src/gray_equil.f90: make Gaussian beam notation consistent
To keep the notation used in compute_initial_conds consistent with the source linked (Q = K - iW for the complex curvature tensor), we need to adds a minus sign in a few places where ∇S_I is computed.
This commit is contained in:
parent
2368a0ba33
commit
fd175ad0da
@ -730,7 +730,7 @@ contains
|
|||||||
W = matmul(rotate(phi_w), matmul(W, rotate(-phi_w)))
|
W = matmul(rotate(phi_w), matmul(W, rotate(-phi_w)))
|
||||||
|
|
||||||
! Combine into a single tensor
|
! Combine into a single tensor
|
||||||
Q = K + im*W
|
Q = K - im*W
|
||||||
end block
|
end block
|
||||||
|
|
||||||
! Compute the beam → tokamak change-of-basis matrix
|
! Compute the beam → tokamak change-of-basis matrix
|
||||||
@ -741,12 +741,12 @@ contains
|
|||||||
!
|
!
|
||||||
! S_I = Im(z + ½ r̅⋅Q(z)⋅r̅)
|
! S_I = Im(z + ½ r̅⋅Q(z)⋅r̅)
|
||||||
! = ½ r̅⋅ImQ(z)⋅r̅
|
! = ½ r̅⋅ImQ(z)⋅r̅
|
||||||
! = ½ r̅⋅W⋅r̅
|
! = -½ r̅⋅W⋅r̅
|
||||||
! = ½ 2/k₀ ξ̅⋅diag(1/w_ξ², 1/w_η²)⋅ξ̅
|
! = -½ 2/k₀ ξ̅⋅diag(1/w_ξ², 1/w_η²)⋅ξ̅
|
||||||
! = 1/k₀ ξ̅⋅diag(1/w_ξ², 1/w_η²)⋅ξ̅
|
! = -1/k₀ ξ̅⋅diag(1/w_ξ², 1/w_η²)⋅ξ̅
|
||||||
!
|
!
|
||||||
! Using polar coordinates ξ̅ = ρ [w_ξcosα, w_ηsinα] this
|
! Using polar coordinates ξ̅ = ρ [w_ξcosα, w_ηsinα] this
|
||||||
! simplifies to S_I = ρ²/k₀. To distribue the rays uniformly
|
! simplifies to S_I = -ρ²/k₀. To distribue the rays uniformly
|
||||||
! on the curves of constant S_I (power flux) we define a grid
|
! on the curves of constant S_I (power flux) we define a grid
|
||||||
! such that the jk-th ray is traced starting from
|
! such that the jk-th ray is traced starting from
|
||||||
!
|
!
|
||||||
@ -762,14 +762,14 @@ contains
|
|||||||
|
|
||||||
! To estimate ∇S_I in `gradi_upd` we require the values of
|
! To estimate ∇S_I in `gradi_upd` we require the values of
|
||||||
! ∇u(ξ̅_jk), where u(x̅) ≡ ρ(x̅)/Δρ and ξ̅_jk is the ray
|
! ∇u(ξ̅_jk), where u(x̅) ≡ ρ(x̅)/Δρ and ξ̅_jk is the ray
|
||||||
! position on the grid. Since S_I = ρ²/k₀, we have
|
! position on the grid. Since S_I = -ρ²/k₀, we have
|
||||||
!
|
!
|
||||||
! ∇S_I(ξ̅_jk) = (Δρ²/k₀) ∇u²(ξ̅_jk)
|
! ∇S_I(ξ̅_jk) = -(Δρ²/k₀) ∇u²(ξ̅_jk)
|
||||||
! = (Δρ²/k₀) 2u(ξ̅_jk) ∇u(ξ̅_jk)
|
! = -(Δρ²/k₀) 2u(ξ̅_jk) ∇u(ξ̅_jk)
|
||||||
! = (Δρ²/k₀) 2(ρ_j/Δρ) ∇u(ξ̅_jk)
|
! = -(Δρ²/k₀) 2(ρ_j/Δρ) ∇u(ξ̅_jk)
|
||||||
! = (Δρ²/k₀) 2(j-1) ∇u(ξ̅_jk)
|
! = -(Δρ²/k₀) 2(j-1) ∇u(ξ̅_jk)
|
||||||
!
|
!
|
||||||
! So, ∇u = k₀/[2Δρ²(j-1)] ∇S_I, for j>1.
|
! So, ∇u = k₀/[2Δρ²(1-j)] ∇S_I, for j>1.
|
||||||
|
|
||||||
! For the central ray (j=1) r=0, so ∇S_I=HS_I=0
|
! For the central ray (j=1) r=0, so ∇S_I=HS_I=0
|
||||||
jk = 1
|
jk = 1
|
||||||
@ -787,7 +787,7 @@ contains
|
|||||||
xi = beam%w * dr * [cos((k-1)*da), sin((k-1)*da)]
|
xi = beam%w * dr * [cos((k-1)*da), sin((k-1)*da)]
|
||||||
x0 = [matmul(rotate(phi_w), xi), zero]
|
x0 = [matmul(rotate(phi_w), xi), zero]
|
||||||
pos(:,k,1) = x0_c
|
pos(:,k,1) = x0_c
|
||||||
grad_u(:,k,1) = [matmul(Q%im, x0(1:2) * k0/(2*dr**2)), zero]
|
grad_u(:,k,1) = [-matmul(Q%im, x0(1:2) * k0/(2*dr**2)), zero]
|
||||||
end do
|
end do
|
||||||
|
|
||||||
! Compute x̅, ∇S_I, ∇u for all the other rays
|
! Compute x̅, ∇S_I, ∇u for all the other rays
|
||||||
@ -803,7 +803,7 @@ contains
|
|||||||
S=S, grad_S=grad_S, hess_S=hess_S)
|
S=S, grad_S=grad_S, hess_S=hess_S)
|
||||||
|
|
||||||
! Compute ∇u using the formula above
|
! Compute ∇u using the formula above
|
||||||
grad_u(:,k,j) = matmul(M, k0/(2 * dr**2 * (j-1)) * grad_S%im)
|
grad_u(:,k,j) = matmul(M, k0/(2 * dr**2 * (1-j)) * grad_S%im)
|
||||||
|
|
||||||
! Switch from local beam to tokamak basis
|
! Switch from local beam to tokamak basis
|
||||||
x0 = x0_c + matmul(M, x0) ! ray position
|
x0 = x0_c + matmul(M, x0) ! ray position
|
||||||
|
Loading…
Reference in New Issue
Block a user