from pathlib import Path from typing import Any from unittest import TestCase import numpy as np import matplotlib.pyplot as plt import shutil import unittest import tempfile import subprocess import itertools import argparse class GrayTest: inputs: Path = None # directory of the input files reference: Path = None # directory of the reference outputs candidate: Path = None # directory of the candidate outputs # Extra parameters to pass to gray gray_params: dict[str, Any] = {} @classmethod def setUpClass(cls): ''' Sets up the test case ''' # directory of the test case base = Path().joinpath(*cls.__module__.split('.')) if cls.inputs is None: cls.inputs = base / 'inputs' if cls.reference is None: cls.reference = base / 'outputs' # temporary directory holding the candidate outputs cls._tempdir = tempfile.mkdtemp(prefix=f'gray-test-{base.name}.') cls.candidate = Path(cls._tempdir) # replace reference with candidate if options.update: print() print('Setting new reference for ' + cls.__module__) cls.candidate = cls.reference # run gray to generate the candidate outputs proc = run_gray(cls.inputs, cls.candidate, params=cls.gray_params, binary=options.binary) # 0: all good, 1: input errors, >1: simulation errors assert proc.returncode != 1, 'gray failed with exit code 1' # store the stderr for manual inspection with open(str(cls.candidate / 'log'), 'w') as log: log.write(proc.stderr) @classmethod def tearDownClass(cls): ''' Clean up after all tests ''' # remove temporary directory if cls._passed or not options.keep_failed: shutil.rmtree(cls._tempdir) else: print() print('Some tests failed: preserving outputs in', cls._tempdir) def run(self, result: unittest.runner.TextTestResult): ''' Override to store the test results for tearDownClass ''' TestCase.run(self, result) self.__class__._passed = result.failures == [] def test_eccd_values(self): ''' Comparing the ECCD values ''' from collections import defaultdict try: ref = load_table(self.reference / 'summary.7.txt') cand = load_table(self.candidate / 'summary.7.txt') except FileNotFoundError: raise unittest.SkipTest("ECCD results not available") # precision as number of decimal places prec = defaultdict(lambda: 3, [ ('dPdV_peak', -2), ('dPdV_max', -2), ('J_φ_peak', -2), ('J_φ_max', -2), ('s_max', -1), ('χ', -1), ('ψ', -1), ]) for val in ref.dtype.names: with self.subTest(value=val): for i, ray in enumerate(ref['index_rt']): self.assertAlmostEqual( ref[val][i], cand[val][i], prec[val], msg=f"{val} changed (ray {int(ray)})") def test_eccd_profiles(self): ''' Comparing the ECCD radial profiles ''' from scipy.stats import wasserstein_distance as emd import numpy as np try: ref = load_table(self.reference / 'ec-profiles.48.txt') cand = load_table(self.candidate / 'ec-profiles.48.txt') except FileNotFoundError: raise unittest.SkipTest("ECCD profiles not available") beams = np.unique(ref['index_rt']) for index_rt, val in itertools.product(beams, ['J_cd', 'dPdV', 'J_φ']): ref_beam = ref[ref['index_rt'] == index_rt] cand_beam = cand[cand['index_rt'] == index_rt] # skip if both empty if np.all(ref_beam[val] == 0) and np.all(cand_beam[val] == 0): continue # compare with the earth mover's distance with self.subTest(profile=val, beam=index_rt): y1 = abs(ref_beam[val]) / np.sum(abs(ref_beam[val])) y2 = abs(cand_beam[val]) / np.sum(abs(cand_beam[val])) dist = emd(ref_beam['ρ_t'], cand_beam['ρ_t'], y1, y2) self.assertLess(dist, 0.001, f'{val} profile changed') if options.visual: for index_rt in beams: ref_beam = ref[ref['index_rt'] == index_rt] cand_beam = cand[cand['index_rt'] == index_rt] fig, axes = plt.subplots(3, 1, sharex=True) fig.suptitle(self.__module__ + '.test_ec_profiles') axes[0].set_title(f'beam {int(index_rt)}', loc='right') axes[0].set_ylabel('$J_\\text{cd}$') axes[0].plot(ref_beam['ρ_t'], ref_beam['J_cd'], c='xkcd:red', label='reference') axes[0].plot(cand_beam['ρ_t'], cand_beam['J_cd'], c='xkcd:green', ls='-.', label='candidate') axes[0].legend() axes[1].set_ylabel('$dP/dV$') axes[1].plot(ref_beam['ρ_t'], ref_beam['dPdV'], c='xkcd:red') axes[1].plot(cand_beam['ρ_t'], cand_beam['dPdV'], c='xkcd:green', ls='-.') axes[2].set_xlabel('$ρ_t$') axes[2].set_ylabel('$J_φ$') axes[2].plot(ref_beam['ρ_t'], ref_beam['J_φ'], c='xkcd:red') axes[2].plot(cand_beam['ρ_t'], cand_beam['J_φ'], c='xkcd:green', ls='-.') plt.show() def test_final_position(self): ''' Comparing the final position of the central ray ''' ref = load_table(self.reference / 'central-ray.4.txt') cand = load_table(self.candidate / 'central-ray.4.txt') # coordinates self.assertAlmostEqual(ref['R'][-1], cand['R'][-1], 1) self.assertAlmostEqual(ref['z'][-1], cand['z'][-1], 1) self.assertAlmostEqual(ref['φ'][-1], cand['φ'][-1], 2) # optical path length self.assertAlmostEqual(ref['s'][-1], cand['s'][-1], 1) def test_final_direction(self): ''' Comparing the final direction of the central ray ''' ref = load_table(self.reference / 'central-ray.4.txt') cand = load_table(self.candidate / 'central-ray.4.txt') self.assertAlmostEqual(ref['N_⊥'][-1], cand['N_⊥'][-1], 1) self.assertAlmostEqual(ref['N_∥'][-1], cand['N_∥'][-1], 1) def test_beam_shape(self): ''' Comparing the final beam shape ''' try: ref = load_table(self.reference / 'beam-shape-final.9.txt') cand = load_table(self.candidate / 'beam-shape-final.9.txt') except FileNotFoundError: raise unittest.SkipTest("Beam shape info not available") if options.visual: import matplotlib.pyplot as plt plt.subplot(aspect='equal') plt.title(self.__module__ + '.test_beam_shape') plt.xlabel('$x$ / cm') plt.ylabel('$y$ / cm') plt.scatter(ref['x'], ref['y'], c='red', marker='_', label='reference') plt.scatter(cand['x'], cand['y'], c='green', alpha=0.6, marker='+', label='candidate') plt.legend() plt.show() for ref, cand in zip(ref, cand): with self.subTest(ray=(int(ref['j']), int(ref['k']))): self.assertAlmostEqual(ref['x'], cand['x'], 1) self.assertAlmostEqual(ref['y'], cand['y'], 1) def test_error_biased(self): ''' Test for a proportionality between Λ and any of X, Y, N∥ ''' data = load_table(self.candidate / 'central-ray.4.txt') # restrict to within the plasma, half of the first pass in_plasma = data['X'] > 0 first_pass = data['index_rt'] == data['index_rt'].min() data = data[in_plasma & first_pass] data = data[:int(data.size // 2)] if data.size < 2: self.skipTest("There is no plasma") if options.visual: import matplotlib.pyplot as plt left = plt.subplot() plt.title(self.__module__ + '.test_error_biased') left.set_xlabel('$s$ / cm') left.set_ylabel('$Λ$', color='xkcd:ocean blue') left.tick_params(axis='y', labelcolor='xkcd:ocean blue') left.plot(data['s'], data['Λ_r'], color='xkcd:ocean blue') right1 = left.twinx() right1.set_ylabel('$X$', color='xkcd:orange') right1.tick_params(axis='y', labelcolor='xkcd:orange') right1.plot(data['s'], data['X'], color='xkcd:orange') right2 = left.twinx() right2.set_ylabel('$Y$', color='xkcd:vermillion') right2.tick_params(axis='y', labelcolor='xkcd:vermillion') right2.plot(data['s'], data['Y'], color='xkcd:vermillion') right2.spines["right"].set_position(("axes", 1.1)) right3 = left.twinx() right3.set_ylabel('$N_∥$', color='xkcd:green') right3.tick_params(axis='y', labelcolor='xkcd:green') right3.spines["right"].set_position(("axes", 1.2)) right3.plot(data['s'], data['N_∥'], color='xkcd:green') plt.subplots_adjust(right=0.78) plt.show() err = data['Λ_r'].var() / 10 self.assertGreater(err, 0, msg="Λ is exactly constant") for var in ['X', 'Y', 'N_⊥']: # Minimise the χ²(k) = |(Λ_r - k⋅var) / err|² / (n - 1) # The solution is simply: k = (Λ⋅var)/var⋅var k = np.dot(data['Λ_r'], data[var]) / np.linalg.norm(data[var])**2 with self.subTest(var=var): res = (data['Λ_r'] - k*data[var]) / err χ2 = np.linalg.norm(res)**2 / (data.size - 1) self.assertGreater(χ2, 1) # Command line options options = argparse.Namespace() def get_basedir(module: str) -> Path: """ Given a module name (es. tests.03-TCV) returns its base directory as a path (es. tests/03-TCV). """ return Path().joinpath(*module.split('.')) def run_gray(inputs: Path, outputs: Path, # extra gray parameters params: dict[str, Any] = {}, # which tables to generate tables: list[int] = [4, 7, 8, 9, 48, 33, 70, 71], # which gray binary to use binary: str = 'gray', # extra options options: [str] = [] ) -> subprocess.CompletedProcess: ''' Runs gray on the inputs from the `inputs` directory and storing the results in the `outputs` directory. ''' outputs.mkdir(exist_ok=True, parents=True) params = [['-g', f'{k}={v}'] for k, v in params.items()] args = [ binary, '-c', str(inputs / 'gray.ini'), '-t', ','.join(map(str, tables)), '-o', str(outputs), '-v' ] + list(itertools.chain(*params)) + options proc = subprocess.run(args, capture_output=True, text=True) print() if proc.returncode != 0: # show the log on errors print(f'Errors occurred (exit status {proc.returncode}), showing log:') print(*proc.args) print(proc.stderr) print(proc.stdout) return proc def load_table(fname: Path) -> np.array: ''' Loads a GRAY output file as a structured numpy array (columns are named as in the file header) ''' return np.genfromtxt(fname, names=True, skip_header=21, ndmin=1)