367 lines
13 KiB
Python
367 lines
13 KiB
Python
from pathlib import Path
|
||
from typing import Any
|
||
from unittest import TestCase
|
||
from collections import defaultdict
|
||
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
|
||
import shutil
|
||
|
||
import unittest
|
||
import tempfile
|
||
import subprocess
|
||
import itertools
|
||
import argparse
|
||
|
||
|
||
class GrayTest:
|
||
inputs: Path = None # directory of the input files
|
||
reference: Path = None # directory of the reference outputs
|
||
candidate: Path = None # directory of the candidate outputs
|
||
|
||
# Extra parameters to pass to gray
|
||
gray_params: dict[str, Any] = {}
|
||
|
||
@classmethod
|
||
def setUpClass(cls):
|
||
'''
|
||
Sets up the test case
|
||
'''
|
||
# directory of the test case
|
||
base = Path().joinpath(*cls.__module__.split('.'))
|
||
|
||
if cls.inputs is None:
|
||
cls.inputs = base / 'inputs'
|
||
if cls.reference is None:
|
||
cls.reference = base / 'outputs'
|
||
|
||
# temporary directory holding the candidate outputs
|
||
cls._tempdir = tempfile.mkdtemp(prefix=f'gray-test-{base.name}.')
|
||
cls.candidate = Path(cls._tempdir)
|
||
|
||
# replace reference with candidate
|
||
if options.update:
|
||
print()
|
||
print('Setting new reference for ' + cls.__module__)
|
||
cls.candidate = cls.reference
|
||
|
||
# run gray to generate the candidate outputs
|
||
proc = run_gray(cls.inputs, cls.candidate, params=cls.gray_params,
|
||
binary=options.binary)
|
||
|
||
# 0: all good, 1: input errors, >1: simulation errors
|
||
assert proc.returncode != 1, 'gray failed with exit code 1'
|
||
|
||
# store the stderr for manual inspection
|
||
with open(str(cls.candidate / 'log'), 'w') as log:
|
||
log.write(proc.stderr)
|
||
|
||
@classmethod
|
||
def tearDownClass(cls):
|
||
'''
|
||
Clean up after all tests
|
||
'''
|
||
# remove temporary directory
|
||
if cls._passed or not options.keep_failed:
|
||
shutil.rmtree(cls._tempdir)
|
||
else:
|
||
print()
|
||
print('Some tests failed: preserving outputs in', cls._tempdir)
|
||
|
||
def run(self, result: unittest.runner.TextTestResult):
|
||
'''
|
||
Override to store the test results for tearDownClass
|
||
'''
|
||
TestCase.run(self, result)
|
||
self.__class__._passed = result.failures == []
|
||
|
||
def test_eccd_values(self):
|
||
'''
|
||
Comparing the ECCD values
|
||
'''
|
||
try:
|
||
ref = load_table(self.reference / 'summary.7.txt')
|
||
cand = load_table(self.candidate / 'summary.7.txt')
|
||
except FileNotFoundError:
|
||
raise unittest.SkipTest("ECCD results not available")
|
||
|
||
# precision as number of decimal places
|
||
prec = defaultdict(lambda: 3, [
|
||
('dPdV_peak', -2), ('dPdV_max', -2),
|
||
('J_φ_peak', -2), ('J_φ_max', -2),
|
||
('s_max', -1), ('χ', -1), ('ψ', -1),
|
||
])
|
||
|
||
for val in ref.dtype.names:
|
||
with self.subTest(value=val):
|
||
for i, ray in enumerate(ref['index_rt']):
|
||
self.assertAlmostEqual(
|
||
ref[val][i], cand[val][i], prec[val],
|
||
msg=f"{val} changed (ray {int(ray)})")
|
||
|
||
def test_eccd_profiles(self):
|
||
'''
|
||
Comparing the ECCD radial profiles
|
||
'''
|
||
from scipy.stats import wasserstein_distance as emd
|
||
import numpy as np
|
||
|
||
try:
|
||
ref = load_table(self.reference / 'ec-profiles.48.txt')
|
||
cand = load_table(self.candidate / 'ec-profiles.48.txt')
|
||
except FileNotFoundError:
|
||
raise unittest.SkipTest("ECCD profiles not available")
|
||
|
||
beams = np.unique(ref['index_rt'])
|
||
for index_rt, val in itertools.product(beams, ['J_cd', 'dPdV', 'J_φ']):
|
||
ref_beam = ref[ref['index_rt'] == index_rt]
|
||
cand_beam = cand[cand['index_rt'] == index_rt]
|
||
|
||
# skip if both empty
|
||
if np.all(ref_beam[val] == 0) and np.all(cand_beam[val] == 0):
|
||
continue
|
||
|
||
# compare with the earth mover's distance
|
||
with self.subTest(profile=val, beam=index_rt):
|
||
y1 = abs(ref_beam[val]) / np.sum(abs(ref_beam[val]))
|
||
y2 = abs(cand_beam[val]) / np.sum(abs(cand_beam[val]))
|
||
dist = emd(ref_beam['ρ_t'], cand_beam['ρ_t'], y1, y2)
|
||
self.assertLess(dist, 0.001, f'{val} profile changed')
|
||
|
||
if options.visual:
|
||
for index_rt in beams:
|
||
ref_beam = ref[ref['index_rt'] == index_rt]
|
||
cand_beam = cand[cand['index_rt'] == index_rt]
|
||
|
||
fig, axes = plt.subplots(3, 1, sharex=True)
|
||
fig.suptitle(self.__module__ + '.test_ec_profiles')
|
||
|
||
axes[0].set_title(f'beam {int(index_rt)}', loc='right')
|
||
axes[0].set_ylabel('$J_\\text{cd}$')
|
||
axes[0].plot(ref_beam['ρ_t'], ref_beam['J_cd'],
|
||
c='xkcd:red', label='reference')
|
||
axes[0].plot(cand_beam['ρ_t'], cand_beam['J_cd'],
|
||
c='xkcd:green', ls='-.', label='candidate')
|
||
axes[0].legend()
|
||
|
||
axes[1].set_ylabel('$dP/dV$')
|
||
axes[1].plot(ref_beam['ρ_t'], ref_beam['dPdV'],
|
||
c='xkcd:red')
|
||
axes[1].plot(cand_beam['ρ_t'], cand_beam['dPdV'],
|
||
c='xkcd:green', ls='-.')
|
||
|
||
axes[2].set_xlabel('$ρ_t$')
|
||
axes[2].set_ylabel('$J_φ$')
|
||
axes[2].plot(ref_beam['ρ_t'], ref_beam['J_φ'],
|
||
c='xkcd:red')
|
||
axes[2].plot(cand_beam['ρ_t'], cand_beam['J_φ'],
|
||
c='xkcd:green', ls='-.')
|
||
plt.show()
|
||
|
||
def test_flux_averages(self):
|
||
'''
|
||
Comparing the flux averages table
|
||
'''
|
||
try:
|
||
ref = load_table(self.reference / 'flux-averages.56.txt')
|
||
cand = load_table(self.candidate / 'flux-averages.56.txt')
|
||
except FileNotFoundError:
|
||
raise unittest.SkipTest("Flux averages table not available")
|
||
|
||
# precision as number of decimal places
|
||
prec = defaultdict(lambda: 3, [
|
||
('J_φ_avg', -3), ('I_pl', -3),
|
||
('area', 1), ('vol', 0),
|
||
('B_avg', 1), ('B_max', 1), ('B_min', 1),
|
||
])
|
||
|
||
for col in ref.dtype.names:
|
||
with self.subTest(value=col):
|
||
for row in range(ref.size):
|
||
ref_val = ref[col][row]
|
||
cand_val = cand[col][row]
|
||
line = row + 23
|
||
self.assertAlmostEqual(ref_val, cand_val, prec[col],
|
||
msg=f"{col} at line {line} changed")
|
||
|
||
if options.visual:
|
||
fig, axes = plt.subplots(4, 3, tight_layout=True)
|
||
fig.suptitle(self.__module__ + '.test_flux_averages')
|
||
|
||
for ax, col in zip(axes.flatten(), ref.dtype.names[2:]):
|
||
ax.set_xlabel('$ρ_p$')
|
||
ax.set_ylabel(col)
|
||
ax.plot(ref['ρ_p'], ref[col], c='xkcd:red')
|
||
ax.plot(cand['ρ_p'], cand[col], c='xkcd:green', ls='-.')
|
||
|
||
axes[3, 2].axis('off')
|
||
axes[3, 2].plot(np.nan, np.nan, c='xkcd:red', label='reference')
|
||
axes[3, 2].plot(np.nan, np.nan, c='xkcd:green', label='candidate')
|
||
axes[3, 2].legend()
|
||
plt.show()
|
||
|
||
def test_final_position(self):
|
||
'''
|
||
Comparing the final position of the central ray
|
||
'''
|
||
ref = load_table(self.reference / 'central-ray.4.txt')
|
||
cand = load_table(self.candidate / 'central-ray.4.txt')
|
||
|
||
# coordinates
|
||
self.assertAlmostEqual(ref['R'][-1], cand['R'][-1], 1)
|
||
self.assertAlmostEqual(ref['z'][-1], cand['z'][-1], 1)
|
||
self.assertAlmostEqual(ref['φ'][-1], cand['φ'][-1], 2)
|
||
|
||
# optical path length
|
||
self.assertAlmostEqual(ref['s'][-1], cand['s'][-1], 1)
|
||
|
||
def test_final_direction(self):
|
||
'''
|
||
Comparing the final direction of the central ray
|
||
'''
|
||
ref = load_table(self.reference / 'central-ray.4.txt')
|
||
cand = load_table(self.candidate / 'central-ray.4.txt')
|
||
|
||
self.assertAlmostEqual(ref['N_⊥'][-1], cand['N_⊥'][-1], 1)
|
||
self.assertAlmostEqual(ref['N_∥'][-1], cand['N_∥'][-1], 1)
|
||
|
||
def test_beam_shape(self):
|
||
'''
|
||
Comparing the final beam shape
|
||
'''
|
||
try:
|
||
ref = load_table(self.reference / 'beam-shape-final.9.txt')
|
||
cand = load_table(self.candidate / 'beam-shape-final.9.txt')
|
||
except FileNotFoundError:
|
||
raise unittest.SkipTest("Beam shape info not available")
|
||
|
||
if options.visual:
|
||
plt.subplot(aspect='equal')
|
||
plt.title(self.__module__ + '.test_beam_shape')
|
||
plt.xlabel('$x$ / cm')
|
||
plt.ylabel('$y$ / cm')
|
||
plt.scatter(ref['x'], ref['y'], c='red',
|
||
marker='_', label='reference')
|
||
plt.scatter(cand['x'], cand['y'], c='green',
|
||
alpha=0.6, marker='+', label='candidate')
|
||
plt.legend()
|
||
plt.show()
|
||
|
||
for ref, cand in zip(ref, cand):
|
||
with self.subTest(ray=(int(ref['j']), int(ref['k']))):
|
||
self.assertAlmostEqual(ref['x'], cand['x'], 1)
|
||
self.assertAlmostEqual(ref['y'], cand['y'], 1)
|
||
|
||
def test_error_biased(self):
|
||
'''
|
||
Test for a proportionality between Λ and any of X, Y, N∥
|
||
'''
|
||
|
||
data = load_table(self.candidate / 'central-ray.4.txt')
|
||
|
||
# restrict to within the plasma, half of the first pass
|
||
in_plasma = data['X'] > 0
|
||
first_pass = data['index_rt'] == data['index_rt'].min()
|
||
data = data[in_plasma & first_pass]
|
||
data = data[:int(data.size // 2)]
|
||
|
||
if data.size < 2:
|
||
self.skipTest("There is no plasma")
|
||
|
||
if options.visual:
|
||
left = plt.subplot()
|
||
plt.title(self.__module__ + '.test_error_biased')
|
||
left.set_xlabel('$s$ / cm')
|
||
left.set_ylabel('$Λ$', color='xkcd:ocean blue')
|
||
left.tick_params(axis='y', labelcolor='xkcd:ocean blue')
|
||
left.plot(data['s'], data['Λ_r'], color='xkcd:ocean blue')
|
||
|
||
right1 = left.twinx()
|
||
right1.set_ylabel('$X$', color='xkcd:orange')
|
||
right1.tick_params(axis='y', labelcolor='xkcd:orange')
|
||
right1.plot(data['s'], data['X'], color='xkcd:orange')
|
||
|
||
right2 = left.twinx()
|
||
right2.set_ylabel('$Y$', color='xkcd:vermillion')
|
||
right2.tick_params(axis='y', labelcolor='xkcd:vermillion')
|
||
right2.plot(data['s'], data['Y'], color='xkcd:vermillion')
|
||
right2.spines["right"].set_position(("axes", 1.1))
|
||
|
||
right3 = left.twinx()
|
||
right3.set_ylabel('$N_∥$', color='xkcd:green')
|
||
right3.tick_params(axis='y', labelcolor='xkcd:green')
|
||
right3.spines["right"].set_position(("axes", 1.2))
|
||
right3.plot(data['s'], data['N_∥'], color='xkcd:green')
|
||
|
||
plt.subplots_adjust(right=0.78)
|
||
plt.show()
|
||
|
||
err = data['Λ_r'].var() / 10
|
||
self.assertGreater(err, 0, msg="Λ is exactly constant")
|
||
|
||
for var in ['X', 'Y', 'N_⊥']:
|
||
# Minimise the χ²(k) = |(Λ_r - k⋅var) / err|² / (n - 1)
|
||
# The solution is simply: k = (Λ⋅var)/var⋅var
|
||
k = np.dot(data['Λ_r'], data[var]) / np.linalg.norm(data[var])**2
|
||
with self.subTest(var=var):
|
||
res = (data['Λ_r'] - k*data[var]) / err
|
||
χ2 = np.linalg.norm(res)**2 / (data.size - 1)
|
||
self.assertGreater(χ2, 1)
|
||
|
||
|
||
# Command line options
|
||
options = argparse.Namespace()
|
||
|
||
|
||
def get_basedir(module: str) -> Path:
|
||
"""
|
||
Given a module name (es. tests.03-TCV) returns its
|
||
base directory as a path (es. tests/03-TCV).
|
||
"""
|
||
return Path().joinpath(*module.split('.'))
|
||
|
||
|
||
def run_gray(inputs: Path, outputs: Path,
|
||
# extra gray parameters
|
||
params: dict[str, Any] = {},
|
||
# which tables to generate
|
||
tables: list[int] = [4, 7, 8, 9, 48, 56, 33, 70, 71],
|
||
# which gray binary to use
|
||
binary: str = 'gray',
|
||
# extra options
|
||
options: [str] = []
|
||
) -> subprocess.CompletedProcess:
|
||
'''
|
||
Runs gray on the inputs from the `inputs` directory and storing the results
|
||
in the `outputs` directory.
|
||
'''
|
||
outputs.mkdir(exist_ok=True, parents=True)
|
||
|
||
params = [['-g', f'{k}={v}'] for k, v in params.items()]
|
||
args = [
|
||
binary,
|
||
'-c', str(inputs / 'gray.ini'),
|
||
'-t', ','.join(map(str, tables)),
|
||
'-o', str(outputs),
|
||
'-v'
|
||
] + list(itertools.chain(*params)) + options
|
||
proc = subprocess.run(args, capture_output=True, text=True)
|
||
|
||
print()
|
||
if proc.returncode != 0:
|
||
# show the log on errors
|
||
print(f'Errors occurred (exit status {proc.returncode}), showing log:')
|
||
print(*proc.args)
|
||
print(proc.stderr)
|
||
print(proc.stdout)
|
||
return proc
|
||
|
||
|
||
def load_table(fname: Path) -> np.array:
|
||
'''
|
||
Loads a GRAY output file as a structured numpy array
|
||
(columns are named as in the file header)
|
||
'''
|
||
return np.genfromtxt(fname, names=True, skip_header=21, ndmin=1)
|