module utils use const_and_precisions, only : wp_ implicit none contains function locatef(a,n,x) result(j) ! Given an array a(n), and a value x, with a(n) monotonic, either ! increasing or decreasing, returns a value j such that ! a(j) < x <= a(j+1) for a increasing, and such that ! a(j+1) < x <= a(j) for a decreasing. ! j=0 or j=n indicate that x is out of range (Numerical Recipes) implicit none integer, intent(in) :: n real(wp_), dimension(n), intent(in) :: a real(wp_), intent(in) :: x integer :: j integer :: jl,ju,jm logical :: incr jl=0 ju=n+1 incr=a(n)>a(1) do while ((ju-jl)>1) jm=(ju+jl)/2 if(incr.eqv.(x>a(jm))) then jl=jm else ju=jm endif end do j=jl end function locatef subroutine locate(xx,n,x,j) implicit none integer, intent(in) :: n real(wp_), intent(in) :: xx(n), x integer, intent(out) :: j integer :: jl,ju,jm logical :: incr ! ! Given an array xx(n), and a value x ! returns a value j such that xx(j) < x < xx(j+1) ! xx(n) must be monotonic, either increasing or decreasing. ! j=0 or j=n indicate that x is out of range (Numerical Recipes) ! jl=0 ju=n+1 incr=xx(n)>xx(1) do while ((ju-jl)>1) jm=(ju+jl)/2 if(incr .eqv. (x>xx(jm))) then jl=jm else ju=jm endif end do j=jl end subroutine locate subroutine locatex(xx,n,n1,n2,x,j) implicit none integer, intent(in) :: n,n1,n2 real(wp_), intent(in) :: xx(n), x integer, intent(out) :: j integer :: jl,ju,jm ! ! Given an array xx(n), and a value x ! returns a value j such that xx(j) < x < xx(j+1) ! xx(n) must be monotonic, either increasing or decreasing. ! j=n1-1or j=n2+1 indicate that x is out of range ! modified from subr. locate (Numerical Recipes) ! jl=n1-1 ju=n2+1 do while ((ju-jl)>1) jm=(ju+jl)/2 if((xx(n2)>xx(n1)) .eqv. (x>xx(jm))) then jl=jm else ju=jm endif end do j=jl end subroutine locatex subroutine locate_unord(array, value, locs, n, nlocs) ! Given an `array` of size `n` and a `value`, finds at most ! `n` locations `locs` such that `value` is between ! `array(locs(i))` and `array(locs(i+i))`, in whichever order. implicit none ! subroutine arguments real(wp_), intent(in) :: array(:) real(wp_), intent(in) :: value integer, intent(inout) :: locs(n) integer, intent(in) :: n integer, intent(out) :: nlocs ! local variables integer :: i logical :: larger_than_last nlocs = 0 if (size(array) < 2) return larger_than_last = value > array(1) do i = 2, size(array) ! Note: the condition is equivalent to ! (array(i-1) < value < array(i)) ! .or. (array(i) < value < array(i-1)) if (array(i) < value .neqv. larger_than_last) then larger_than_last = value > array(i) nlocs = nlocs + 1 if (nlocs <= n) locs(nlocs) = i - 1 end if end do end subroutine locate_unord function intlinf(x1,y1,x2,y2,x) result(y) !linear interpolation !must be x1 != x2 use const_and_precisions, only : one implicit none real(wp_),intent(in) :: x1,y1,x2,y2,x real(wp_) :: y real(wp_) :: a a=(x2-x)/(x2-x1) y=a*y1+(one-a)*y2 end function intlinf subroutine intlin(x1,y1,x2,y2,x,y) implicit none real(wp_), intent(in) :: x1,y1,x2,y2,x real(wp_), intent(out) :: y real(wp_) :: dx,aa,bb ! ! linear interpolation ! (x1,y1) < (x,y) < (x2,y2) ! dx=x2-x1 aa=(x2-x)/dx bb=1.0_wp_-aa y=aa*y1+bb*y2 end subroutine intlin subroutine vmax(x,n,xmax,imx) implicit none integer, intent(in) :: n real(wp_), intent(in) :: x(n) real(wp_), intent(out) :: xmax integer, intent(out) :: imx integer :: i if (n<1) then imx=0 return end if imx=1 xmax=x(1) do i=2,n if(x(i)>xmax) then xmax=x(i) imx=i end if end do end subroutine vmax subroutine vmin(x,n,xmin,imn) implicit none integer, intent(in) :: n real(wp_), intent(in) :: x(n) real(wp_), intent(out) :: xmin integer, intent(out) :: imn integer :: i if (n<1) then imn=0 return end if imn=1 xmin=x(1) do i=2,n if(x(i)xmax) then xmax=x(i) imx=i end if end do end subroutine vmaxmini subroutine vmaxmin(x,n,xmin,xmax) implicit none integer, intent(in) :: n real(wp_), intent(in) :: x(n) real(wp_), intent(out) :: xmin, xmax integer :: i if (n<1) then return end if xmin=x(1) xmax=x(1) do i=2,n if(x(i)xmax) then xmax=x(i) end if end do end subroutine vmaxmin subroutine order(p,q) ! returns p,q in ascending order implicit none real(wp_), intent(inout) :: p,q real(wp_) :: temp if (p>q) then temp=p p=q q=temp end if end subroutine order subroutine bubble(a,n) ! bubble sorting of array a implicit none integer, intent(in) :: n real(wp_), dimension(n), intent(inout) :: a integer :: i, j do i=1,n do j=n,i+1,-1 call order(a(j-1), a(j)) end do end do end subroutine bubble subroutine range2rect(xmin, xmax, ymin, ymax, x, y) ! Given two ranges [xmin, xmax], [ymin, ymax] builds ! the x and y vertices of the following rectangle: ! ! (xmin, ymax)╔═════╗(xmax, ymax) ! ║4 3║ ! ║ ║ ! ║1 2║ ! (xmin, ymin)╚═════╝(xmin, ymax) ! implicit none ! subroutine arguments real(wp_), intent(in) :: xmin, xmax, ymin, ymax real(wp_), intent(out), dimension(5) :: x, y x = [xmin, xmax, xmax, xmin, xmin] y = [ymin, ymin, ymax, ymax, ymin] end subroutine range2rect function inside(vertx, verty, x0, y0) ! Tests whether the point (`x0`, `y0`) lies inside the ! simple polygon of vertices `vertx`, `verty`. implicit none ! subroutine arguments real(wp_), dimension(:), intent(in) :: vertx, verty real(wp_), intent(in) :: x0, y0 logical :: inside ! local variables integer :: seg(size(vertx)) real(wp_) :: x, vertx_(size(vertx)+1), verty_(size(vertx)+1) integer :: i, nsegs, n ! Ensure the first and last point are the same n = size(vertx) vertx_(1:n) = vertx(1:n) verty_(1:n) = verty(1:n) vertx_(n+1) = vertx(1) verty_(n+1) = verty(1) inside = .false. ! Find the `nsegs` segments that intersect the horizontal ! line y=y0, i.e. `verty(seg(i)) < y < verty(seg(i)+1)` call locate_unord(verty_, y0, seg, n, nsegs) ! No intersections, it must be outside (above or below) if (nsegs == 0) return ! Count the number of intersections that lie to the left ! (equivalently, to the right) of the point. An even number ! means that the point is outside the polygon. do i = 1, nsegs ! coordinate of the intersection between segment and y=y0 x = intlinf(verty_(seg(i)), vertx_(seg(i)), & verty_(seg(i)+1), vertx_(seg(i)+1), y0) if (x < x0) inside = .not. inside end do end function inside function get_free_unit(unit) result(i) ! Returns `unit` back or the first free unit ! number `i` if `unit` is absent. ! When no unit is available, returns -1. implicit none ! function arguments integer :: i integer, intent(in), optional :: unit ! local variables integer, parameter :: max_allowed = 999 integer :: error logical :: ex, op if (present(unit)) then i = unit return end if do i=0,max_allowed inquire(unit=i, exist=ex, opened=op, iostat=error) ! if unit i exists and is free if (error == 0 .and. ex .and. .not. op) return end do i = -1 end function get_free_unit function dirname(filepath) result(directory) ! Get the parent `directory` of `filepath` ! function arguments character(*), intent(in) :: filepath character(:), allocatable :: directory ! local variables character(255) :: cwd integer :: last_sep last_sep = scan(filepath, '/', back=.true.) directory = filepath(1:last_sep) ! append the cwd to relative paths if (isrelative(filepath)) then call getcwd(cwd) directory = trim(cwd) // '/' // directory end if end function dirname function isrelative(filepath) ! Check if `filepath` is a relative or an absolute path ! function arguments character(*), intent(in) :: filepath logical :: isrelative isrelative = (filepath(1:1) /= '/') end function isrelative end module utils