module eierf use const_and_precisions, only : wp_, zero, one implicit none real(wp_), parameter, private :: half=0.5_wp_, two=2.0_wp_, three=3.0_wp_, & four=4.0_wp_, six=6.0_wp_, twelve=12._wp_, sixten=16.0_wp_, & two4=24.0_wp_, fourty=40.0_wp_ contains ! ====================================================================== ! nist guide to available math software. ! fullsource for module ei from package specfun. ! retrieved from netlib on fri mar 26 05:52:39 1999. ! ====================================================================== subroutine calcei(arg,result,intt) !---------------------------------------------------------------------- ! ! this fortran 77 packet computes the exponential integrals ei(x), ! e1(x), and exp(-x)*ei(x) for real arguments x where ! ! integral (from t=-infinity to t=x) (exp(t)/t), x > 0, ! ei(x) = ! -integral (from t=-x to t=infinity) (exp(t)/t), x < 0, ! ! and where the first integral is a principal value integral. ! the packet contains three function type subprograms: ei, eone, ! and expei; and one subroutine type subprogram: calcei. the ! calling statements for the primary entries are ! ! y = ei(x), where x /= 0, ! ! y = eone(x), where x > 0, ! and ! y = expei(x), where x /= 0, ! ! and where the entry points correspond to the functions ei(x), ! e1(x), and exp(-x)*ei(x), respectively. the routine calcei ! is intended for internal packet use only, all computations within ! the packet being concentrated in this routine. the function ! subprograms invoke calcei with the fortran statement ! call calcei(arg,result,intt) ! where the parameter usage is as follows ! ! function parameters for calcei ! call arg result intt ! ! ei(x) x /= 0 ei(x) 1 ! eone(x) x > 0 -ei(-x) 2 ! expei(x) x /= 0 exp(-x)*ei(x) 3 !---------------------------------------------------------------------- implicit none integer, intent(in) :: intt real(wp_), intent(in) :: arg real(wp_), intent(out) :: result integer :: i real(wp_) :: ei,frac,sump,sumq,t,w,x,xmx0,y,ysq real(wp_), dimension(10) :: px,qx !---------------------------------------------------------------------- ! mathematical constants ! exp40 = exp(40) ! x0 = zero of ei ! x01/x11 + x02 = zero of ei to extra precision !---------------------------------------------------------------------- real(wp_), parameter :: p037=0.037_wp_, & exp40=2.3538526683701998541e17_wp_, x01=381.5_wp_, x11=1024.0_wp_, & x02=-5.1182968633365538008e-5_wp_, x0=3.7250741078136663466e-1_wp_ !---------------------------------------------------------------------- ! machine-dependent constants !---------------------------------------------------------------------- real(wp_), parameter :: xinf=1.79e+308_wp_,xmax=716.351_wp_,xbig=701.84_wp_ !---------------------------------------------------------------------- ! coefficients for -1.0 <= x < 0.0 !---------------------------------------------------------------------- real(wp_), dimension(7), parameter :: & a=(/1.1669552669734461083368e2_wp_, 2.1500672908092918123209e3_wp_, & 1.5924175980637303639884e4_wp_, 8.9904972007457256553251e4_wp_, & 1.5026059476436982420737e5_wp_,-1.4815102102575750838086e5_wp_, & 5.0196785185439843791020_wp_/) real(wp_), dimension(6), parameter :: & b=(/4.0205465640027706061433e1_wp_, 7.5043163907103936624165e2_wp_, & 8.1258035174768735759855e3_wp_, 5.2440529172056355429883e4_wp_, & 1.8434070063353677359298e5_wp_, 2.5666493484897117319268e5_wp_/) !---------------------------------------------------------------------- ! coefficients for -4.0 <= x < -1.0 !---------------------------------------------------------------------- real(wp_), dimension(9), parameter :: & c=(/3.828573121022477169108e-1_wp_, 1.107326627786831743809e+1_wp_, & 7.246689782858597021199e+1_wp_, 1.700632978311516129328e+2_wp_, & 1.698106763764238382705e+2_wp_, 7.633628843705946890896e+1_wp_, & 1.487967702840464066613e+1_wp_, 9.999989642347613068437e-1_wp_, & 1.737331760720576030932e-8_wp_/), & d=(/8.258160008564488034698e-2_wp_, 4.344836335509282083360e+0_wp_, & 4.662179610356861756812e+1_wp_, 1.775728186717289799677e+2_wp_, & 2.953136335677908517423e+2_wp_, 2.342573504717625153053e+2_wp_, & 9.021658450529372642314e+1_wp_, 1.587964570758947927903e+1_wp_, & 1.000000000000000000000e+0_wp_/) !---------------------------------------------------------------------- ! coefficients for x < -4.0 !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & e=(/1.3276881505637444622987e+2_wp_,3.5846198743996904308695e+4_wp_, & 1.7283375773777593926828e+5_wp_,2.6181454937205639647381e+5_wp_, & 1.7503273087497081314708e+5_wp_,5.9346841538837119172356e+4_wp_, & 1.0816852399095915622498e+4_wp_,1.0611777263550331766871e03_wp_, & 5.2199632588522572481039e+1_wp_,9.9999999999999999087819e-1_wp_/),& f=(/3.9147856245556345627078e+4_wp_,2.5989762083608489777411e+5_wp_, & 5.5903756210022864003380e+5_wp_,5.4616842050691155735758e+5_wp_, & 2.7858134710520842139357e+5_wp_,7.9231787945279043698718e+4_wp_, & 1.2842808586627297365998e+4_wp_,1.1635769915320848035459e+3_wp_, & 5.4199632588522559414924e+1_wp_,1.0_wp_/) !---------------------------------------------------------------------- ! coefficients for rational approximation to ln(x/a), |1-x/a| < .1 !---------------------------------------------------------------------- real(wp_), dimension(4), parameter :: & plg=(/-2.4562334077563243311e+01_wp_,2.3642701335621505212e+02_wp_, & -5.4989956895857911039e+02_wp_,3.5687548468071500413e+02_wp_/), & qlg=(/-3.5553900764052419184e+01_wp_,1.9400230218539473193e+02_wp_, & -3.3442903192607538956e+02_wp_,1.7843774234035750207e+02_wp_/) !---------------------------------------------------------------------- ! coefficients for 0.0 < x < 6.0, ! ratio of chebyshev polynomials !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & p=(/-1.2963702602474830028590e01_wp_,-1.2831220659262000678155e03_wp_, & -1.4287072500197005777376e04_wp_,-1.4299841572091610380064e06_wp_, & -3.1398660864247265862050e05_wp_,-3.5377809694431133484800e08_wp_, & 3.1984354235237738511048e08_wp_,-2.5301823984599019348858e10_wp_, & 1.2177698136199594677580e10_wp_,-2.0829040666802497120940e11_wp_/),& q=(/ 7.6886718750000000000000e01_wp_,-5.5648470543369082846819e03_wp_, & 1.9418469440759880361415e05_wp_,-4.2648434812177161405483e06_wp_, & 6.4698830956576428587653e07_wp_,-7.0108568774215954065376e08_wp_, & 5.4229617984472955011862e09_wp_,-2.8986272696554495342658e10_wp_, & 9.8900934262481749439886e10_wp_,-8.9673749185755048616855e10_wp_/) !---------------------------------------------------------------------- ! j-fraction coefficients for 6.0 <= x < 12.0 !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & r=(/-2.645677793077147237806_wp_,-2.378372882815725244124_wp_, & -2.421106956980653511550e01_wp_, 1.052976392459015155422e01_wp_, & 1.945603779539281810439e01_wp_,-3.015761863840593359165e01_wp_, & 1.120011024227297451523e01_wp_,-3.988850730390541057912_wp_, & 9.565134591978630774217_wp_, 9.981193787537396413219e-1_wp_/) real(wp_), dimension(9), parameter :: & s=(/ 1.598517957704779356479e-4_wp_, 4.644185932583286942650_wp_, & 3.697412299772985940785e02_wp_,-8.791401054875438925029_wp_, & 7.608194509086645763123e02_wp_, 2.852397548119248700147e01_wp_, & 4.731097187816050252967e02_wp_,-2.369210235636181001661e02_wp_, & 1.249884822712447891440_wp_/) !---------------------------------------------------------------------- ! j-fraction coefficients for 12.0 <= x < 24.0 !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & p1=(/-1.647721172463463140042_wp_,-1.860092121726437582253e01_wp_, & -1.000641913989284829961e01_wp_,-2.105740799548040450394e01_wp_, & -9.134835699998742552432e-1_wp_,-3.323612579343962284333e01_wp_, & 2.495487730402059440626e01_wp_, 2.652575818452799819855e01_wp_, & -1.845086232391278674524_wp_, 9.999933106160568739091e-1_wp_/) real(wp_), dimension(9), parameter :: & q1=(/ 9.792403599217290296840e01_wp_, 6.403800405352415551324e01_wp_, & 5.994932325667407355255e01_wp_, 2.538819315630708031713e02_wp_, & 4.429413178337928401161e01_wp_, 1.192832423968601006985e03_wp_, & 1.991004470817742470726e02_wp_,-1.093556195391091143924e01_wp_, & 1.001533852045342697818_wp_/) !---------------------------------------------------------------------- ! j-fraction coefficients for x >= 24.0 !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & p2=(/ 1.75338801265465972390e02_wp_,-2.23127670777632409550e02_wp_, & -1.81949664929868906455e01_wp_,-2.79798528624305389340e01_wp_, & -7.63147701620253630855_wp_,-1.52856623636929636839e01_wp_, & -7.06810977895029358836_wp_,-5.00006640413131002475_wp_, & -3.00000000320981265753_wp_, 1.00000000000000485503_wp_/) real(wp_), dimension(9), parameter :: & q2=(/ 3.97845977167414720840e04_wp_, 3.97277109100414518365_wp_, & 1.37790390235747998793e02_wp_, 1.17179220502086455287e02_wp_, & 7.04831847180424675988e01_wp_,-1.20187763547154743238e01_wp_, & -7.99243595776339741065_wp_,-2.99999894040324959612_wp_, & 1.99999999999048104167_wp_/) !---------------------------------------------------------------------- x = arg if (x == zero) then ei = -xinf if (intt == 2) ei = -ei else if ((x < zero) .or. (intt == 2)) then !---------------------------------------------------------------------- ! calculate ei for negative argument or for e1. !---------------------------------------------------------------------- y = abs(x) if (y <= one) then sump = a(7) * y + a(1) sumq = y + b(1) do i = 2, 6 sump = sump * y + a(i) sumq = sumq * y + b(i) end do ei = log(y) - sump / sumq if (intt == 3) ei = ei * exp(y) else if (y <= four) then w = one / y sump = c(1) sumq = d(1) do i = 2, 9 sump = sump * w + c(i) sumq = sumq * w + d(i) end do ei = - sump / sumq if (intt /= 3) ei = ei * exp(-y) else if ((y > xbig) .and. (intt < 3)) then ei = zero else w = one / y sump = e(1) sumq = f(1) do i = 2, 10 sump = sump * w + e(i) sumq = sumq * w + f(i) end do ei = -w * (one - w * sump / sumq ) if (intt /= 3) ei = ei * exp(-y) end if end if if (intt == 2) ei = -ei else if (x < six) then !---------------------------------------------------------------------- ! to improve conditioning, rational approximations are expressed ! in terms of chebyshev polynomials for 0 <= x < 6, and in ! continued fraction form for larger x. !---------------------------------------------------------------------- t = x + x t = t / three - two px(1) = zero qx(1) = zero px(2) = p(1) qx(2) = q(1) do i = 2, 9 px(i+1) = t * px(i) - px(i-1) + p(i) qx(i+1) = t * qx(i) - qx(i-1) + q(i) end do sump = half * t * px(10) - px(9) + p(10) sumq = half * t * qx(10) - qx(9) + q(10) frac = sump / sumq xmx0 = (x - x01/x11) - x02 if (abs(xmx0) >= p037) then ei = log(x/x0) + xmx0 * frac if (intt == 3) ei = exp(-x) * ei else !---------------------------------------------------------------------- ! special approximation to ln(x/x0) for x close to x0 !---------------------------------------------------------------------- y = xmx0 / (x + x0) ysq = y*y sump = plg(1) sumq = ysq + qlg(1) do i = 2, 4 sump = sump*ysq + plg(i) sumq = sumq*ysq + qlg(i) end do ei = (sump / (sumq*(x+x0)) + frac) * xmx0 if (intt == 3) ei = exp(-x) * ei end if else if (x < twelve) then frac = zero do i = 1, 9 frac = s(i) / (r(i) + x + frac) end do ei = (r(10) + frac) / x if (intt /= 3) ei = ei * exp(x) else if (x <= two4) then frac = zero do i = 1, 9 frac = q1(i) / (p1(i) + x + frac) end do ei = (p1(10) + frac) / x if (intt /= 3) ei = ei * exp(x) else if ((x >= xmax) .and. (intt < 3)) then ei = xinf else y = one / x frac = zero do i = 1, 9 frac = q2(i) / (p2(i) + x + frac) end do frac = p2(10) + frac ei = y + y * y * frac if (intt /= 3) then if (x <= xmax-two4) then ei = ei * exp(x) else !---------------------------------------------------------------------- ! calculation reformulated to avoid premature overflow !---------------------------------------------------------------------- ei = (ei * exp(x-fourty)) * exp40 end if end if end if end if result = ei end subroutine calcei function ei(x) !-------------------------------------------------------------------- ! ! this function program computes approximate values for the ! exponential integral ei(x), where x is real. ! ! author: w. j. cody ! ! latest modification: january 12, 1988 ! !-------------------------------------------------------------------- implicit none integer :: intt real(wp_) :: ei real(wp_), intent(in) :: x real(wp_) :: result !-------------------------------------------------------------------- intt = 1 call calcei(x,result,intt) ei = result end function ei function expei(x) !-------------------------------------------------------------------- ! ! this function program computes approximate values for the ! function exp(-x) * ei(x), where ei(x) is the exponential ! integral, and x is real. ! ! author: w. j. cody ! ! latest modification: january 12, 1988 ! !-------------------------------------------------------------------- implicit none integer :: intt real(wp_) :: expei real(wp_), intent(in) :: x real(wp_) :: result !-------------------------------------------------------------------- intt = 3 call calcei(x,result,intt) expei = result end function expei function eone(x) !-------------------------------------------------------------------- ! ! this function program computes approximate values for the ! exponential integral e1(x), where x is real. ! ! author: w. j. cody ! ! latest modification: january 12, 1988 ! !-------------------------------------------------------------------- implicit none integer :: intt real(wp_) :: eone real(wp_), intent(in) :: x real(wp_) :: result !-------------------------------------------------------------------- intt = 2 call calcei(x,result,intt) eone = result end function eone ! ====================================================================== ! calcei3 = calcei for int=3 ! ====================================================================== subroutine calcei3(arg,result) !---------------------------------------------------------------------- ! ! this fortran 77 packet computes the exponential integrals ei(x), ! e1(x), and exp(-x)*ei(x) for real arguments x where ! ! integral (from t=-infinity to t=x) (exp(t)/t), x > 0, ! ei(x) = ! -integral (from t=-x to t=infinity) (exp(t)/t), x < 0, ! ! and where the first integral is a principal value integral. ! the packet contains three function type subprograms: ei, eone, ! and expei; and one subroutine type subprogram: calcei. the ! calling statements for the primary entries are ! ! y = ei(x), where x /= 0, ! ! y = eone(x), where x > 0, ! and ! y = expei(x), where x /= 0, ! ! and where the entry points correspond to the functions ei(x), ! e1(x), and exp(-x)*ei(x), respectively. the routine calcei ! is intended for internal packet use only, all computations within ! the packet being concentrated in this routine. the function ! subprograms invoke calcei with the fortran statement ! call calcei(arg,result,int) ! where the parameter usage is as follows ! ! function parameters for calcei ! call arg result int ! ! ei(x) x /= 0 ei(x) 1 ! eone(x) x > 0 -ei(-x) 2 ! expei(x) x /= 0 exp(-x)*ei(x) 3 !---------------------------------------------------------------------- implicit none real(wp_), intent(in) :: arg real(wp_), intent(out) :: result integer :: i real(wp_) :: ei,frac,sump,sumq,t,w,x,xmx0,y,ysq real(wp_), dimension(10) :: px,qx !---------------------------------------------------------------------- ! mathematical constants ! exp40 = exp(40) ! x0 = zero of ei ! x01/x11 + x02 = zero of ei to extra precision !---------------------------------------------------------------------- real(wp_), parameter :: p037=0.037_wp_, & x01=381.5_wp_, x11=1024.0_wp_, x02=-5.1182968633365538008e-5_wp_, & x0=3.7250741078136663466e-1_wp_ !---------------------------------------------------------------------- ! machine-dependent constants !---------------------------------------------------------------------- real(wp_), parameter :: xinf=1.79e+308_wp_ !---------------------------------------------------------------------- ! coefficients for -1.0 <= x < 0.0 !---------------------------------------------------------------------- real(wp_), dimension(7), parameter :: & a=(/1.1669552669734461083368e2_wp_, 2.1500672908092918123209e3_wp_, & 1.5924175980637303639884e4_wp_, 8.9904972007457256553251e4_wp_, & 1.5026059476436982420737e5_wp_,-1.4815102102575750838086e5_wp_, & 5.0196785185439843791020_wp_/) real(wp_), dimension(6), parameter :: & b=(/4.0205465640027706061433e1_wp_, 7.5043163907103936624165e2_wp_, & 8.1258035174768735759855e3_wp_, 5.2440529172056355429883e4_wp_, & 1.8434070063353677359298e5_wp_, 2.5666493484897117319268e5_wp_/) !---------------------------------------------------------------------- ! coefficients for -4.0 <= x < -1.0 !---------------------------------------------------------------------- real(wp_), dimension(9), parameter :: & c=(/3.828573121022477169108e-1_wp_, 1.107326627786831743809e+1_wp_, & 7.246689782858597021199e+1_wp_, 1.700632978311516129328e+2_wp_, & 1.698106763764238382705e+2_wp_, 7.633628843705946890896e+1_wp_, & 1.487967702840464066613e+1_wp_, 9.999989642347613068437e-1_wp_, & 1.737331760720576030932e-8_wp_/), & d=(/8.258160008564488034698e-2_wp_, 4.344836335509282083360e+0_wp_, & 4.662179610356861756812e+1_wp_, 1.775728186717289799677e+2_wp_, & 2.953136335677908517423e+2_wp_, 2.342573504717625153053e+2_wp_, & 9.021658450529372642314e+1_wp_, 1.587964570758947927903e+1_wp_, & 1.000000000000000000000e+0_wp_/) !---------------------------------------------------------------------- ! coefficients for x < -4.0 !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & e=(/1.3276881505637444622987e+2_wp_,3.5846198743996904308695e+4_wp_, & 1.7283375773777593926828e+5_wp_,2.6181454937205639647381e+5_wp_, & 1.7503273087497081314708e+5_wp_,5.9346841538837119172356e+4_wp_, & 1.0816852399095915622498e+4_wp_,1.0611777263550331766871e03_wp_, & 5.2199632588522572481039e+1_wp_,9.9999999999999999087819e-1_wp_/), & f=(/3.9147856245556345627078e+4_wp_,2.5989762083608489777411e+5_wp_, & 5.5903756210022864003380e+5_wp_,5.4616842050691155735758e+5_wp_, & 2.7858134710520842139357e+5_wp_,7.9231787945279043698718e+4_wp_, & 1.2842808586627297365998e+4_wp_,1.1635769915320848035459e+3_wp_, & 5.4199632588522559414924e+1_wp_,1.0_wp_/) !---------------------------------------------------------------------- ! coefficients for rational approximation to ln(x/a), |1-x/a| < .1 !---------------------------------------------------------------------- real(wp_), dimension(4), parameter :: & plg=(/-2.4562334077563243311e+01_wp_,2.3642701335621505212e+02_wp_, & -5.4989956895857911039e+02_wp_,3.5687548468071500413e+02_wp_/), & qlg=(/-3.5553900764052419184e+01_wp_,1.9400230218539473193e+02_wp_, & -3.3442903192607538956e+02_wp_,1.7843774234035750207e+02_wp_/) !---------------------------------------------------------------------- ! coefficients for 0.0 < x < 6.0, ! ratio of chebyshev polynomials !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & p=(/-1.2963702602474830028590e01_wp_,-1.2831220659262000678155e03_wp_, & -1.4287072500197005777376e04_wp_,-1.4299841572091610380064e06_wp_, & -3.1398660864247265862050e05_wp_,-3.5377809694431133484800e08_wp_, & 3.1984354235237738511048e08_wp_,-2.5301823984599019348858e10_wp_, & 1.2177698136199594677580e10_wp_,-2.0829040666802497120940e11_wp_/),& q=(/ 7.6886718750000000000000e01_wp_,-5.5648470543369082846819e03_wp_, & 1.9418469440759880361415e05_wp_,-4.2648434812177161405483e06_wp_, & 6.4698830956576428587653e07_wp_,-7.0108568774215954065376e08_wp_, & 5.4229617984472955011862e09_wp_,-2.8986272696554495342658e10_wp_, & 9.8900934262481749439886e10_wp_,-8.9673749185755048616855e10_wp_/) !---------------------------------------------------------------------- ! j-fraction coefficients for 6.0 <= x < 12.0 !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & r=(/-2.645677793077147237806_wp_,-2.378372882815725244124_wp_, & -2.421106956980653511550e01_wp_, 1.052976392459015155422e01_wp_, & 1.945603779539281810439e01_wp_,-3.015761863840593359165e01_wp_, & 1.120011024227297451523e01_wp_,-3.988850730390541057912_wp_, & 9.565134591978630774217_wp_, 9.981193787537396413219e-1_wp_/) real(wp_), dimension(9), parameter :: & s=(/ 1.598517957704779356479e-4_wp_, 4.644185932583286942650_wp_, & 3.697412299772985940785e02_wp_,-8.791401054875438925029_wp_, & 7.608194509086645763123e02_wp_, 2.852397548119248700147e01_wp_, & 4.731097187816050252967e02_wp_,-2.369210235636181001661e02_wp_, & 1.249884822712447891440_wp_/) !---------------------------------------------------------------------- ! j-fraction coefficients for 12.0 <= x < 24.0 !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & p1=(/-1.647721172463463140042_wp_,-1.860092121726437582253e01_wp_, & -1.000641913989284829961e01_wp_,-2.105740799548040450394e01_wp_, & -9.134835699998742552432e-1_wp_,-3.323612579343962284333e01_wp_, & 2.495487730402059440626e01_wp_, 2.652575818452799819855e01_wp_, & -1.845086232391278674524_wp_, 9.999933106160568739091e-1_wp_/) real(wp_), dimension(9), parameter :: & q1=(/ 9.792403599217290296840e01_wp_, 6.403800405352415551324e01_wp_, & 5.994932325667407355255e01_wp_, 2.538819315630708031713e02_wp_, & 4.429413178337928401161e01_wp_, 1.192832423968601006985e03_wp_, & 1.991004470817742470726e02_wp_,-1.093556195391091143924e01_wp_, & 1.001533852045342697818_wp_/) !---------------------------------------------------------------------- ! j-fraction coefficients for x >= 24.0 !---------------------------------------------------------------------- real(wp_), dimension(10), parameter :: & p2=(/ 1.75338801265465972390e02_wp_,-2.23127670777632409550e02_wp_, & -1.81949664929868906455e01_wp_,-2.79798528624305389340e01_wp_, & -7.63147701620253630855_wp_,-1.52856623636929636839e01_wp_, & -7.06810977895029358836_wp_,-5.00006640413131002475_wp_, & -3.00000000320981265753_wp_, 1.00000000000000485503_wp_/) real(wp_), dimension(9), parameter :: & q2=(/ 3.97845977167414720840e04_wp_, 3.97277109100414518365_wp_, & 1.37790390235747998793e02_wp_, 1.17179220502086455287e02_wp_, & 7.04831847180424675988e01_wp_,-1.20187763547154743238e01_wp_, & -7.99243595776339741065_wp_,-2.99999894040324959612_wp_, & 1.99999999999048104167_wp_/) !---------------------------------------------------------------------- x = arg if (x == zero) then ei = -xinf else if ((x < zero)) then !---------------------------------------------------------------------- ! calculate ei for negative argument or for e1. !---------------------------------------------------------------------- y = abs(x) if (y <= one) then sump = a(7) * y + a(1) sumq = y + b(1) do i = 2, 6 sump = sump * y + a(i) sumq = sumq * y + b(i) end do ei = (log(y) - sump / sumq ) * exp(y) else if (y <= four) then w = one / y sump = c(1) sumq = d(1) do i = 2, 9 sump = sump * w + c(i) sumq = sumq * w + d(i) end do ei = - sump / sumq else w = one / y sump = e(1) sumq = f(1) do i = 2, 10 sump = sump * w + e(i) sumq = sumq * w + f(i) end do ei = -w * (one - w * sump / sumq ) end if else if (x < six) then !---------------------------------------------------------------------- ! to improve conditioning, rational approximations are expressed ! in terms of chebyshev polynomials for 0 <= x < 6, and in ! continued fraction form for larger x. !---------------------------------------------------------------------- t = x + x t = t / three - two px(1) = zero qx(1) = zero px(2) = p(1) qx(2) = q(1) do i = 2, 9 px(i+1) = t * px(i) - px(i-1) + p(i) qx(i+1) = t * qx(i) - qx(i-1) + q(i) end do sump = half * t * px(10) - px(9) + p(10) sumq = half * t * qx(10) - qx(9) + q(10) frac = sump / sumq xmx0 = (x - x01/x11) - x02 if (abs(xmx0) >= p037) then ei = exp(-x) * ( log(x/x0) + xmx0 * frac ) else !---------------------------------------------------------------------- ! special approximation to ln(x/x0) for x close to x0 !---------------------------------------------------------------------- y = xmx0 / (x + x0) ysq = y*y sump = plg(1) sumq = ysq + qlg(1) do i = 2, 4 sump = sump*ysq + plg(i) sumq = sumq*ysq + qlg(i) end do ei = exp(-x) * (sump / (sumq*(x+x0)) + frac) * xmx0 end if else if (x < twelve) then frac = zero do i = 1, 9 frac = s(i) / (r(i) + x + frac) end do ei = (r(10) + frac) / x else if (x <= two4) then frac = zero do i = 1, 9 frac = q1(i) / (p1(i) + x + frac) end do ei = (p1(10) + frac) / x else y = one / x frac = zero do i = 1, 9 frac = q2(i) / (p2(i) + x + frac) end do frac = p2(10) + frac ei = y + y * y * frac end if result = ei end subroutine calcei3 ! subroutine calerf(arg,result,jintt) !!------------------------------------------------------------------ !! !! this packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x) !! for a real argument x. it contains three function type !! subprograms: erf, erfc, and erfcx (or derf, derfc, and derfcx), !! and one subroutine type subprogram, calerf. the calling !! statements for the primary entries are: !! !! y=erf(x) (or y=derf(x)), !! !! y=erfc(x) (or y=derfc(x)), !! and !! y=erfcx(x) (or y=derfcx(x)). !! !! the routine calerf is intended for internal packet use only, !! all computations within the packet being concentrated in this !! routine. the function subprograms invoke calerf with the !! statement !! !! call calerf(arg,result,jintt) !! !! where the parameter usage is as follows !! !! function parameters for calerf !! call arg result jintt !! !! erf(arg) any real argument erf(arg) 0 !! erfc(arg) abs(arg) < xbig erfc(arg) 1 !! erfcx(arg) xneg < arg < xmax erfcx(arg) 2 !! !!******************************************************************* !!******************************************************************* !! !! Explanation of machine-dependent constants !! !! XMIN = the smallest positive floating-point number. !! XINF = the largest positive finite floating-point number. !! XNEG = the largest negative argument acceptable to ERFCX; !! the negative of the solution to the equation !! 2*exp(x*x) = XINF. !! XSMALL = argument below which erf(x) may be represented by !! 2*x/sqrt(pi) and above which x*x will not underflow. !! A conservative value is the largest machine number X !! such that 1.0 + X = 1.0 to machine precision. !! XBIG = largest argument acceptable to ERFC; solution to !! the equation: W(x) * (1-0.5/x**2) = XMIN, where !! W(x) = exp(-x*x)/[x*sqrt(pi)]. !! XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to !! machine precision. A conservative value is !! 1/[2*sqrt(XSMALL)] !! XMAX = largest acceptable argument to ERFCX; the minimum !! of XINF and 1/[sqrt(pi)*XMIN]. !! !!******************************************************************* !!******************************************************************* !! !! error returns !! !! the program returns erfc = 0 for arg >= xbig; !! !! erfcx = xinf for arg < xneg; !! and !! erfcx = 0 for arg >= xmax. !! !! !! intrinsic functions required are: !! !! abs, aint, exp !! !! !! author: w. j. cody !! mathematics and computer science division !! argonne national laboratory !! argonne, il 60439 !! !! latest modification: march 19, 1990 !! !!------------------------------------------------------------------ ! implicit none ! real(wp_), intent(in) :: arg ! real(wp_), intent(out) :: result ! integer, intent(in) :: jintt ! integer :: i ! real(wp_) :: del,x,xden,xnum,y,ysq !!------------------------------------------------------------------ !! mathematical constants !!------------------------------------------------------------------ ! real(wp_), parameter :: sqrpi=5.6418958354775628695e-1_wp_, & ! thresh=0.46875_wp_ !!------------------------------------------------------------------ !! machine-dependent constants !!------------------------------------------------------------------ ! real(wp_), parameter :: xinf=1.79e308_wp_, & ! ~huge ! xneg=-26.628_wp_, & ! ? ! xsmall=1.11e-16_wp_, & ! ~epsilon/2 ! xbig=26.543_wp_, & ! ? ! xhuge=6.71e7_wp_, & ! ~1/sqrt(epsilon) ! xmax=2.53e307_wp_ ! ? !!------------------------------------------------------------------ !! coefficients for approximation to erf in first interval !!------------------------------------------------------------------ ! real(wp_), dimension(5), parameter :: & ! a=(/3.16112374387056560_wp_,1.13864154151050156e02_wp_, & ! 3.77485237685302021e02_wp_,3.20937758913846947e03_wp_, & ! 1.85777706184603153e-1_wp_/) ! real(wp_), dimension(4), parameter :: & ! b=(/2.36012909523441209e01_wp_,2.44024637934444173e02_wp_, & ! 1.28261652607737228e03_wp_,2.84423683343917062e03_wp_/) !!------------------------------------------------------------------ !! coefficients for approximation to erfc in second interval !!------------------------------------------------------------------ ! real(wp_), dimension(9), parameter :: & ! c=(/5.64188496988670089e-1_wp_,8.88314979438837594_wp_, & ! 6.61191906371416295e01_wp_,2.98635138197400131e02_wp_, & ! 8.81952221241769090e02_wp_,1.71204761263407058e03_wp_, & ! 2.05107837782607147e03_wp_,1.23033935479799725e03_wp_, & ! 2.15311535474403846e-8_wp_/) ! real(wp_), dimension(8), parameter :: & ! d=(/1.57449261107098347e01_wp_,1.17693950891312499e02_wp_, & ! 5.37181101862009858e02_wp_,1.62138957456669019e03_wp_, & ! 3.29079923573345963e03_wp_,4.36261909014324716e03_wp_, & ! 3.43936767414372164e03_wp_,1.23033935480374942e03_wp_/) !!------------------------------------------------------------------ !! coefficients for approximation to erfc in third interval !!------------------------------------------------------------------ ! real(wp_), dimension(6), parameter :: & ! p=(/3.05326634961232344e-1_wp_,3.60344899949804439e-1_wp_, & ! 1.25781726111229246e-1_wp_,1.60837851487422766e-2_wp_, & ! 6.58749161529837803e-4_wp_,1.63153871373020978e-2_wp_/) ! real(wp_), dimension(5), parameter :: & ! q=(/2.56852019228982242_wp_,1.87295284992346047_wp_, & ! 5.27905102951428412e-1_wp_,6.05183413124413191e-2_wp_, & ! 2.33520497626869185e-3_wp_/) !!------------------------------------------------------------------ ! x = arg ! y = abs(x) ! if (y <= thresh) then !!------------------------------------------------------------------ !! evaluate erf for |x| <= 0.46875 !!------------------------------------------------------------------ ! ysq = zero ! if (y > xsmall) ysq = y * y ! xnum = a(5)*ysq ! xden = ysq ! do i = 1, 3 ! xnum = (xnum + a(i)) * ysq ! xden = (xden + b(i)) * ysq ! end do ! result = x * (xnum + a(4)) / (xden + b(4)) ! if (jintt /= 0) result = one - result ! if (jintt == 2) result = exp(ysq) * result ! return !!------------------------------------------------------------------ !! evaluate erfc for 0.46875 <= |x| <= 4.0 !!------------------------------------------------------------------ ! else if (y <= four) then ! xnum = c(9)*y ! xden = y ! do i = 1, 7 ! xnum = (xnum + c(i)) * y ! xden = (xden + d(i)) * y ! end do ! result = (xnum + c(8)) / (xden + d(8)) ! if (jintt /= 2) then ! ysq = aint(y*sixten)/sixten ! del = (y-ysq)*(y+ysq) ! result = exp(-ysq*ysq) * exp(-del) * result ! end if !!------------------------------------------------------------------ !! evaluate erfc for |x| > 4.0 !!------------------------------------------------------------------ ! else if (y < xbig .or. (y < xmax .and. jintt == 2)) then ! ysq = one / (y * y) ! xnum = p(6)*ysq ! xden = ysq ! do i = 1, 4 ! xnum = (xnum + p(i)) * ysq ! xden = (xden + q(i)) * ysq ! end do ! result = ysq *(xnum + p(5)) / (xden + q(5)) ! result = (sqrpi - result) / y ! if (jintt /= 2) then ! ysq = aint(y*sixten)/sixten ! del = (y-ysq)*(y+ysq) ! result = exp(-ysq*ysq) * exp(-del) * result ! end if ! else if (y >= xhuge) then ! result = sqrpi / y ! else ! result = zero ! end if !!------------------------------------------------------------------ !! fix up for negative argument, erf, etc. !!------------------------------------------------------------------ ! if (jintt == 0) then ! result = (half - result) + half ! if (x < zero) result = -result ! else if (jintt == 1) then ! if (x < zero) result = two - result ! else ! if (x < zero) then ! if (x < xneg) then ! result = xinf ! else ! ysq = aint(x*sixten)/sixten ! del = (x-ysq)*(x+ysq) ! y = exp(ysq*ysq) * exp(del) ! result = (y+y) - result ! end if ! end if ! end if ! end subroutine calerf ! ! function derf(x) !!-------------------------------------------------------------------- !! !! this subprogram computes approximate values for erf(x). !! (see comments heading calerf). !! !! author/date: w. j. cody, january 8, 1985 !! !!-------------------------------------------------------------------- ! implicit none ! real(wp_) :: derf ! real(wp_), intent(in) :: x ! integer :: jintt ! real(wp_) :: result !!------------------------------------------------------------------ ! jintt = 0 ! call calerf(x,result,jintt) ! derf = result ! end function derf ! ! function derfc(x) !!-------------------------------------------------------------------- !! !! this subprogram computes approximate values for erfc(x). !! (see comments heading calerf). !! !! author/date: w. j. cody, january 8, 1985 !! !!-------------------------------------------------------------------- ! implicit none ! real(wp_) :: derfc ! real(wp_), intent(in) :: x ! integer :: jintt ! real(wp_) :: result !!------------------------------------------------------------------ ! jintt = 1 ! call calerf(x,result,jintt) ! derfc = result ! end function derfc ! ! function derfcx(x) !!------------------------------------------------------------------ !! !! this subprogram computes approximate values for exp(x*x) * erfc(x). !! (see comments heading calerf). !! !! author/date: w. j. cody, march 30, 1987 !! !!------------------------------------------------------------------ ! implicit none ! real(wp_) :: derfcx ! real(wp_), intent(in) :: x ! integer :: jintt ! real(wp_) :: result !!------------------------------------------------------------------ ! jintt = 2 ! call calerf(x,result,jintt) ! derfcx = result ! end function derfcx end module eierf