module gray_core use const_and_precisions, only : wp_ implicit none contains subroutine gray_main(params, data, results, error, rhout) use const_and_precisions, only : zero, one, degree, comp_tiny use coreprofiles, only : set_prfan, set_prfspl, temp, fzeff, unset_prfspl use dispersion, only : expinit use gray_params, only : gray_parameters, gray_data, gray_results, print_parameters, & iwarm, ipec, istpr0, igrad, headw, headl, ipass use beams, only : xgygcoeff, launchangles2n use beamdata, only : pweight, rayi2jk use equilibrium, only : unset_eqspl, unset_rhospl, unset_q use errcodes, only : check_err, print_errn, print_errhcd use magsurf_data, only : flux_average, dealloc_surfvec use beamdata, only : init_btr, dealloc_beam, nray, nstep, dst use pec, only : pec_init, spec, postproc_profiles, dealloc_pec, & rhop_tab, rhot_tab use limiter, only : limiter_unset_globals=>unset_globals use utils, only : vmaxmin use reflections, only : inside use multipass, only : alloc_multipass, dealloc_multipass, initbeam, & initmultipass, turnoffray, plasma_in, plasma_out, wall_out use units, only : ucenr use logger, only : log_info, log_debug implicit none ! Subroutine arguments type(gray_parameters), intent(in) :: params type(gray_data), intent(in) :: data type(gray_results), intent(out) :: results ! Predefined grid for the output profiles (optional) real(wp_), dimension(:), intent(in), optional :: rhout ! Exit code integer, intent(out) :: error ! local variables real(wp_), parameter :: taucr = 12._wp_, etaucr = exp(-taucr) character, dimension(2), parameter :: mode=(/'O','X'/) real(wp_) :: sox,ak0,bres,xgcn,xg,yg,rrm,zzm,alpha,didp,anpl,anpr,anprim,anprre real(wp_) :: chipol,psipol,btot,psinv,dens,tekev,dersdst,derdnm real(wp_) :: tau,pow,dids,ddr,ddi,taumn,taumx real(wp_) :: rhotpav,drhotpav,rhotjava,drhotjava,dpdvp,jphip real(wp_) :: rhotp,drhotp,rhotj,drhotj,dpdvmx,jphimx,ratjamx,ratjbmx real(wp_) :: pabs_beam,icd_beam,cpl_beam1,cpl_beam2,cpl_cbeam1,cpl_cbeam2 real(wp_), dimension(2) :: pabs_pass,icd_pass,cpl,cpl0 real(wp_), dimension(3) :: xv,anv0,anv,bv,derxg ! Ray variables real(wp_), dimension(:,:), pointer :: yw=>null(),ypw=>null(),gri=>null() real(wp_), dimension(:,:,:), pointer :: xc=>null(),du1=>null(),ggri=>null() ! i: integration step, jk: global ray index integer :: i, jk integer :: iox,nharm,nhf,nnd,iokhawa,istop,ierrn,ierrhcd,index_rt integer :: ip,ib,iopmin,ipar,iO integer :: igrad_b,istop_pass,nbeam_pass,nlim logical :: ins_pl,ins_wl,ent_pl,ext_pl,ent_wl,ext_wl,iboff real(wp_), dimension(:,:,:), pointer :: yynext=>null(),yypnext=>null() real(wp_), dimension(:,:), pointer :: psjki=>null(),ppabs=>null(),ccci=>null() real(wp_), dimension(:,:), pointer :: taus=>null(),stnext=>null(), & yw0=>null(),ypw0=>null(),cpls=>null() real(wp_), dimension(:), pointer :: p0ray=>null(),tau0=>null(),alphaabs0=>null(), & dids0=>null(),ccci0=>null(),tau1=>null(),etau1=>null(),cpl1=>null(),lgcpl1=>null() real(wp_), dimension(:), pointer :: p0jk=>null() real(wp_), dimension(:), pointer :: jphi_beam=>null(),pins_beam=>null(), & currins_beam=>null(), dpdv_beam=>null(),jcd_beam=>null(),stv=>null(), & psipv=>null(),chipv=>null() complex(wp_), dimension(:), pointer :: ext=>null(), eyt=>null() integer, dimension(:), pointer :: iiv=>null(),iop=>null(),iow=>null() logical, dimension(:), pointer :: iwait=>null() logical, dimension(:,:), pointer :: iroff=>null() ! parameters log in file headers character(len=headw), dimension(headl) :: strheader ! buffer for formatting log messages character(256) :: msg ! ======== set environment BEGIN ======== ! Number of limiter contourn points nlim = size(data%equilibrium%zlim) ! Compute X=ω/ω_ce and Y=(ω/ω_pe)² (with B=1) call xgygcoeff(params%antenna%fghz, ak0, bres, xgcn) ! Compute the initial cartesian wavevector (anv0) ! from launch angles α,β and the position x₀: ! NR(α, β, x₀) ! Nφ(α, β, x₀) ! Nz(α, β, x₀) call launchangles2n(params%antenna, anv0) ! Initialise the ray variables (beamtracing) call init_btr(params%raytracing, yw, ypw, xc, du1, gri, ggri, psjki, ppabs, ccci, & tau0, alphaabs0, dids0, ccci0, p0jk, ext, eyt, iiv) ! Initialise the dispersion module if(iwarm > 1) call expinit ! Initialise the magsurf_data module call flux_average ! requires frhotor for dadrhot,dvdrhot ! Initialise the output profiles call pec_init(ipec, rhout) nnd = size(rhop_tab) ! number of radial profile points call alloc_multipass(nnd, iwait, iroff, iop, iow, yynext, yypnext, yw0, ypw0, stnext, & stv, p0ray, taus, tau1, etau1, cpls, cpl1, lgcpl1, jphi_beam, & pins_beam, currins_beam, dpdv_beam, jcd_beam, psipv, chipv) ! Allocate memory for the results... allocate(results%dpdv(params%output%nrho)) allocate(results%jcd(params%output%nrho)) ! ...and initialise them results%pabs = zero results%icd = zero results%dpdv = zero results%jcd = zero ! ========= set environment END ========= ! ======== pre-proc prints BEGIN ======== call print_parameters(params, strheader) call print_headers(strheader) ! print ψ surface for q=1.5 and q=2 on file and log psi,rhot,rhop call print_surfq([1.5_wp_, 2.0_wp_]) ! print initial position write (msg, '("initial position:",3(x,g0.3))') params%antenna%pos call log_info(msg, mod='gray_core', proc='gray_main') write (msg, '("initial direction:",2(x,a,"=",g0.2))') & 'α', params%antenna%alpha, 'β', params%antenna%beta call log_info(msg, mod='gray_core', proc='gray_main') ! print Btot=Bres ! print ne, Te, q, Jphi versus psi, rhop, rhot call print_bres(bres) call print_prof call print_maps(bres, xgcn, & norm2(params%antenna%pos(1:2)) * 0.01_wp_, & sin(params%antenna%beta*degree)) ! ========= pre-proc prints END ========= ! =========== main loop BEGIN =========== call initmultipass(params%raytracing%ipol, params%antenna%iox, & iroff,yynext,yypnext,yw0,ypw0, & stnext,p0ray,taus,tau1,etau1,cpls,cpl1,lgcpl1,psipv,chipv) if(params%raytracing%ipol .eq. 0) then if(params%antenna%iox .eq. 2) then ! only X mode on 1st pass cpl0 = (/zero,one/) else ! only O mode on 1st pass cpl0 = (/one,zero/) end if end if sox=one ! mode inverted for each beam iox=2 ! start with O: sox=-1, iox=1 psipol = params%antenna%psi chipol = params%antenna%chi call pweight(params%antenna%power, p0jk) nbeam_pass=1 ! max n of beam per pass index_rt=0 ! global beam index: 1,O 2,X 1st pass ! | | | | call log_debug('pass loop start', mod='gray_core', proc='gray_main') ! 3,O 4,X 5,O 6,X 2nd pass do ip=1,ipass write (msg, '("pass: ",g0)') ip call log_info(msg, mod='gray_core', proc='gray_main') pabs_pass = zero icd_pass = zero istop_pass = 0 ! stop flag for current pass nbeam_pass = 2*nbeam_pass ! max n of beams in current pass if(ip.gt.1) then du1 = zero gri = zero ggri = zero if(ip.eq.ipass) cpl = (/zero,zero/) ! no successive passes end if ! =========== beam loop BEGIN =========== call log_debug('beam loop start', mod='gray_core', proc='gray_main') do ib=1,nbeam_pass sox = -sox ! invert mode iox = 3-iox ! O-mode at ip=1,ib=1 index_rt = index_rt +1 iO = 2*index_rt +1 ! * index_rt of O-mode derived ray (iX=iO+1) call initbeam(index_rt,iroff,iboff,iwait,stv,jphi_beam, & pins_beam,currins_beam,dpdv_beam,jcd_beam) write(msg, '(" beam: ",g0," (",a1," mode)")') index_rt, mode(iox) call log_info(msg, mod='gray_core', proc='gray_main') if(iboff) then ! no propagation for current beam istop_pass = istop_pass +1 ! * +1 non propagating beam call log_info(" beam is off", mod='gray_core', proc='gray_main') cycle end if call vectinit(psjki,ppabs,ccci,tau0,alphaabs0,dids0,ccci0,iiv) if(ip.eq.1) then ! 1st pass igrad_b = igrad ! * input value, igrad_b=0 from 2nd pass tau1 = zero ! * tau from previous passes etau1 = one cpl1 = one ! * coupling from previous passes lgcpl1 = zero p0ray = p0jk ! * initial beam power call ic_gb(params%antenna%pos, anv0, ak0, & params%antenna%w(1),params%antenna%w(2), & params%antenna%ri(1),params%antenna%ri(2), & params%antenna%phi(1),params%antenna%phi(2), & yw,ypw,xc,du1,gri,ggri,index_rt) ! * initial conditions call set_pol(yw,bres,sox,psipol,chipol,ext,eyt) ! * initial polarization do jk=1,nray zzm = yw(3,jk)*0.01_wp_ rrm = sqrt(yw(1,jk)*yw(1,jk)+yw(2,jk)*yw(2,jk))*0.01_wp_ if(inside(data%equilibrium%rlim, data%equilibrium%zlim, & nlim, rrm, zzm)) then ! * start propagation in/outside vessel? iow(jk) = 1 ! + inside else iow(jk) = 0 ! + outside end if end do else ! 2nd+ passes ipar = (index_rt+1)/2-1 ! * parent beam index yw = yynext(:,:,ipar) ! * starting coordinates from ypw = yypnext(:,:,ipar) ! parent beam last step stv = stnext(:,ipar) ! * starting step from parent beam last step iow = 1 ! * start propagation inside vessel tau1 = taus(:,index_rt) ! * tau from previous passes etau1 = exp(-tau1) cpl1 = cpls(:,index_rt) ! * coupling from previous passes lgcpl1 = -log(cpl1) p0ray = p0jk * etau1 * cpl1 ! * initial beam power end if iop = 0 ! start propagation outside plasma if(nray>1 .and. all(.not.iwait)) call print_projxyzt(stv,yw,0) ! iproj=0 ==> nfilp=8 ! ======= propagation loop BEGIN ======= call log_debug(' propagation loop start', mod='gray_core', proc='gray_main') do i=1,nstep ! advance one step with "frozen" grad(S_I) do jk=1,nray if(iwait(jk)) cycle ! jk ray is waiting for next pass stv(jk) = stv(jk) + dst ! current ray step call rkstep(sox,bres,xgcn,yw(:,jk),ypw(:,jk),gri(:,jk),ggri(:,:,jk),igrad_b) end do ! update position and grad if(igrad_b == 1) call gradi_upd(yw,ak0,xc,du1,gri,ggri) error = 0 istop = 0 ! stop flag for current beam iopmin = 10 ! =========== rays loop BEGIN =========== do jk=1,nray if(iwait(jk)) cycle ! jk ray is waiting for next pass ! compute derivatives with updated gradient and local plasma values xv = yw(1:3,jk) anv = yw(4:6,jk) call ywppla_upd(xv,anv,gri(:,jk),ggri(:,:,jk),sox,bres,xgcn,ypw(:,jk), & psinv,dens,btot,bv,xg,yg,derxg,anpl,anpr,ddr,ddi,dersdst,derdnm, & ierrn,igrad_b) ! update global error code and print message if(ierrn/=0) then error = ior(error,ierrn) call print_errn(ierrn,i,anpl) end if ! check entrance/exit plasma/wall zzm = xv(3)*0.01_wp_ rrm = sqrt(xv(1)*xv(1)+xv(2)*xv(2))*0.01_wp_ ins_pl = (psinv>=zero .and. psinv continue current pass if(params%raytracing%ipol .eq. 0) then ! + IF single mode propagation cpl = cpl0 p0ray(jk) = p0ray(jk)*cpl(iox) else if(cpl(iox).lt.etaucr) then ! + ELSE IF low coupled power for current mode => de-activate derived rays call turnoffray(jk,ip+1,2*ib+2-iox,iroff) iwait(jk) = .true. ! . stop advancement and H&CD computation for current ray if(cpl(iox).le.comp_tiny) cpl(iox)=etaucr else ! + ELSE assign coupled power to current ray p0ray(jk) = p0ray(jk)*cpl(iox) end if cpls(jk,index_rt) = cpl(iox) if(jk.eq.1) then write (msg,'(" 1st pass - central ray (",a1,"-mode) c=",g0.4)') & mode(iox), cpl(iox) call log_info(msg, mod='gray_core', proc='gray_main') psipv(index_rt) = psipol ! + polarization angles at plasma boundary for central ray chipv(index_rt) = chipol end if else if(iop(jk).gt.2) then ! * 2nd entrance on 1st pass / entrance on 2nd+ pass => end of current pass for ray jk igrad_b = 0 ! + switch to ray-tracing iwait(jk) = .true. ! + stop advancement and H&CD computation for current ray if(ip.lt.ipass) then ! + not last pass yynext(:,jk,index_rt) = yw0(:,jk) ! . copy starting coordinates yypnext(:,jk,index_rt) = ypw0(:,jk) ! for next pass from last step stnext(jk,index_rt) = stv(jk) - dst ! . starting step for next pass = last step if(cpl(1).lt.etaucr) then ! . low coupled power for O-mode => de-activate derived rays call turnoffray(jk,ip+1,2*ib-1,iroff) if(cpl(1).le.comp_tiny) cpl(1)=etaucr end if if(cpl(2).lt.etaucr) then ! . low coupled power for X-mode => de-activate derived rays call turnoffray(jk,ip+1,2*ib,iroff) if(cpl(2).le.comp_tiny) cpl(2)=etaucr end if taus(jk,iO:iO+1) = tau1(jk) + tau0(jk) ! . starting tau for next O-mode pass cpls(jk,iO) = cpl1(jk) * cpl(1) ! . cumulative coupling for next O-mode pass cpls(jk,iO+1) = cpl1(jk) * cpl(2) ! . cumulative coupling for next X-mode pass if(jk.eq.1) then ! . polarization angles at plasma boundary for central ray psipv(iO:iO+1) = psipol chipv(iO:iO+1) = chipol end if else ! * 1st entrance on 2nd+ pass (ray hasn't entered in plasma since end of previous pass) => continue current pass cpl = (/zero,zero/) end if end if else if(ext_pl) then ! ray exits plasma call plasma_out(jk,xv,anv,bres,sox,iop,ext,eyt) end if if(ent_wl) then ! ray enters vessel iow(jk)=iow(jk)+1 ! * out->in else if(ext_wl) then ! ray exit vessel call wall_out(jk,ins_pl,xv,anv,bres,sox,psipol,chipol,iow,iop,ext,eyt) yw(:,jk) = (/xv,anv/) ! * updated coordinates (reflected) igrad_b = 0 ! * switch to ray-tracing call ywppla_upd(xv,anv,gri(:,jk),ggri(:,:,jk),sox,bres,xgcn,ypw(:,jk), & psinv,dens,btot,bv,xg,yg,derxg,anpl,anpr,ddr,ddi,dersdst,derdnm, & ierrn,igrad_b) ! * update derivatives after reflection if(ierrn/=0) then ! * update global error code and print message error = ior(error,ierrn) call print_errn(ierrn,i,anpl) end if if(jk.eq.1 .and. ip.eq.1) then ! * 1st pass, polarization angles at reflection for central ray psipv(index_rt) = psipol chipv(index_rt) = chipol end if if(ins_pl) then ! * plasma-wall overlapping => wall+plasma crossing => end of current pass iwait(jk) = .true. ! + stop advancement and H&CD computation for current ray if(ip.lt.ipass) then ! + not last pass yynext(:,jk,index_rt) = (/xv,anv/) ! . starting coordinates yypnext(:,jk,index_rt) = ypw(:,jk) ! for next pass = reflection point stnext(jk,index_rt) = stv(jk) ! . starting step for next pass = step after reflection call plasma_in(jk,xv,anv,bres,sox,cpl,psipol,chipol,iop,ext,eyt) ! . ray re-enters plasma after reflection if(cpl(1).lt.etaucr) then ! . low coupled power for O-mode? => de-activate derived rays call turnoffray(jk,ip+1,2*ib-1,iroff) if(cpl(1).le.comp_tiny) cpl(1)=etaucr end if if(cpl(2).lt.etaucr) then ! . low coupled power for X-mode? => de-activate derived rays call turnoffray(jk,ip+1,2*ib,iroff) if(cpl(2).le.comp_tiny) cpl(2)=etaucr end if taus(jk,iO:iO+1) = tau1(jk) + tau0(jk) ! . starting tau for next O-mode pass cpls(jk,iO) = cpl1(jk) * cpl(1) ! . cumulative coupling for next O-mode pass cpls(jk,iO+1) = cpl1(jk) * cpl(2) ! . cumulative coupling for next X-mode pass if(jk.eq.1) then ! + polarization angles at plasma boundary for central ray psipv(iO:iO+1) = psipol chipv(iO:iO+1) = chipol end if end if end if end if iopmin = min(iopmin,iop(jk)) if(ip.lt.ipass) then ! not last pass yw0(:,jk) = yw(:,jk) ! * store current coordinates in case ypw0(:,jk) = ypw(:,jk) ! current pass ends on next step end if ! compute ECRH&CD if (inside plasma & power available>0 & ray still active) if(ierrn==0 .and. iwarm>0 .and. ins_pl .and. & (tau1(jk)+tau0(jk)+lgcpl1(jk))<=taucr .and. .not.iwait(jk)) then ! H&CD computation check tekev=temp(psinv) call alpha_effj(psinv,xg,yg,dens,tekev,ak0,bres,derdnm,anpl,anpr, & sox,anprre,anprim,alpha,didp,nharm,nhf,iokhawa,ierrhcd) if(ierrhcd/=0) then error = ior(error,ierrhcd) call print_errhcd(ierrhcd,i,anprre,anprim,alpha) end if else tekev=zero alpha=zero didp=zero anprim=zero anprre=anpr nharm=0 nhf=0 iokhawa=0 end if if(nharm>0) iiv(jk)=i psjki(jk,i) = psinv ! computation of optical depth tau, dP/ds, P(s), dI/ds, I(s) tau=tau0(jk)+0.5_wp_*(alphaabs0(jk)+alpha)*dersdst*dst pow=p0ray(jk)*exp(-tau) !*exp(-tau1v(jk)) ppabs(jk,i)=p0ray(jk)-pow dids=didp*pow*alpha ccci(jk,i)=ccci0(jk)+0.5_wp_*(dids0(jk)+dids)*dersdst*dst tau0(jk)=tau alphaabs0(jk)=alpha dids0(jk)=dids ccci0(jk)=ccci(jk,i) if(iwait(jk)) then ! copy values from last pass for inactive ray ppabs(jk,i:nstep) = ppabs(jk,i-1) ccci(jk,i:nstep) = ccci(jk,i-1) psjki(jk,i:nstep) = psjki(jk,i-1) else call print_output(i,jk,stv(jk),p0ray(jk),xv,psinv, & btot,bv,ak0,anpl,anpr,anv,anprim,dens,tekev,alpha,tau,dids, & nharm,nhf,iokhawa,index_rt,ddr,ddi,xg,yg,derxg) ! p0ray/etau1 [dids normalization] = fraction of p0 coupled to this ray (not including absorption from previous passes) end if end do ! ============ rays loop END ============ if(i==nstep) then ! step limit reached? do jk=1,nray if(iop(jk)<3) call turnoffray(jk,ip,ib,iroff) ! * ray hasn't exited+reentered the plasma by last step => stop ray end do end if ! print ray positions for j=nrayr in local reference system if(mod(i,istpr0) == 0) then if(nray > 1 .and. all(.not.iwait)) call print_projxyzt(stv,yw,0) end if ! check for any error code and stop if necessary call check_err(error,istop) ! test whether further trajectory integration is unnecessary call vmaxmin(tau1+tau0+lgcpl1,nray,taumn,taumx) ! test on tau + coupling ! if(taumn > taucr .or. all(iroff(:,index_rt))) istop = 1 ! (residual power~0) or (no ray active) => stop beam if(istop == 1) then ! stop propagation for current beam istop_pass = istop_pass +1 ! * +1 non propagating beam if(ip.lt.ipass) call turnoffray(0,ip,ib,iroff) ! * de-activate derived beams exit else if(all(iwait)) then ! all rays in current beam are waiting for next pass => do not increase istop_pass exit end if end do call log_debug(' propagation loop end', mod='gray_core', proc='gray_main') ! ======== propagation loop END ======== ! print all ray positions in local reference system if(nray > 1 .and. all(.not.iwait)) call print_projxyzt(stv,yw,1) ! =========== post-proc BEGIN =========== ! compute total absorbed power and driven current for current beam if(i>nstep) i=nstep pabs_beam = sum(ppabs(:,i)) icd_beam = sum(ccci(:,i)) call vmaxmin(tau0,nray,taumn,taumx) ! taumn,taumx for print ! compute power and current density profiles for all rays call spec(psjki,ppabs,ccci,iiv,pabs_beam,icd_beam,dpdv_beam,jphi_beam,jcd_beam, & pins_beam,currins_beam) pabs_pass(iox) = pabs_pass(iox) + pabs_beam ! 0D results for current pass, sum on O/X mode beams icd_pass(iox) = icd_pass(iox) + icd_beam if(ip.lt.ipass .and. iopmin.gt.2) then ! not last pass AND at least one ray re-entered plasma cpl_beam1 = sum(p0ray * exp(-tau0) * cpls(:,iO)/cpl1, MASK=iop.gt.2) / & sum(p0ray * exp(-tau0), MASK=iop.gt.2) ! * average O-mode coupling for next beam (on active rays) cpl_beam2 = one - cpl_beam1 ! * average X-mode coupling for next beam if(iop(1).gt.2) then ! * central ray O/X-mode coupling for next beam cpl_cbeam1 = cpls(1,iO)/cpl1(1) cpl_cbeam2 = one - cpl_cbeam1 end if else ! last pass OR no ray re-entered plasma cpl_beam1 = zero cpl_beam2 = zero end if ! print final results for pass on screen call log_info(' partial results:', mod='gray_core', proc='gray_main') write(msg, '(3x,a,g0.4)') 'final step: (s, ct, Sr)=' ,stv(1) call log_info(msg, mod='gray_core', proc='gray_main') write(msg, '(3x,a,2(x,a,"=",g0.4))') 'optical depth:', 'τ_min', taumn, 'τ_max', taumx call log_info(msg, mod='gray_core', proc='gray_main') write(msg, '(3x,a,g0.3," MW")') 'absoption: P=', pabs_beam call log_info(msg, mod='gray_core', proc='gray_main') write(msg, '(3x,a,g0.3," MW")') 'current drive: I=', icd_beam*1.0e3_wp_ call log_info(msg, mod='gray_core', proc='gray_main') if(ip < ipass) then write (msg,'(3x,a,(g0.4,", ",g0.4))') & ! average coupling for next O/X beams (=0 if no ray re-entered plasma) 'next couplings [O,X mode]: c=', cpl_beam1, cpl_beam2 call log_info(msg, mod='gray_core', proc='gray_main') if(iop(1) > 2) then write(msg, '(3x,a,(g0.4,", ",g0.4))') & 'coupling [ctr ray, O/X]:', cpl_cbeam1, cpl_cbeam2 ! central ray coupling for next O/X beams end if end if write(ucenr,*) '' call print_pec(rhop_tab,rhot_tab,jphi_beam,jcd_beam,dpdv_beam,currins_beam, & pins_beam,ip) ! *print power and current density profiles for current beam call postproc_profiles(pabs_beam,icd_beam,rhot_tab,dpdv_beam,jphi_beam, & rhotpav,drhotpav,rhotjava,drhotjava,dpdvp,jphip,rhotp,drhotp,rhotj, & drhotj,dpdvmx,jphimx,ratjamx,ratjbmx) ! *compute profiles width for current beam call print_finals(pabs_beam,icd_beam,dpdvp,jphip,rhotpav,rhotjava, & drhotpav,drhotjava,dpdvmx,jphimx,rhotp,rhotj,drhotp,drhotj,ratjamx, & ratjbmx,stv(1),psipv(index_rt),chipv(index_rt),index_rt,sum(p0ray), & cpl_beam1,cpl_beam2) ! *print 0D results for current beam ! ============ post-proc END ============ end do call log_debug('beam loop end', mod='gray_core', proc='gray_main') ! ============ beam loop END ============ ! ======= cumulative prints BEGIN ======= results%pabs = results%pabs + sum(pabs_pass) ! *final results (O+X) [gray_main output] results%icd = results%icd + sum(icd_pass) ! print final results for pass on screen call log_info(' comulative results:', mod='gray_core', proc='gray_main') write(msg, '(" absoption [O,X mode] P=",g0.4,", ",g0.4," MW")') & pabs_pass(1), pabs_pass(2) call log_info(msg, mod='gray_core', proc='gray_main') write(msg, '(" current drive [O,X mode] I=",g0.4,", ",g0.4," kA")') & icd_pass(1)*1.0e3_wp_, icd_pass(2)*1.0e3_wp_ call log_info(msg, mod='gray_core', proc='gray_main') ! ======== cumulative prints END ======== if(istop_pass == nbeam_pass) exit ! no active beams end do call log_debug('pass loop end', mod='gray_core', proc='gray_main') ! ============ main loop END ============ ! ========== free memory BEGIN ========== call dealloc_surfvec call dealloc_beam(yw,ypw,xc,du1,gri,ggri,psjki,ppabs,ccci,tau0, & alphaabs0,dids0,ccci0,p0jk,ext,eyt,iiv) call dealloc_pec call dealloc_multipass(iwait,iroff,iop,iow,yynext,yypnext,yw0,ypw0, & stnext,stv,p0ray,taus,tau1,etau1,cpls,cpl1,lgcpl1,jphi_beam, & pins_beam,currins_beam,dpdv_beam,jcd_beam,psipv,chipv) ! =========== free memory END =========== end subroutine gray_main subroutine vectinit(psjki,ppabs,ccci,tau0,alphaabs0,dids0,ccci0,iiv) use const_and_precisions, only : wp_, zero implicit none ! arguments real(wp_), dimension(:,:), intent(out) :: psjki,ppabs,ccci real(wp_), dimension(:), intent(out) :: tau0,alphaabs0,dids0,ccci0 integer, dimension(:), intent(out) :: iiv !! common/external functions/variables ! integer :: jclosest ! real(wp_), dimension(3) :: anwcl,xwcl ! ! common/refln/anwcl,xwcl,jclosest ! ! jclosest=nrayr+1 ! anwcl(1:3)=0.0_wp_ ! xwcl(1:3)=0.0_wp_ psjki = zero ppabs = zero ccci = zero tau0 = zero alphaabs0 = zero dids0 = zero ccci0 = zero iiv = 1 end subroutine vectinit subroutine ic_gb(xv0c,anv0c,ak0,wcsi,weta,rcicsi,rcieta,phiw,phir, & ywrk0,ypwrk0,xc0,du10,gri,ggri,index_rt) ! beam tracing initial conditions igrad=1 ! !!!!!! check ray tracing initial conditions igrad=0 !!!!!! use const_and_precisions, only : wp_,zero,one,pi,half,two,degree,ui=>im use math, only : catand use gray_params, only : idst use beamdata, only : nray,nrayr,nrayth,rwmax implicit none ! arguments integer, intent(in) :: index_rt real(wp_), dimension(3), intent(in) :: xv0c,anv0c real(wp_), intent(in) :: ak0 real(wp_), intent(in) :: wcsi,weta,rcicsi,rcieta,phiw,phir real(wp_), dimension(6,nray), intent(out) :: ywrk0,ypwrk0 real(wp_), dimension(3,nray), intent(out) :: gri real(wp_), dimension(3,3,nray), intent(out) :: ggri real(wp_), dimension(3,nrayth,nrayr), intent(out) :: xc0,du10 ! local variables integer :: j,k,jk real(wp_) :: csth,snth,csps,snps,phiwrad,phirrad,csphiw,snphiw,alfak real(wp_) :: wwcsi,wweta,sk,sw,dk,dw,rci1,ww1,rci2,ww2,wwxx,wwyy,wwxy real(wp_) :: rcixx,rciyy,rcixy,dwwxx,dwwyy,dwwxy,d2wwxx,d2wwyy,d2wwxy real(wp_) :: drcixx,drciyy,drcixy,dr,da,ddfu,dcsiw,detaw,dx0t,dy0t real(wp_) :: x0t,y0t,z0t,dx0,dy0,dz0,x0,y0,z0,gxt,gyt,gzt,gr2 real(wp_) :: gxxt,gyyt,gzzt,gxyt,gxzt,gyzt,dgr2xt,dgr2yt,dgr2zt real(wp_) :: dgr2x,dgr2y,dgr2z,pppx,pppy,denpp,ppx,ppy real(wp_) :: anzt,anxt,anyt,anx,any,anz,an20,an0 real(wp_) :: du1tx,du1ty,du1tz,denom,ddr,ddi real(wp_), dimension(nrayr) :: uj real(wp_), dimension(nrayth) :: sna,csa complex(wp_) :: sss,ddd,phic,qi1,qi2,tc,ts,qqxx,qqxy,qqyy,dqi1,dqi2 complex(wp_) :: dqqxx,dqqyy,dqqxy,d2qi1,d2qi2,d2qqxx,d2qqyy,d2qqxy csth=anv0c(3) snth=sqrt(one-csth**2) if(snth > zero) then csps=anv0c(2)/snth snps=anv0c(1)/snth else csps=one snps=zero end if ! Gaussian beam: exp[-ik0 zt] exp[-i k0/2 S(xt,yt,zt)] ! xt,yt,zt, cartesian coordinate system with zt along the beamline and xt in the z = 0 plane ! S(xt,yt,zt) = S_real +i S_imag = Qxx(zt) xt^2 + Qyy(zt) yt^2 + 2 Qxy(zt) xt yt ! (csiw, etaw) and (csiR, etaR) intensity and phase ellipse, rotated by angle phiw and phiR ! S(xt,yt,zt) = csiR^2 / Rccsi +etaR^2 /Rceta - i (csiw^2 Wcsi +etaw^2 Weta) ! Rccsi,eta curvature radius at the launching point ! Wcsi,eta =2/(k0 wcsi,eta^2) with wcsi,eta^2 beam size at the launching point phiwrad = phiw*degree phirrad = phir*degree csphiw = cos(phiwrad) snphiw = sin(phiwrad) ! csphir = cos(phirrad) ! snphir = sin(phirrad) wwcsi = two/(ak0*wcsi**2) wweta = two/(ak0*weta**2) if(phir/=phiw) then sk = rcicsi + rcieta sw = wwcsi + wweta dk = rcicsi - rcieta dw = wwcsi - wweta ts = -(dk*sin(2*phirrad) - ui*dw*sin(2*phiwrad)) tc = (dk*cos(2*phirrad) - ui*dw*cos(2*phiwrad)) phic = half*catand(ts/tc) ddd = dk*cos(2*(phirrad+phic)) - ui*dw*cos(2*(phiwrad+phic)) sss = sk - ui*sw qi1 = half*(sss + ddd) qi2 = half*(sss - ddd) rci1 = dble(qi1) rci2 = dble(qi2) ww1 = -dimag(qi1) ww2 = -dimag(qi2) else rci1 = rcicsi rci2 = rcieta ww1 = wwcsi ww2 = wweta phic = -phiwrad qi1 = rci1 - ui*ww1 qi2 = rci2 - ui*ww2 end if ! w01=sqrt(2.0_wp_/(ak0*ww1)) ! d01=-rci1/(rci1**2+ww1**2) ! w02=sqrt(2.0_wp_/(ak0*ww2)) ! d02=-rci2/(rci2**2+ww2**2) qqxx = qi1*cos(phic)**2 + qi2*sin(phic)**2 qqyy = qi1*sin(phic)**2 + qi2*cos(phic)**2 qqxy = -(qi1 - qi2)*sin(phic)*cos(phic) wwxx = -dimag(qqxx) wwyy = -dimag(qqyy) wwxy = -dimag(qqxy) rcixx = dble(qqxx) rciyy = dble(qqyy) rcixy = dble(qqxy) dqi1 = -qi1**2 dqi2 = -qi2**2 d2qi1 = 2*qi1**3 d2qi2 = 2*qi2**3 dqqxx = dqi1*cos(phic)**2 + dqi2*sin(phic)**2 dqqyy = dqi1*sin(phic)**2 + dqi2*cos(phic)**2 dqqxy = -(dqi1 - dqi2)*sin(phic)*cos(phic) d2qqxx = d2qi1*cos(phic)**2 + d2qi2*sin(phic)**2 d2qqyy = d2qi1*sin(phic)**2 + d2qi2*cos(phic)**2 d2qqxy = -(d2qi1 - d2qi2)*sin(phic)*cos(phic) dwwxx = -dimag(dqqxx) dwwyy = -dimag(dqqyy) dwwxy = -dimag(dqqxy) d2wwxx = -dimag(d2qqxx) d2wwyy = -dimag(d2qqyy) d2wwxy = -dimag(d2qqxy) drcixx = dble(dqqxx) drciyy = dble(dqqyy) drcixy = dble(dqqxy) if(nrayr > 1) then dr = rwmax/dble(nrayr-1) else dr = one end if ddfu = two*dr**2/ak0 ! twodr2 = 2*dr**2 = 2*rwmax/dble(nrayr-1) do j = 1, nrayr uj(j) = dble(j-1) end do da=2*pi/dble(nrayth) do k=1,nrayth alfak = (k-1)*da sna(k) = sin(alfak) csa(k) = cos(alfak) end do ! central ray jk=1 gri(:,1) = zero ggri(:,:,1) = zero ywrk0(1:3,1) = xv0c ywrk0(4:6,1) = anv0c ypwrk0(1:3,1) = anv0c ypwrk0(4:6,1) = zero do k=1,nrayth dcsiw = dr*csa(k)*wcsi detaw = dr*sna(k)*weta dx0t = dcsiw*csphiw - detaw*snphiw dy0t = dcsiw*snphiw + detaw*csphiw du1tx = (dx0t*wwxx + dy0t*wwxy)/ddfu du1ty = (dx0t*wwxy + dy0t*wwyy)/ddfu xc0(:,k,1) = xv0c du10(1,k,1) = du1tx*csps + snps*du1ty*csth du10(2,k,1) = -du1tx*snps + csps*du1ty*csth du10(3,k,1) = -du1ty*snth end do ddr = zero ddi = zero ! loop on rays jk>1 j=2 k=0 do jk=2,nray k=k+1 if(k > nrayth) then j=j+1 k=1 end if ! csiw=u*dcsiw ! etaw=u*detaw ! csir=x0t*csphir+y0t*snphir ! etar=-x0t*snphir+y0t*csphir dcsiw = dr*csa(k)*wcsi detaw = dr*sna(k)*weta dx0t = dcsiw*csphiw - detaw*snphiw dy0t = dcsiw*snphiw + detaw*csphiw x0t = uj(j)*dx0t y0t = uj(j)*dy0t z0t = -(half*(rcixx*x0t**2 + rciyy*y0t**2) + rcixy*x0t*y0t) dx0 = x0t*csps + snps*(y0t*csth + z0t*snth) dy0 = -x0t*snps + csps*(y0t*csth + z0t*snth) dz0 = z0t*csth - y0t*snth x0 = xv0c(1) + dx0 y0 = xv0c(2) + dy0 z0 = xv0c(3) + dz0 gxt = x0t*wwxx + y0t*wwxy gyt = x0t*wwxy + y0t*wwyy gzt = half*(x0t**2*dwwxx + y0t**2*dwwyy ) + x0t*y0t*dwwxy gr2 = gxt*gxt + gyt*gyt + gzt*gzt gxxt = wwxx gyyt = wwyy gzzt = half*(x0t**2*d2wwxx + y0t**2*d2wwyy) + x0t*y0t*d2wwxy gxyt = wwxy gxzt = x0t*dwwxx + y0t*dwwxy gyzt = x0t*dwwxy + y0t*dwwyy dgr2xt = 2*(gxt*gxxt + gyt*gxyt + gzt*gxzt) dgr2yt = 2*(gxt*gxyt + gyt*gyyt + gzt*gyzt) dgr2zt = 2*(gxt*gxzt + gyt*gyzt + gzt*gzzt) dgr2x = dgr2xt*csps + snps*(dgr2yt*csth + dgr2zt*snth) dgr2y = -dgr2xt*snps + csps*(dgr2yt*csth + dgr2zt*snth) dgr2z = dgr2zt*csth - dgr2yt*snth gri(1,jk) = gxt*csps + snps*(gyt*csth + gzt*snth) gri(2,jk) = -gxt*snps + csps*(gyt*csth + gzt*snth) gri(3,jk) = gzt*csth - gyt*snth ggri(1,1,jk) = gxxt*csps**2 & + snps**2 *(gyyt*csth**2 + gzzt*snth**2 + 2*snth*csth*gyzt) & +2*snps*csps*(gxyt*csth + gxzt*snth) ggri(2,1,jk) = csps*snps & *(-gxxt+csth**2*gyyt + snth**2*gzzt + 2*csth*snth*gyzt) & +(csps**2 - snps**2)*(snth*gxzt + csth*gxyt) ggri(3,1,jk) = csth*snth*snps*(gzzt - gyyt) + (csth**2 - snth**2) & *snps*gyzt + csps*(csth*gxzt - snth*gxyt) ggri(1,2,jk) = ggri(2,1,jk) ggri(2,2,jk) = gxxt*snps**2 & + csps**2 *(gyyt*csth**2 + gzzt*snth**2 + 2*snth*csth*gyzt) & -2*snps*csps*(gxyt*csth + gxzt*snth) ggri(3,2,jk) = csth*snth*csps*(gzzt - gyyt) + (csth**2-snth**2) & *csps*gyzt + snps*(snth*gxyt - csth*gxzt) ggri(1,3,jk) = ggri(3,1,jk) ggri(2,3,jk) = ggri(3,2,jk) ggri(3,3,jk) = gzzt*csth**2 + gyyt*snth**2 - 2*csth*snth*gyzt du1tx = (dx0t*wwxx + dy0t*wwxy)/ddfu du1ty = (dx0t*wwxy + dy0t*wwyy)/ddfu du1tz = half*uj(j)*(dx0t**2*dwwxx + dy0t**2*dwwyy + 2*dx0t*dy0t*dwwxy)/ddfu du10(1,k,j) = du1tx*csps + snps*(du1ty*csth + du1tz*snth) du10(2,k,j) = -du1tx*snps + csps*(du1ty*csth + du1tz*snth) du10(3,k,j) = du1tz*csth - du1ty*snth pppx = x0t*rcixx + y0t*rcixy pppy = x0t*rcixy + y0t*rciyy denpp = pppx*gxt + pppy*gyt if (denpp/=zero) then ppx = -pppx*gzt/denpp ppy = -pppy*gzt/denpp else ppx = zero ppy = zero end if anzt = sqrt((one + gr2)/(one + ppx**2 + ppy**2)) anxt = ppx*anzt anyt = ppy*anzt anx = anxt*csps + snps*(anyt*csth + anzt*snth) any =-anxt*snps + csps*(anyt*csth + anzt*snth) anz = anzt*csth - anyt*snth an20 = one + gr2 an0 = sqrt(an20) xc0(1,k,j) = x0 xc0(2,k,j) = y0 xc0(3,k,j) = z0 ywrk0(1,jk) = x0 ywrk0(2,jk) = y0 ywrk0(3,jk) = z0 ywrk0(4,jk) = anx ywrk0(5,jk) = any ywrk0(6,jk) = anz select case(idst) case(1) ! integration variable: c*t denom = one case(2) ! integration variable: Sr denom = an20 case default ! idst=0 ! integration variable: s denom = an0 end select ypwrk0(1,jk) = anx/denom ypwrk0(2,jk) = any/denom ypwrk0(3,jk) = anz/denom ypwrk0(4,jk) = dgr2x/(2*denom) ypwrk0(5,jk) = dgr2y/(2*denom) ypwrk0(6,jk) = dgr2z/(2*denom) ddr = anx**2 + any**2 + anz**2 - an20 ddi = 2*(anxt*gxt + anyt*gyt + anzt*gzt) call print_output(0,jk,zero,one,xc0(:,k,j),-one,zero,(/zero,zero,zero/), & ak0,zero,zero,(/zero,zero,zero/),zero,zero,zero,zero,zero,zero, & 0,0,0,index_rt,ddr,ddi,zero,zero,(/zero,zero,zero/)) ! st=0, index_rt=1, B=0, N=0, psin=-1, Xg=0, Yg=0, gradXg=0 end do end subroutine ic_gb subroutine rkstep(sox,bres,xgcn,y,yp,dgr,ddgr,igrad) ! Runge-Kutta integrator use const_and_precisions, only : wp_ ! use gray_params, only : igrad use beamdata, only : h,hh,h6 implicit none real(wp_), intent(in) :: sox,bres,xgcn real(wp_), dimension(6), intent(inout) :: y real(wp_), dimension(6), intent(in) :: yp real(wp_), dimension(3), intent(in) :: dgr real(wp_), dimension(3,3), intent(in) :: ddgr integer, intent(in) :: igrad real(wp_), dimension(6) :: yy,fk1,fk2,fk3,fk4 real(wp_) :: gr2 real(wp_), dimension(3) :: dgr2 ! if(igrad.eq.1) then gr2 = dgr(1)**2 + dgr(2)**2 + dgr(3)**2 dgr2 = 2*(dgr(1)*ddgr(:,1) + dgr(2)*ddgr(:,2) + dgr(3)*ddgr(:,3)) ! end if fk1 = yp yy = y + fk1*hh call rhs(sox,bres,xgcn,yy,gr2,dgr2,dgr,ddgr,fk2,igrad) yy = y + fk2*hh call rhs(sox,bres,xgcn,yy,gr2,dgr2,dgr,ddgr,fk3,igrad) yy = y + fk3*h call rhs(sox,bres,xgcn,yy,gr2,dgr2,dgr,ddgr,fk4,igrad) y = y + h6*(fk1 + 2*fk2 + 2*fk3 + fk4) end subroutine rkstep subroutine rhs(sox,bres,xgcn,y,gr2,dgr2,dgr,ddgr,dery,igrad) ! Compute right-hand side terms of the ray equations (dery) ! used in R-K integrator use const_and_precisions, only : wp_ implicit none ! arguments real(wp_), dimension(6), intent(in) :: y real(wp_), intent(in) :: sox,bres,xgcn,gr2 real(wp_), dimension(3), intent(in) :: dgr2,dgr real(wp_), dimension(3,3), intent(in) :: ddgr real(wp_), dimension(6), intent(out) :: dery integer, intent(in) :: igrad ! local variables real(wp_) :: psinv,dens,btot,xg,yg,anpl,anpr,ajphi real(wp_) :: ddr,ddi,dersdst,derdnm real(wp_), dimension(3) :: xv,anv,bv,derxg,deryg real(wp_), dimension(3,3) :: derbv xv = y(1:3) call plas_deriv(xv,bres,xgcn,psinv,dens,btot,bv,derbv,xg,yg,derxg,deryg, & ajphi) anv = y(4:6) call disp_deriv(anv,sox,xg,yg,derxg,deryg,bv,derbv,gr2,dgr2,dgr,ddgr, & dery,anpl,anpr,ddr,ddi,dersdst,derdnm,igrad) end subroutine rhs subroutine ywppla_upd(xv,anv,dgr,ddgr,sox,bres,xgcn,dery,psinv,dens,btot, & bv,xg,yg,derxg,anpl,anpr,ddr,ddi,dersdst,derdnm,error,igrad) ! Compute right-hand side terms of the ray equations (dery) ! used after full R-K step and grad(S_I) update use errcodes, only : pnpl implicit none ! arguments real(wp_), dimension(3), intent(in) :: xv,anv real(wp_), dimension(3), intent(in) :: dgr real(wp_), dimension(3,3), intent(in) :: ddgr real(wp_), intent(in) :: sox,bres,xgcn real(wp_), dimension(6), intent(out) :: dery real(wp_), intent(out) :: psinv,dens,btot,xg,yg,anpl,anpr real(wp_), intent(out) :: ddr,ddi,dersdst,derdnm real(wp_), dimension(3), intent(out) :: bv integer, intent(out) :: error real(wp_), dimension(3), intent(out) :: derxg integer, intent(in) :: igrad ! local variables real(wp_) :: gr2,ajphi real(wp_), dimension(3) :: dgr2,deryg real(wp_), dimension(3,3) :: derbv real(wp_), parameter :: anplth1 = 0.99_wp_, anplth2 = 1.05_wp_ gr2 = dgr(1)**2 + dgr(2)**2 + dgr(3)**2 dgr2 = 2*(dgr(1)*ddgr(:,1) + dgr(2)*ddgr(:,2) + dgr(3)*ddgr(:,3)) call plas_deriv(xv,bres,xgcn,psinv,dens,btot,bv,derbv,xg,yg,derxg,deryg,ajphi) call disp_deriv(anv,sox,xg,yg,derxg,deryg,bv,derbv,gr2,dgr2,dgr,ddgr, & dery,anpl,anpr,ddr,ddi,dersdst,derdnm,igrad) error=0 if( abs(anpl) > anplth1) then if(abs(anpl) > anplth2) then error=ibset(error,pnpl+1) else error=ibset(error,pnpl) end if end if end subroutine ywppla_upd subroutine gradi_upd(ywrk,ak0,xc,du1,gri,ggri) use const_and_precisions, only : wp_,zero,half use beamdata, only : nray,nrayr,nrayth,twodr2 implicit none real(wp_), intent(in) :: ak0 real(wp_), dimension(6,nray), intent(in) :: ywrk real(wp_), dimension(3,nrayth,nrayr), intent(inout) :: xc,du1 real(wp_), dimension(3,nray), intent(out) :: gri real(wp_), dimension(3,3,nray), intent(out) :: ggri ! local variables real(wp_), dimension(3,nrayth,nrayr) :: xco,du1o integer :: jk,j,jm,jp,k,km,kp real(wp_) :: ux,uxx,uxy,uxz,uy,uyy,uyz,uz,uzz real(wp_) :: dfuu,dffiu,gx,gxx,gxy,gxz,gy,gyy,gyz,gz,gzz real(wp_), dimension(3) :: dxv1,dxv2,dxv3,dgu real(wp_), dimension(3,3) :: dgg,dff ! update position and du1 vectors xco = xc du1o = du1 jk = 1 do j=1,nrayr do k=1,nrayth if(j>1) jk=jk+1 xc(1:3,k,j)=ywrk(1:3,jk) end do end do ! compute grad u1 for central ray j = 1 jp = 2 do k=1,nrayth if(k == 1) then km = nrayth else km = k-1 end if if(k == nrayth) then kp = 1 else kp = k+1 end if dxv1 = xc(:,k ,jp) - xc(:,k ,j) dxv2 = xc(:,kp,jp) - xc(:,km,jp) dxv3 = xc(:,k ,j) - xco(:,k ,j) call solg0(dxv1,dxv2,dxv3,dgu) du1(:,k,j) = dgu end do gri(:,1) = zero ! compute grad u1 and grad(S_I) for all the other rays dfuu=twodr2/ak0 ! twodr2 = 2*dr**2 = 2*(rwmax/(nrayr-1))**2 jm=1 j=2 k=0 dffiu = dfuu do jk=2,nray k=k+1 if(k > nrayth) then jm = j j = j+1 k = 1 dffiu = dfuu*jm end if kp = k+1 km = k-1 if (k == 1) then km=nrayth else if (k == nrayth) then kp=1 end if dxv1 = xc(:,k ,j) - xc(:,k ,jm) dxv2 = xc(:,kp,j) - xc(:,km,j) dxv3 = xc(:,k ,j) - xco(:,k ,j) call solg0(dxv1,dxv2,dxv3,dgu) du1(:,k,j) = dgu gri(:,jk) = dgu(:)*dffiu end do ! compute derivatives of grad u and grad(S_I) for rays jk>1 ggri(:,:,1) = zero jm=1 j=2 k=0 dffiu = dfuu do jk=2,nray k=k+1 if(k > nrayth) then jm=j j=j+1 k=1 dffiu = dfuu*jm end if kp=k+1 km=k-1 if (k == 1) then km=nrayth else if (k == nrayth) then kp=1 end if dxv1 = xc(:,k ,j) - xc(:,k ,jm) dxv2 = xc(:,kp,j) - xc(:,km,j) dxv3 = xc(:,k ,j) - xco(:,k ,j) dff(:,1) = du1(:,k ,j) - du1(:,k ,jm) dff(:,2) = du1(:,kp,j) - du1(:,km,j) dff(:,3) = du1(:,k ,j) - du1o(:,k ,j) call solg3(dxv1,dxv2,dxv3,dff,dgg) ! derivatives of u ux = du1(1,k,j) uy = du1(2,k,j) uz = du1(3,k,j) uxx = dgg(1,1) uyy = dgg(2,2) uzz = dgg(3,3) uxy = (dgg(1,2) + dgg(2,1))*half uxz = (dgg(1,3) + dgg(3,1))*half uyz = (dgg(2,3) + dgg(3,2))*half ! derivatives of S_I and Grad(S_I) gx = ux*dffiu gy = uy*dffiu gz = uz*dffiu gxx = dfuu*ux*ux + dffiu*uxx gyy = dfuu*uy*uy + dffiu*uyy gzz = dfuu*uz*uz + dffiu*uzz gxy = dfuu*ux*uy + dffiu*uxy gxz = dfuu*ux*uz + dffiu*uxz gyz = dfuu*uy*uz + dffiu*uyz ggri(1,1,jk)=gxx ggri(2,1,jk)=gxy ggri(3,1,jk)=gxz ggri(1,2,jk)=gxy ggri(2,2,jk)=gyy ggri(3,2,jk)=gyz ggri(1,3,jk)=gxz ggri(2,3,jk)=gyz ggri(3,3,jk)=gzz end do end subroutine gradi_upd subroutine solg0(dxv1,dxv2,dxv3,dgg) ! solution of the linear system of 3 eqs : dgg . dxv = dff ! input vectors : dxv1, dxv2, dxv3, dff ! output vector : dgg ! dff=(1,0,0) use const_and_precisions, only : wp_ implicit none ! arguments real(wp_), dimension(3), intent(in) :: dxv1,dxv2,dxv3 real(wp_), dimension(3), intent(out) :: dgg ! local variables real(wp_) :: denom,aa1,aa2,aa3 aa1 = (dxv2(2)*dxv3(3) - dxv3(2)*dxv2(3)) aa2 = (dxv1(2)*dxv3(3) - dxv3(2)*dxv1(3)) aa3 = (dxv1(2)*dxv2(3) - dxv2(2)*dxv1(3)) denom = dxv1(1)*aa1 - dxv2(1)*aa2 + dxv3(1)*aa3 dgg(1) = aa1/denom dgg(2) = -(dxv2(1)*dxv3(3) - dxv3(1)*dxv2(3))/denom dgg(3) = (dxv2(1)*dxv3(2) - dxv3(1)*dxv2(2))/denom end subroutine solg0 subroutine solg3(dxv1,dxv2,dxv3,dff,dgg) ! rhs "matrix" dff, result in dgg use const_and_precisions, only : wp_ implicit none ! arguments real(wp_), dimension(3), intent(in) :: dxv1,dxv2,dxv3 real(wp_), dimension(3,3), intent(in) :: dff real(wp_), dimension(3,3), intent(out) :: dgg ! local variables real(wp_) denom,a11,a21,a31,a12,a22,a32,a13,a23,a33 a11 = (dxv2(2)*dxv3(3) - dxv3(2)*dxv2(3)) a21 = (dxv1(2)*dxv3(3) - dxv3(2)*dxv1(3)) a31 = (dxv1(2)*dxv2(3) - dxv2(2)*dxv1(3)) a12 = (dxv2(1)*dxv3(3) - dxv3(1)*dxv2(3)) a22 = (dxv1(1)*dxv3(3) - dxv3(1)*dxv1(3)) a32 = (dxv1(1)*dxv2(3) - dxv2(1)*dxv1(3)) a13 = (dxv2(1)*dxv3(2) - dxv3(1)*dxv2(2)) a23 = (dxv1(1)*dxv3(2) - dxv3(1)*dxv1(2)) a33 = (dxv1(1)*dxv2(2) - dxv2(1)*dxv1(2)) denom = dxv1(1)*a11 - dxv2(1)*a21 + dxv3(1)*a31 dgg(:,1) = ( dff(:,1)*a11 - dff(:,2)*a21 + dff(:,3)*a31)/denom dgg(:,2) = (-dff(:,1)*a12 + dff(:,2)*a22 - dff(:,3)*a32)/denom dgg(:,3) = ( dff(:,1)*a13 - dff(:,2)*a23 + dff(:,3)*a33)/denom end subroutine solg3 subroutine plas_deriv(xv,bres,xgcn,psinv,dens,btot,bv,derbv, & xg,yg,derxg,deryg,ajphi) use const_and_precisions, only : wp_,zero,ccj=>mu0inv use gray_params, only : iequil use equilibrium, only : psia,equinum_fpol,equinum_psi,equian,sgnbphi use coreprofiles, only : density implicit none ! arguments real(wp_), dimension(3), intent(in) :: xv real(wp_), intent(in) :: xgcn,bres real(wp_), intent(out) :: psinv,dens,btot,xg,yg real(wp_), dimension(3), intent(out) :: bv,derxg,deryg real(wp_), dimension(3,3), intent(out) :: derbv ! local variables integer :: jv real(wp_) :: xx,yy,zz real(wp_) :: b2tot,csphi,drrdx,drrdy,dphidx,dphidy,rr,rr2,rrm,snphi,zzm real(wp_), dimension(3) :: dbtot,bvc real(wp_), dimension(3,3) :: dbvcdc,dbvdc,dbv real(wp_) :: brr,bphi,bzz,ajphi,dxgdpsi real(wp_) :: dpsidr,dpsidz,ddpsidrr,ddpsidzz,ddpsidrz,fpolv,dfpv,ddenspsin xg = zero yg = 99._wp_ psinv = -1._wp_ dens = zero btot = zero ajphi = zero derxg = zero deryg = zero bv = zero derbv = zero if(iequil==0) return dbtot = zero dbv = zero dbvcdc = zero dbvcdc = zero dbvdc = zero xx = xv(1) yy = xv(2) zz = xv(3) ! cylindrical coordinates rr2 = xx**2 + yy**2 rr = sqrt(rr2) csphi = xx/rr snphi = yy/rr bv(1) = -snphi*sgnbphi bv(2) = csphi*sgnbphi ! convert from cm to meters zzm = 1.0e-2_wp_*zz rrm = 1.0e-2_wp_*rr if(iequil==1) then call equian(rrm,zzm,psinv,fpolv,dfpv,dpsidr,dpsidz, & ddpsidrr,ddpsidzz,ddpsidrz) else call equinum_psi(rrm,zzm,psinv,dpsidr,dpsidz,ddpsidrr,ddpsidzz,ddpsidrz) call equinum_fpol(psinv,fpolv,dfpv) end if ! compute yg and derivative if(psinv < zero) then bphi = fpolv/rrm btot = abs(bphi) yg = btot/bres return end if ! compute xg and derivative call density(psinv,dens,ddenspsin) xg = xgcn*dens dxgdpsi = xgcn*ddenspsin/psia ! B = f(psi)/R e_phi+ grad psi x e_phi/R bphi = fpolv/rrm brr =-dpsidz/rrm bzz = dpsidr/rrm ! bvc(i) = B_i in cylindrical coordinates bvc(1) = brr bvc(2) = bphi bvc(3) = bzz ! bv(i) = B_i in cartesian coordinates bv(1)=bvc(1)*csphi - bvc(2)*snphi bv(2)=bvc(1)*snphi + bvc(2)*csphi bv(3)=bvc(3) ! dbvcdc(iv,jv) = d Bcil(iv) / dxvcil(jv) dbvcdc(1,1) = -ddpsidrz/rrm - brr/rrm dbvcdc(2,1) = dfpv*dpsidr/rrm - bphi/rrm dbvcdc(3,1) = ddpsidrr/rrm - bzz/rrm dbvcdc(1,3) = -ddpsidzz/rrm dbvcdc(2,3) = dfpv*dpsidz/rrm dbvcdc(3,3) = ddpsidrz/rrm ! dbvdc(iv,jv) = d Bcart(iv) / dxvcil(jv) dbvdc(1,1) = dbvcdc(1,1)*csphi - dbvcdc(2,1)*snphi dbvdc(2,1) = dbvcdc(1,1)*snphi + dbvcdc(2,1)*csphi dbvdc(3,1) = dbvcdc(3,1) dbvdc(1,2) = -bv(2) dbvdc(2,2) = bv(1) dbvdc(3,2) = dbvcdc(3,2) dbvdc(1,3) = dbvcdc(1,3)*csphi - dbvcdc(2,3)*snphi dbvdc(2,3) = dbvcdc(1,3)*snphi + dbvcdc(2,3)*csphi dbvdc(3,3) = dbvcdc(3,3) drrdx = csphi drrdy = snphi dphidx = -snphi/rrm dphidy = csphi/rrm ! dbv(iv,jv) = d Bcart(iv) / dxvcart(jv) dbv(:,1) = drrdx*dbvdc(:,1) + dphidx*dbvdc(:,2) dbv(:,2) = drrdy*dbvdc(:,1) + dphidy*dbvdc(:,2) dbv(:,3) = dbvdc(:,3) ! B magnitude and derivatives b2tot = bv(1)**2 + bv(2)**2 + bv(3)**2 btot = sqrt(b2tot) dbtot = (bv(1)*dbv(1,:) + bv(2)*dbv(2,:) + bv(3)*dbv(3,:))/btot yg = btot/Bres ! convert spatial derivatives from dummy/m -> dummy/cm ! to be used in rhs ! bv(i) = B_i / B ; derbv(i,j) = d (B_i / B) /d x,y,z deryg = 1.0e-2_wp_*dbtot/Bres bv = bv/btot do jv=1,3 derbv(:,jv) = 1.0e-2_wp_*(dbv(:,jv) - bv(:)*dbtot(jv))/btot end do derxg(1) = 1.0e-2_wp_*drrdx*dpsidr*dxgdpsi derxg(2) = 1.0e-2_wp_*drrdy*dpsidr*dxgdpsi derxg(3) = 1.0e-2_wp_*dpsidz *dxgdpsi ! current density computation in Ampere/m^2, ccj==1/mu_0 ajphi = ccj*(dbvcdc(1,3) - dbvcdc(3,1)) ! ajr=ccj*(dbvcdc(3,2)/rrm-dbvcdc(2,3)) ! ajz=ccj*(bvc(2)/rrm+dbvcdc(2,1)-dbvcdc(1,2)) end subroutine plas_deriv subroutine disp_deriv(anv,sox,xg,yg,derxg,deryg,bv,derbv,gr2,dgr2,dgr,ddgr, & dery,anpl,anpr,ddr,ddi,dersdst,derdnm,igrad) use const_and_precisions, only : wp_,zero,one,half,two use gray_params, only : idst implicit none ! arguments real(wp_), intent(in) :: xg,yg,gr2,sox real(wp_), intent(out) :: anpl,anpr,ddr,ddi,derdnm,dersdst real(wp_), dimension(3), intent(in) :: anv,bv,derxg,deryg real(wp_), dimension(3), intent(in) :: dgr2,dgr real(wp_), dimension(3,3), intent(in) :: ddgr,derbv real(wp_), dimension(6), intent(out) :: dery integer, intent(in) :: igrad ! local variables integer :: iv real(wp_) :: yg2,anpl2,anpr2,del,dnl,duh,dan2sdnpl,an2,an2s real(wp_) :: dan2sdxg,dan2sdyg,ddelnpl2,ddelnpl2x,ddelnpl2y,denom,derdel real(wp_) :: derdom,dfdiadnpl,dfdiadxg,dfdiadyg,fdia,bdotgr !,vgm real(wp_), dimension(3) :: derdxv,danpldxv,derdnv,dbgr !,vgv an2 = anv(1)*anv(1) + anv(2)*anv(2) + anv(3)*anv(3) anpl = anv(1)*bv(1) + anv(2)*bv(2) + anv(3)*bv(3) anpl2 = anpl**2 dnl = one - anpl2 anpr2 = max(an2-anpl2,zero) anpr = sqrt(anpr2) yg2 = yg**2 an2s = one dan2sdxg = zero dan2sdyg = zero dan2sdnpl = zero del = zero fdia = zero dfdiadnpl = zero dfdiadxg = zero dfdiadyg = zero duh = one - xg - yg2 if(xg > zero) then del = sqrt(dnl**2 + 4.0_wp_*anpl2*(one - xg)/yg2) an2s = one - xg - half*xg*yg2*(one + anpl2 + sox*del)/duh dan2sdxg = - half*yg2*(one - yg2)*(one + anpl2 + sox*del)/duh**2 & + sox*xg*anpl2/(del*duh) - one dan2sdyg = - xg*yg*(one - xg)*(one + anpl2 + sox*del)/duh**2 & + two*sox*xg*(one - xg)*anpl2/(yg*del*duh) dan2sdnpl = - xg*yg2*anpl/duh & - sox*xg*anpl*(two*(one - xg) - yg2*dnl)/(del*duh) if(igrad > 0) then ddelnpl2 = two*(two*(one - xg)*(one + 3.0_wp_*anpl2**2) & - yg2*dnl**3)/yg2/del**3 fdia = - xg*yg2*(one + half*sox*ddelnpl2)/duh derdel = two*(one - xg)*anpl2*(one + 3.0_wp_*anpl2**2) & - dnl**2*(one + 3.0_wp_*anpl2)*yg2 derdel = 4.0_wp_*derdel/(yg*del)**5 ddelnpl2y = two*(one - xg)*derdel ddelnpl2x = yg*derdel dfdiadnpl = 24.0_wp_*sox*xg*(one - xg)*anpl*(one - anpl2**2) & /(yg2*del**5) dfdiadxg = - yg2*(one - yg2)/duh**2 - sox*yg2*((one - yg2) & *ddelnpl2 + xg*duh*ddelnpl2x)/(two*duh**2) dfdiadyg = - two*yg*xg*(one - xg)/duh**2 & - sox*xg*yg*(two*(one - xg)*ddelnpl2 & + yg*duh*ddelnpl2y)/(two*duh**2) end if end if bdotgr = bv(1)*dgr(1) + bv(2)*dgr(2) + bv(3)*dgr(3) do iv=1,3 dbgr(iv) = dgr(1)*derbv(1,iv) + bv(1)*ddgr(1,iv) & + dgr(2)*derbv(2,iv) + bv(2)*ddgr(2,iv) & + dgr(3)*derbv(3,iv) + bv(3)*ddgr(3,iv) danpldxv(iv) = anv(1)*derbv(1,iv) + anv(2)*derbv(2,iv) + anv(3)*derbv(3,iv) end do derdxv = -(derxg*dan2sdxg + deryg*dan2sdyg + danpldxv*dan2sdnpl + & igrad*dgr2) & + fdia*bdotgr*dbgr + half*bdotgr**2 & *(derxg*dfdiadxg + deryg*dfdiadyg + danpldxv*dfdiadnpl) derdnv = two*anv + (half*bdotgr**2*dfdiadnpl - dan2sdnpl)*bv derdnm = sqrt(derdnv(1)**2 + derdnv(2)**2 + derdnv(3)**2) derdom = -two*an2 + two*xg*dan2sdxg + yg*dan2sdyg + anpl*dan2sdnpl & + two*igrad*gr2 - bdotgr**2*(fdia + xg*dfdiadxg & + half*yg*dfdiadyg & + half*anpl*dfdiadnpl) if (idst == 0) then ! integration variable: s denom = derdnm else if (idst == 1) then ! integration variable: c*t denom = -derdom else ! integration variable: Sr denom = anv(1)*derdnv(1) + anv(2)*derdnv(2) + anv(3)*derdnv(3) end if ! coefficient for integration in s ! ds/dst, where st is the integration variable dersdst = derdnm/denom ! rhs vector dery(1:3) = derdnv(:)/denom dery(4:6) = -derdxv(:)/denom ! vgv : ~ group velocity ! vgm=0 ! do iv=1,3 ! vgv(iv)=-derdnv(iv)/derdom ! vgm=vgm+vgv(iv)**2 ! end do ! vgm=sqrt(vgm) ! ddr : dispersion relation (real part) ! ddi : dispersion relation (imaginary part) ddr = an2 - an2s - igrad*(gr2 - half*bdotgr**2*fdia) ddi = derdnv(1)*dgr(1) + derdnv(2)*dgr(2) + derdnv(3)*dgr(3) end subroutine disp_deriv subroutine alpha_effj(psinv,xg,yg,dens,tekev,ak0,bres,derdnm,anpl,anpr, & sox,anprre,anprim,alpha,didp,nhmin,nhmax,iokhawa,error) use const_and_precisions, only : wp_,zero,pi,mc2=>mc2_ use gray_params, only : iwarm,ilarm,ieccd,imx use coreprofiles, only : fzeff use equilibrium, only : sgnbphi use dispersion, only : harmnumber, warmdisp use eccd, only : setcdcoeff,eccdeff,fjch0,fjch,fjncl use errcodes, only : palph use magsurf_data, only : fluxval implicit none ! arguments real(wp_),intent(in) ::psinv,ak0,bres real(wp_),intent(in) :: xg,yg,tekev,dens,anpl,anpr,derdnm,sox real(wp_),intent(out) :: anprre,anprim,alpha,didp integer, intent(out) :: nhmin,nhmax,iokhawa integer, intent(out) :: error ! local variables real(wp_) :: rbavi,rrii,rhop integer :: lrm,ithn,ierrcd real(wp_) :: amu,ratiovgr,rbn,rbx real(wp_) :: zeff,cst2,bmxi,bmni,fci real(wp_), dimension(:), pointer :: eccdpar=>null() real(wp_) :: effjcd,effjcdav,akim,btot complex(wp_) :: ex,ey,ez alpha=zero anprim=zero anprre=zero didp=zero nhmin=0 nhmax=0 iokhawa=0 error=0 if(tekev>zero) then ! absorption computation amu=mc2/tekev call harmnumber(yg,amu,anpl,nhmin,nhmax,iwarm) if(nhmin.gt.0) then lrm=max(ilarm,nhmax) call warmdisp(xg,yg,amu,anpl,anpr,sox,lrm,error,anprre,anprim, & iwarm,imx,ex,ey,ez) akim=ak0*anprim ratiovgr=2.0_wp_*anpr/derdnm!*vgm alpha=2.0_wp_*akim*ratiovgr if(alpha: effjcdav [A m/W ] if(ieccd>0) then ! current drive computation zeff=fzeff(psinv) ithn=1 if(lrm>nhmin) ithn=2 rhop=sqrt(psinv) call fluxval(rhop,rri=rrii,rbav=rbavi,bmn=bmni,bmx=bmxi,fc=fci) btot=yg*bres rbn=btot/bmni rbx=btot/bmxi select case(ieccd) case(1) ! cohen model call setcdcoeff(zeff,rbn,rbx,cst2,eccdpar) call eccdeff(yg,anpl,anprre,dens,amu,ex,ey,ez,nhmin,nhmax, & ithn,cst2,fjch,eccdpar,effjcd,iokhawa,ierrcd) case(2) ! no trapping call setcdcoeff(zeff,cst2,eccdpar) call eccdeff(yg,anpl,anprre,dens,amu,ex,ey,ez,nhmin,nhmax, & ithn,cst2,fjch0,eccdpar,effjcd,iokhawa,ierrcd) case default ! neoclassical model call setcdcoeff(zeff,rbx,fci,amu,rhop,cst2,eccdpar) call eccdeff(yg,anpl,anprre,dens,amu,ex,ey,ez,nhmin,nhmax, & ithn,cst2,fjncl,eccdpar,effjcd,iokhawa,ierrcd) end select error=error+ierrcd if(associated(eccdpar)) deallocate(eccdpar) effjcdav=rbavi*effjcd didp=sgnbphi*effjcdav/(2.0_wp_*pi*rrii) end if end if end if end subroutine alpha_effj subroutine set_pol(ywrk0,bres,sox,psipol0,chipol0,ext0,eyt0) use const_and_precisions, only : wp_,degree,zero,one,half,im use beamdata, only : nray,nrayth use equilibrium, only : bfield use gray_params, only : ipol use polarization, only : pol_limit, polellipse, stokes_ce, stokes_ell implicit none ! arguments real(wp_), dimension(6,nray), intent(in) :: ywrk0 real(wp_), intent(in) :: sox,bres real(wp_), intent(inout) :: psipol0, chipol0 complex(wp_), dimension(nray), intent(out) :: ext0, eyt0 ! local variables integer :: j,k,jk real(wp_), dimension(3) :: xmv, anv, bv real(wp_) :: rm, csphi, snphi, bphi, br, bz, qq, uu, vv, deltapol j=1 k=0 do jk=1,nray k=k+1 if(jk == 2 .or. k > nrayth) then j=j+1 k=1 end if if(ipol == 0) then xmv=ywrk0(1:3,jk)*0.01_wp_ ! convert from cm to m anv=ywrk0(4:6,jk) rm=sqrt(xmv(1)**2+xmv(2)**2) csphi=xmv(1)/rm snphi=xmv(2)/rm call bfield(rm,xmv(3),bphi,br,bz) ! bv(i) = B_i in cartesian coordinates bv(1)=br*csphi-bphi*snphi bv(2)=br*snphi+bphi*csphi bv(3)=bz call pol_limit(anv,bv,bres,sox,ext0(jk),eyt0(jk)) if (jk == 1) then call stokes_ce(ext0(jk),eyt0(jk),qq,uu,vv) call polellipse(qq,uu,vv,psipol0,chipol0) psipol0=psipol0/degree ! convert from rad to degree chipol0=chipol0/degree end if else call stokes_ell(chipol0*degree,psipol0*degree,qq,uu,vv) if(qq**2 < one) then deltapol=asin(vv/sqrt(one - qq**2)) ext0(jk)= sqrt(half*(one + qq)) eyt0(jk)= sqrt(half*(one - qq))*exp(-im*deltapol) else ext0(jk)= one eyt0(jk)= zero end if endif end do end subroutine set_pol subroutine cniteq(rqgrid,zqgrid,matr2dgrid,nr,nz,h,ncon,npts,icount,rcon,zcon) use const_and_precisions, only : wp_ ! v2.01 12/07/95 -- written by d v bartlett, jet joint undertaking. ! (based on an older code) use const_and_precisions, only : wp_ implicit none ! arguments integer, intent(in) :: nr,nz real(wp_), dimension(nr), intent(in) :: rqgrid real(wp_), dimension(nz), intent(in) :: zqgrid real(wp_), dimension(nr,nz), intent(in) :: matr2dgrid real(wp_), intent(in) :: h integer, intent(inout) :: ncon, icount integer, dimension(ncon), intent(out) :: npts real(wp_), dimension(icount), intent(out) :: rcon,zcon ! local variables integer :: i,j,k,l,nrqmax,iclast,mpl,ix,jx,mxr,n1,jm,jfor,lda,ldb integer :: jabs,jnb,kx,ikx,itm,inext,in integer, dimension(3,2) :: ja integer, dimension(icount/2-1) :: lx real(wp_) :: drgrd,dzgrd,ah,adn,px,x,y real(wp_), dimension(nr*nz) :: a logical :: flag1 px = 0.5_wp_ a = reshape(matr2dgrid,(/nr*nz/)) rcon = 0.0_wp_ zcon = 0.0_wp_ nrqmax = nr drgrd = rqgrid(2) - rqgrid(1) dzgrd = zqgrid(2) - zqgrid(1) ncon = 0 npts = 0 iclast = 0 icount = 0 mpl = 0 ix = 0 mxr = nrqmax * (nz - 1) n1 = nr - 1 do jx=2,n1 do jm=jx,mxr,nrqmax j = jm + nrqmax ah=a(j)-h if (ah <= 0.0_wp_ .and. a(jm) > h .or. & ah > 0.0_wp_ .and. a(jm) <= h) then ix=ix+1 lx(ix)=-j end if if (ah <= 0.0_wp_ .and. a(j-1) > h .or. & ah > 0.0_wp_ .and. a(j-1) <= h) then ix=ix+1 lx(ix)=j end if end do end do do jm=nr,mxr,nrqmax j = jm + nrqmax ah=a(j)-h if (ah <= 0.0_wp_ .and. a(j-1) > h .or. & ah > 0.0_wp_ .and. a(j-1) <= h) then ix=ix+1 lx(ix)=j end if if (ah <= 0.0_wp_ .and. a(jm) > h .or. & ah > 0.0_wp_ .and. a(jm) <= h) then ix=ix+1 lx(ix)=-j end if end do do jm=1,mxr,nrqmax j = jm + nrqmax if (a(j) <= h .and. a(jm) > h .or. & a(j) > h .and. a(jm) <= h) then ix=ix+1 lx(ix) =-j end if end do do j=2,nr if (a(j) <= h .and. a(j-1) > h .or. & a(j) > h .and. a(j-1) <= h) then ix=ix+1 lx(ix)=j end if end do if(ix<=0) return bb: do in=ix jx=lx(in) jfor=0 lda=1 ldb=2 do if(jx<0) then jabs=-jx jnb = jabs - nrqmax else jabs=jx jnb=jabs-1 end if adn=a(jabs)-a(jnb) if(adn/=0) px=(a(jabs)-h)/adn kx = (jabs - 1) / nrqmax ikx = jabs - nrqmax * kx - 1 if(jx<0) then x = drgrd * ikx y = dzgrd * (kx - px) else x = drgrd * (ikx - px) y = dzgrd * kx end if icount = icount + 1 rcon(icount) = x + rqgrid(1) zcon(icount) = y + zqgrid(1) mpl= icount itm = 1 ja(1,1) = jabs + nrqmax j=1 if(jx<=0) then ja(1,1) = -jabs-1 j=2 end if ja(2,1) = -ja(1,1) ja(3,1) = -jx + 1 - nrqmax ja(3,2) = -jx ja(j,2) = jabs - nrqmax k= 3-j ja(k,2) = 1-jabs if (kx<=0 .or. ikx<=0) then lda=1 ldb=lda else if (ikx + 1 - nr >= 0 .and. jx <= 0) then lda=2 ldb=lda else if(jfor/=0) then lda=2 do i=1,3 if(jfor==ja(i,2)) then lda=1 exit end if end do ldb=lda end if flag1=.false. aa: do k=1,3 do l=lda,ldb do i=1,ix if(lx(i)==ja(k,l)) then itm=itm+1 inext= i if(jfor/=0) exit aa if(itm .gt. 3) then flag1=.true. exit aa end if end if end do end do end do aa if(.not.flag1) then lx(in)=0 if(itm .eq. 1) exit end if jfor=jx jx=lx(inext) in = inext end do do if(lx(ix)/=0) then if(mpl>=4) then ncon = ncon + 1 npts(ncon) = icount - iclast iclast = icount end if exit end if ix= ix-1 if(ix<=0) exit bb end do end do bb if(mpl >= 4) then ncon = ncon + 1 npts(ncon) = icount - iclast iclast = icount end if end subroutine cniteq subroutine print_headers(strheader) use units, only : uprj0,uwbm,udisp,ucenr,uoutr,upec,usumm implicit none ! subroutine arguments character(len=*), dimension(:), intent(in) :: strheader ! local variables integer :: i,l l=size(strheader) do i=1,l write(uprj0,'(1x,a)') strheader(i) write(uprj0+1,'(1x,a)') strheader(i) write(uwbm,'(1x,a)') strheader(i) write(udisp,'(1x,a)') strheader(i) write(ucenr,'(1x,a)') strheader(i) write(uoutr,'(1x,a)') strheader(i) write(upec,'(1x,a)') strheader(i) write(usumm,'(1x,a)') strheader(i) end do write(uprj0,'(1x,a)') '#sst j k xt yt zt rt' write(uprj0+1,'(1x,a)') '#sst j k xt yt zt rt' write(uwbm,'(1x,a)') '#sst w1 w2' write(udisp,'(1x,a)') '#sst Dr_Nr Di_Nr' write(ucenr,'(1x,a)') '#sst R z phi psin rhot ne Te Btot Bx By Bz Nperp Npl '// & 'Nx Ny Nz ki alpha tau Pt dIds nhmin nhmax iohkw index_rt ddr Xg Yg dXgdx dXgdy dXgdz' write(uoutr,'(1x,a)') '#i k sst x y R z psin tau Npl alpha index_rt' write(upec,'(1x,a)') '#rhop rhot Jphi Jcdb dPdV Icdins Pins index_rt' write(usumm,'(1x,a)') '#Icd Pa Jphip dPdVp rhotj rhotjava rhotp rhotpav ' // & 'drhotjava drhotpav ratjamx ratjbmx stmx psipol chipol index_rt ' // & 'Jphimx dPdVmx drhotj drhotp P0 cplO cplX' end subroutine print_headers subroutine print_prof use const_and_precisions, only : wp_ use equilibrium, only : psinr,nq,fq,frhotor,tor_curr_psi use coreprofiles, only : density, temp use units, only : uprfin implicit none ! local constants real(wp_), parameter :: eps=1.e-4_wp_ ! local variables integer :: i real(wp_) :: psin,rhot,ajphi,dens,ddens write(uprfin,*) ' #psi rhot ne Te q Jphi' do i=1,nq psin=psinr(i) rhot=frhotor(sqrt(psin)) call density(psin,dens,ddens) call tor_curr_psi(max(eps,psin),ajphi) write(uprfin,"(12(1x,e12.5))") psin,rhot,dens,temp(psin),fq(psin),ajphi*1.e-6_wp_ end do end subroutine print_prof subroutine print_bres(bres) use const_and_precisions, only : wp_ use equilibrium, only : rmnm, rmxm, zmnm, zmxm, bfield, nq use units, only : ubres implicit none ! arguments real(wp_) :: bres ! local constants integer, parameter :: icmx=2002 ! local variables integer :: j,k,n,nconts,nctot integer, dimension(10) :: ncpts real(wp_) :: dr,dz,btmx,btmn,zzk,rrj,bbphi,bbr,bbz,bbb real(wp_), dimension(icmx) :: rrcb,zzcb real(wp_) :: rv(nq), zv(nq) real(wp_), dimension(nq,nq) :: btotal dr = (rmxm-rmnm)/(nq-1) dz = (zmxm-zmnm)/(nq-1) do j=1,nq rv(j) = rmnm + dr*(j-1) zv(j) = zmnm + dz*(j-1) end do ! Btotal on psi grid btmx=-1.0e30_wp_ btmn=1.0e30_wp_ do k=1,nq zzk=zv(k) do j=1,nq rrj=rv(j) call bfield(rrj,zzk,bbphi,bbr,bbz) btotal(j,k)=sqrt(bbr**2+bbz**2+bbphi**2) if(btotal(j,k).ge.btmx) btmx=btotal(j,k) if(btotal(j,k).le.btmn) btmn=btotal(j,k) enddo enddo ! compute Btot=Bres/n with n=1,5 write(ubres,*)'#i Btot R z' do n=1,5 bbb=bres/dble(n) if (bbb.ge.btmn.and.bbb.le.btmx) then nconts=size(ncpts) nctot=size(rrcb) call cniteq(rv,zv,btotal,nq,nq,bbb,nconts,ncpts,nctot,rrcb,zzcb) do j=1,nctot write(ubres,'(i6,12(1x,e12.5))') j,bbb,rrcb(j),zzcb(j) end do end if write(ubres,*) end do end subroutine print_bres subroutine print_maps(bres,xgcn,r0,anpl0) use const_and_precisions, only : wp_ use gray_params, only : iequil use equilibrium, only : rmnm, rmxm, zmnm, zmxm, equian, equinum_psi, & equinum_fpol, nq use coreprofiles, only : density, temp use units, only : umaps implicit none ! arguments real(wp_), intent(in) :: bres,xgcn,r0,anpl0 ! local variables integer :: j,k real(wp_) :: dr,dz,zk,rj,bphi,br,bz,btot,psin,ne,dne,te,xg,yg,anpl real(wp_), dimension(nq) :: r, z dr = (rmxm-rmnm)/(nq-1) dz = (zmxm-zmnm)/(nq-1) do j=1,nq r(j) = rmnm + dr*(j-1) z(j) = zmnm + dz*(j-1) end do write(umaps,*)'#R z psin Br Bphi Bz Btot ne Te X Y Npl' do j=1,nq rj=r(j) anpl=anpl0*r0/rj do k=1,nq zk=z(k) if (iequil < 2) then call equian(rj,zk,psinv=psin,fpolv=bphi,dpsidr=bz,dpsidz=br) else call equinum_psi(rj,zk,psinv=psin,dpsidr=bz,dpsidz=br) call equinum_fpol(psin,fpolv=bphi) end if br = -br/rj bphi = bphi/rj bz = bz/rj btot = sqrt(br**2+bphi**2+bz**2) yg = btot/bres te = temp(psin) call density(psin,ne,dne) xg = xgcn*ne write(umaps,'(12(x,e12.5))') rj,zk,psin,br,bphi,bz,btot,ne,te,xg,yg,anpl enddo write(umaps,*) enddo end subroutine print_maps subroutine print_surfq(qval) use equilibrium, only : psinr, nq, fq, frhotor, & rmaxis, zmaxis, zbsup, zbinf use magsurf_data, only : contours_psi, npoints, print_contour use utils, only : locate, intlin use logger, only : log_info implicit none ! subroutine arguments real(wp_), dimension(:), intent(in) :: qval ! local variables integer :: i1,i real(wp_) :: rup,zup,rlw,zlw,rhot,psival real(wp_), dimension(npoints) :: rcn,zcn real(wp_), dimension(nq) :: qpsi character(256) :: msg ! for log messages formatting ! build q profile on psin grid do i=1,nq qpsi(i) = fq(psinr(i)) end do ! locate ψ surface for q=qval call log_info('constant ψ surfaces for:', & mod='gray_core', proc='print_surfq') do i=1,size(qval) ! FIXME: check for non monotonous q profile call locate(abs(qpsi),nq,qval(i),i1) if (i1>0.and.i1