plasma radial profiles
profiles = gray.read_table(outputs / 'kinetic-profiles.55.txt')
axes['D'].set_title('plasma profiles', loc='right')
add_alt_axis(axes['D'], profiles['ρ_t'], profiles['ψ_n']**0.5,
label='$ρ_p$')
# density
dens = axes['D']
dens.set_xlabel('$ρ_t$')
dens.set_ylabel('$n_e$ / 10²⁰m⁻³', color='xkcd:ocean blue')
dens.plot(profiles['ρ_t'], profiles['n_e'], c='xkcd:ocean blue')
# temperature
temp = axes['D'].twinx()
temp.set_ylabel('$T_e$ / keV', color='xkcd:orange')
temp.plot(profiles['ρ_t'], profiles['T_e'], c='xkcd:orange')
# safety factor
inside = profiles['ρ_t'] < 1
saft = axes['D'].twinx()
saft.set_ylabel('$q$', color='xkcd:moss')
saft.plot(profiles['ρ_t'][inside], profiles['q'][inside], c='xkcd:moss')
saft.spines["right"].set_position(("axes", 1.11))
align_yaxis(dens, temp)
align_yaxis(temp, saft)
# original data points
if conf['profiles']['iprof'] == 'PROF_NUMERIC':
# load input profiles
orig = np.loadtxt(inputs / conf['profiles']['filenm'].strip('"'),
skiprows=1)
# covert 1st column to ρ_t
var = conf['profiles']['irho']
if var == 'RHO_TOR':
prof_ρ = orig[:, 0]
elif var == 'RHO_POL':
prof_ρ = np.interp(orig[:, 0], profiles['ψ_n']**0.5,
profiles['ρ_t'])
elif var == 'RHO_PSI':
prof_ρ = np.interp(orig[:, 0], profiles['ψ_n'], profiles['ρ_t'])
saft_ρ = np.interp(eqdsk.q[0], profiles['ψ_n']**0.5, profiles['ρ_t'])
# add to existing plot
style = dict(marker='o', s=2)
temp.scatter(prof_ρ, orig[:, 1], c='xkcd:orange', **style)
dens.scatter(prof_ρ, orig[:, 2], c='xkcd:ocean blue', **style)
saft.scatter(saft_ρ, eqdsk.q[1], c='xkcd:moss', **style)
# legend
axes['D'].plot(np.nan, np.nan, label='spline', c='k')
axes['D'].scatter(np.nan, np.nan, label='data', c='k', **style)
axes['D'].legend(loc='center left')
def main(kind: str, args: argparse.Namespace) -> (plt.Figure, [float]):
'''
Draws a single figure of a given kind
'''
cm = 0.3937 # 1cm in inches
rect = [0, 0, 1, 1] # default layout rect
if kind == 'raytracing':
fig, axes = plt.subplots(
1, 2, figsize=(19.8*cm, 11*cm),
tight_layout=True,
subplot_kw=dict(aspect='equal'))
plot_poloidal(args.inputs, args.outputs, axes[0])
plot_toroidal(args.inputs, args.outputs, axes[1])
if args.legend:
rect = [0.2, 0, 1, 1]
fig.tight_layout(rect=rect)
fig.legend(loc='upper left')
elif kind == 'beam':
fig, axes = plt.subplot_mosaic(
'ACD;BCD', figsize=(24*cm, 10*cm),
per_subplot_kw={'C': dict(projection='3d')},
width_ratios=[1, 1, 0.21])
# manually adjust spacing (tight_layout is failing)
axes['D'].axis('off')
plt.subplots_adjust(hspace=0.5)
plot_beam(args.outputs, axes)
elif kind == 'profiles':
fig, axes = plt.subplot_mosaic(
'AB;CD', figsize=(23.11*cm, 13*cm),
tight_layout=True)
plot_profiles(args.outputs, axes)
if args.legend:
rect = [0.12, 0, 1, 1]
fig.tight_layout(rect=rect)
fig.legend(loc='upper left')
elif kind == 'inputs':
fig, axes = plt.subplot_mosaic(
'ABC;DDD', figsize=(19.8*cm, 20*cm),
tight_layout=True,
height_ratios=[1.5, 1],
width_ratios=[1, 1, 0.05],
per_subplot_kw={'AB': dict(aspect='equal')})
plot_inputs(args.inputs, args.outputs, axes)
return fig, rect
if __name__ == '__main__':
args = cli_args()
def on_resize(event):
'''
Update layout on window resizes
'''
fig.tight_layout(rect=rect)
fig.canvas.draw()
if args.interactive:
plt.ion()
for kind in args.kind:
fig, rect = main(kind, args)
if args.interactive:
fig.canvas.mpl_connect('resize_event', on_resize)
if args.outfile is not None:
if len(args.kind) > 1:
# append plot kind to the output name
fname = args.outfile.with_stem(args.outfile.stem + '-' + kind)
else:
fname = args.outfile
fig.savefig(fname, bbox_inches='tight')
if args.interactive:
input('press enter to quit')