local modifications in gaussfit copied in oxb version

This commit is contained in:
Lorenzo Figini 2013-05-09 09:18:53 +00:00
parent ea75b096cb
commit fbe86719f3

View File

@ -578,9 +578,11 @@ c
.'N Npl ki alpha tau Pt Jcd dIds nh iohkw index_rt'
write(8,*) ' #istep j k xt yt zt rt psin'
write(9,*) ' #istep j k xt yt zt rt psin'
write(82,*) ' #istep j k xt yt zwspl zwparab'
write(17,*) ' #sst Dr_11 Dr_Nr1 Di_Nr1'
write(33,*) ' #i j k sst x y R z psi tauv Npl alpha index_rt'
write(12,*) ' #i sst psi w1 w2'
write(12,*) ' #i sst w1 w2 phiw rci1 rci2 phir errw errr '//
. 'dk1 dk2 dkpar phik dnpar'
write(7,*)'#Icd Pa Jphimx dPdVmx '//
.'rhotj rhotjava rhotp rhotpav '//
.'drhotjava drhotpav ratjbmx stmx psipol chipol index_rt'
@ -624,6 +626,7 @@ c
common/warm/iwarm,ilarm
common/ieccd/ieccd
common/idst/idst
common/iplane/iplane
c
common/filesn/filenmeqq,filenmprf,filenmbm
c
@ -665,6 +668,8 @@ c
common/mode/sox
common/angles/alpha0,beta0
common/scal/iscal
common/waist/w0csi,w0eta
c
open(2,file='gray.data',status= 'unknown')
c
@ -742,8 +747,9 @@ c from center of mirror and with angular spread
c ipass=1/2 1 or 2 passes into plasma
c iox=1/2 OM/XM
c idst=0/1/2 0 integration in s, 1 integr. in ct, 2 integr. in Sr
c iplane=0/1 1 plane integration wavefronts
c
read(2,*) dst,nstep,istpr0,istpl0,idst
read(2,*) dst,nstep,istpr0,istpl0,idst,iplane
read(2,*) igrad,ipass,rwallm
read(2,*) iox, psipol0,chipol0
c
@ -2953,6 +2959,7 @@ c
hh=h*0.5d0
h6=h/6.0d0
c
ttest=0
do j=1,nrayr
kkk=nrayth
if(j.eq.1) kkk=1
@ -2970,17 +2977,17 @@ c
ddgr(iv,jv)=ggri(iv,jv,j,k)
end do
end do
call fwork(yy,fk2)
call fwork(j,k,1,yy,fk2)
c
do ieq=1,ndim
yy(ieq)=y(ieq)+fk2(ieq)*hh
end do
call fwork(yy,fk3)
call fwork(j,k,2,yy,fk3)
c
do ieq=1,ndim
yy(ieq)=y(ieq)+fk3(ieq)*h
end do
call fwork(yy,fk4)
call fwork(j,k,3,yy,fk4)
c
do ieq=1,ndim
ywrk(ieq,j,k)=y(ieq)
@ -3034,7 +3041,7 @@ c
end do
end if
c
call fwork(yy,yyp)
call fwork(j,k,3,yy,yyp)
c
do ieq=1,ndim
ypwrk(ieq,j,k)=yyp(ieq)
@ -3047,14 +3054,18 @@ c
c
c
c
subroutine fwork(y,dery)
subroutine fwork(j,k,isubst,y,dery)
implicit real*8 (a-h,o-z)
parameter(ndim=6)
dimension y(ndim),dery(ndim)
dimension xv(3),anv(3),vgv(3),bv(3),derbv(3,3),derxg(3),deryg(3)
dimension derdxv(3),danpldxv(3),derdnv(3)
dimension dgr2(3),dgr(3),ddgr(3,3),dbgr(3)
dimension yy11(6,3),derdxv11(3,3)
dimension dery0(3)
c
save yy11,derdxv11
common/gr/gr2
common/dgr/dgr2,dgr,ddgr
common/ddd/dd,an2s,an2,fdia,bdotgr,ddi,ddr11
@ -3072,6 +3083,10 @@ c
common/anv/anv
common/xv/xv
common/idst/idst
c
common/iplane/iplane
c
common/dery0/dery0,dery0mod
c
xx=y(1)
yy=y(2)
@ -3179,6 +3194,14 @@ c
c
derdnm=derdnm+derdnv(iv)**2
end do
if(j.eq.1.and.k.eq.1) then
do ii=1,3
yy11(ii,isubst)=y(ii)
yy11(ii+3,isubst)=y(ii+3)
derdxv11(ii,isubst)=derdxv(ii)
enddo
endif
c
derdnm=sqrt(derdnm)
c
@ -3195,8 +3218,17 @@ c integration variable: c*t
denom=derdom
else
c integration variable: Sr
if (iplane.eq.1.and.j.gt.1) then
c advance outer rays to the plane through x_11 and perp to N_11
denom=-((yy11(4,isubst)*derdnv(1)+yy11(5,isubst)*derdnv(2)
. +yy11(6,isubst)*derdnv(3))
. -(derdxv11(1,isubst)*(y(1)-yy11(1,isubst))+
. derdxv11(2,isubst)*(y(2)-yy11(2,isubst))+
. derdxv11(3,isubst)*(y(3)-yy11(3,isubst))))
else
denom=-(anv(1)*derdnv(1)+anv(2)*derdnv(2)+anv(3)*derdnv(3))
end if
end if
c
c coefficient for integration in s
c ds/dst, where st is the integration variable
@ -3208,6 +3240,14 @@ c
dery(4) = derdxv(1)/denom
dery(5) = derdxv(2)/denom
dery(6) = derdxv(3)/denom
if(j.eq.1) then
do ll=1,3
dery0(ll)=dery(ll)
enddo
dery0mod=sqrt(dery0(1)*dery0(1)+
. dery0(2)*dery0(2)+dery0(3)*dery0(3))
endif
c
c vgv : ~ group velocity
c
@ -5743,33 +5783,176 @@ c gg=F(u)/u with F(u) as in Cohen paper
subroutine projxyzt(iproj,nfile)
implicit real*8 (a-h,o-z)
parameter(jmx=31,kmx=36)
parameter(jmx=31,kmx=36,nmx=8000)
parameter(pi=3.14159265358979d0)
dimension ywrk(6,jmx,kmx),ypwrk(6,jmx,kmx)
complex*16 ui,aac,bbc,ccc,ddc,aak,bbk,cck
parameter(ui=(0.0d0,1.0d0))
dimension tauv(jmx,kmx,nmx),alphav(jmx,kmx,nmx)
parameter(nrmax=(jmx-1)*kmx+1)
dimension xtiv(nrmax),ytiv(nrmax),zwjv(nrmax),w(nrmax)
dimension pvett(3),pvettn(3),dery0(3),dery0n(3)
dimension avn(3,jmx,kmx)
dimension aplane(3,jmx,kmx),asip(jmx,kmx)
dimension gri(3,jmx,kmx)
c parameter(nxmax=2*jmx-1)
parameter(nxmax=2*kmx)
parameter(kspl=3,nxest=nxmax+4)
parameter(km=kspl+1,nu=nxest-km)
parameter(ne=nxest,kb1=kspl*nu+km,kb2=kb1+nu-kspl)
parameter(lwrk1=nu*nu*(2+kb1+kb2)+
. 2*(2*nu+km*(nrmax+ne)+ne-2*kspl)+kb2+1)
parameter(lwrk2=nu*nu*(kb2+1)+kb2)
parameter(kwrk=nrmax+(nxest-kspl-km)*(nxest-kspl-km))
dimension xgridv(nxmax),ygridv(nxmax)
dimension zwint(nxmax*nxmax),ccexp(nxmax*nxmax)
dimension tx(nxest),ty(nxest),wrk1(lwrk1),wrk2(lwrk2),iwrk(kwrk)
parameter(lwrkbsp=8*nxmax,liwrkbsp=2*nxmax)
dimension wrkbsp(lwrkbsp),iwrkbsp(liwrkbsp)
c
common/nray/nrayr,nrayth
common/wrk/ywrk,ypwrk
common/psinv11/psinv11
common/derip11/dpsi11dr,dpsi11dz,psinv11,bvx11,bvy11,bvz11
common/istep/istep
common/rwmax/rwmax
common/ss/st
common/dnpar/dnpara
common/atjki/tauv,alphav
common/waist/w0csi,w0eta
common/dery0/dery0,dery0mod
common/iplane/iplane
common/gradjk/gri
c
rtimn=1.d+30
rtimx=-1.d-30
x4m=0.0d0
x3ym=0.0d0
x2y2m=0.0d0
xy3m=0.0d0
y4m=0.0d0
x2zrm=0.0d0
xyzrm=0.0d0
y2zrm=0.0d0
x2zwm=0.0d0
xyzwm=0.0d0
y2zwm=0.0d0
z2wm=0.0d0
z2rm=0.0d0
c initialize grid dimension for spline interpolation
xmaxgrid=2*max(w0csi,w0eta)
iray=0
if(iplane.le.1) then
do j=1,nrayr
kktx=nrayth
if(j.eq.1) kktx=1
do k=1,kktx
do ll=1,3
aplane(ll,j,k)=ywrk(ll,j,k)
enddo
asip(j,k)=(dble(j-1)*rwmax/dble(nrayr-1))**2
enddo
enddo
endif
if(iplane.eq.2) then
c prjection parallel to vg on the plane perpendicular to n0 passing through x11
do j=2,nrayr
do k=1,nrayth
avmod=sqrt(ypwrk(1,j,k)**2+ypwrk(2,j,k)**2+ypwrk(3,j,k)**2)
do ii=1,3
avn(ii,j,k)=ypwrk(ii,j,k)/avmod
enddo
deltaxdotn0=(ywrk(1,1,1)-ywrk(1,j,k))*ywrk(4,1,1)+
. (ywrk(2,1,1)-ywrk(2,j,k))*ywrk(5,1,1)+
. (ywrk(3,1,1)-ywrk(3,j,k))*ywrk(6,1,1)
avndotn0=avn(1,j,k)*ywrk(4,1,1)+
. avn(2,j,k)*ywrk(5,1,1)+
. avn(3,j,k)*ywrk(6,1,1)
aalpha=deltaxdotn0/avndotn0
do ll=1,3
aplane(ll,j,k)=ywrk(ll,j,k)+aalpha*avn(ll,j,k)
enddo
enddo
enddo
do ll=1,3
aplane(ll,1,1)=ywrk(ll,1,1)
enddo
do j=1,nrayr
kktx=nrayth
if(j.eq.1) kktx=1
do k=1,kktx
asip(j,k)=(dble(j-1)*rwmax/dble(nrayr-1))**2
enddo
enddo
endif
if(iplane.eq.3) then
c ortogonal projection on the plane perpendicular to n0 passing through x11
do j=2,nrayr
do k=1,nrayth
deltaxdotn0=(ywrk(1,1,1)-ywrk(1,j,k))*ywrk(4,1,1)+
. (ywrk(2,1,1)-ywrk(2,j,k))*ywrk(5,1,1)+
. (ywrk(3,1,1)-ywrk(3,j,k))*ywrk(6,1,1)
an02=ywrk(4,1,1)**2+ywrk(5,1,1)**2+ywrk(6,1,1)**2
aalpha=deltaxdotn0/an02
do ll=1,3
aplane(ll,j,k)=ywrk(ll,j,k)+aalpha*ywrk(ll+3,1,1)
enddo
enddo
enddo
do ll=1,3
aplane(ll,1,1)=ywrk(ll,1,1)
enddo
c Si evaluation on the projection plane(Taylor, first order)
do j=1,nrayr
kktx=nrayth
if(j.eq.1) kktx=1
do k=1,kktx
asip(j,k)=(dble(j-1)*rwmax/dble(nrayr-1))**2+
. gri(1,j,k)*(aplane(1,j,k)-ywrk(1,j,k))+
. gri(2,j,k)*(aplane(2,j,k)-ywrk(2,j,k))+
. gri(3,j,k)*(aplane(3,j,k)-ywrk(3,j,k))
enddo
enddo
endif
c
jd=1
if(iproj.eq.0) jd=nrayr-1
do j=1,nrayr,jd
kkk=nrayth
if(j.eq.1) kkk=1
do k=1,kkk
do j=1,nrayr
kktx=nrayth
if(j.eq.1) kktx=1
do k=1,kktx
zwj=asip(j,k)+
. 0.5*(tauv(j,k,istep)-tauv(1,1,istep))
c
dx=ywrk(1,j,k)-ywrk(1,1,1)
dy=ywrk(2,j,k)-ywrk(2,1,1)
dz=ywrk(3,j,k)-ywrk(3,1,1)
dx=aplane(1,j,k)-aplane(1,1,1)
dy=aplane(2,j,k)-aplane(2,1,1)
dz=aplane(3,j,k)-aplane(3,1,1)
c
dirx=ywrk(4,j,k)
diry=ywrk(5,j,k)
dirz=ywrk(6,j,k)
dir=sqrt(dirx*dirx+diry*diry+dirz*dirz)
if (j>1) then
k2=mod(k+kktx/4-1,kktx)+1
dx2=aplane(1,j,k2)-aplane(1,1,1)
dy2=aplane(2,j,k2)-aplane(2,1,1)
dz2=aplane(3,j,k2)-aplane(3,1,1)
pvett(1)=dy*dz2-dy2*dz
pvett(2)=dz*dx2-dz2*dx
pvett(3)=dx*dy2-dx2*dy
pvettmod=sqrt(pvett(1)**2+pvett(2)**2+pvett(3)**2)
do ll=1,3
pvettn(ll)=pvett(ll)/pvettmod
dery0n(ll)=dery0(ll)/dery0mod
enddo
c write(*,*) 'dotn0',j,k,(pvettn(1)*dirx+
c . pvettn(2)*diry+pvettn(3)*dirz)/dir
c write(*,*) 'dotvg0',j,k,(pvettn(1)*dery0(1)+
c . pvettn(2)*dery0(2)+pvettn(3)*dery0(3))/dery0mod
endif
c dirx=dery0(1)
c diry=dery0(2)
c dirz=dery0(3)
c dir=dery0mod
c
if(j.eq.1.and.k.eq.1) then
csth1=dirz/dir
@ -5785,38 +5968,234 @@ c
yti=(dx*snps1+dy*csps1)*csth1-dz*snth1
zti=(dx*snps1+dy*csps1)*snth1+dz*csth1
rti=sqrt(xti**2+yti**2)
c store x,y,z values for spline interpolation
iray=iray+1
xtiv(iray)=xti
ytiv(iray)=yti
zwjv(iray)=zwj
c initialize grid dimension for spline interpolation
xmaxgrid=max(xmaxgrid,rti)
c
dirxt= (dirx*csps1-diry*snps1)/dir
diryt=((dirx*snps1+diry*csps1)*csth1-dirz*snth1)/dir
dirzt=((dirx*snps1+diry*csps1)*snth1+dirz*csth1)/dir
c
bxti= bvx11*csps1-bvy11*snps1
byti=(bvx11*snps1+bvy11*csps1)*csth1-bvz11*snth1
c bzti=(bvx11*snps1+bvy11*csps1)*snth1+bvz11*csth1
c
rr11=sqrt(ywrk(1,1,1)**2+ywrk(2,1,1)**2)
dpsx=dpsi11dr*ywrk(1,1,1)/rr11
dpsy=dpsi11dr*ywrk(2,1,1)/rr11
dpsz=dpsi11dz
xdpsi=dpsx*csps1-dpsy*snps1
ydpsi=(dpsx*snps1+dpsy*csps1)*csth1-dpsz*snth1
zdpsi=(dpsx*snps1+dpsy*csps1)*snth1+dpsz*csth1
sq=sqrt(xdpsi**2+ydpsi**2+zdpsi**2)
if(sq.gt.0.0d0) then
xdpsi=dx*xdpsi/sq
ydpsi=dx*ydpsi/sq
zdpsi=dx*zdpsi/sq
end if
c
if(k.eq.1) then
xti1=xti
yti1=yti
zti1=zti
rti1=rti
xdpsi1=xdpsi
ydpsi1=ydpsi
zdpsi1=zdpsi
end if
c
if(istep.eq.0)
. write(10,111) istep,j,k,xti,yti,zti,dirxt,diryt,dirzt,dir
c dr=sqrt(dx**2+dy**2+dz**2)
c write(11,111) istep,j,k,dx/dr,dy/dr,dz/dr,
c . snth1*snps1,snth1*csps1,csth1,
c . snth1*snps1*dx/dr+snth1*csps1*dy/dr+csth1*dz/dr
if(.not.(iproj.eq.0.and.j.eq.1))
. write(nfile,111) istep,j,k,xti,yti,zti,rti,psinv11
c
if(rti.ge.rtimx.and.j.eq.nrayr) rtimx=rti
if(rti.le.rtimn.and.j.eq.nrayr) rtimn=rti
if((iproj.eq.1).or.(iproj.eq.0.and.j.eq.nrayr))
. write(nfile,111) istep,j,k,xti,yti,zti,rti,
. xdpsi,ydpsi,zdpsi
c
x4m=x4m+xti**4
x3ym=x3ym+xti**3*yti
x2y2m=x2y2m+xti**2*yti**2
xy3m=xy3m+xti*yti**3
y4m=y4m+yti**4
x2zrm=x2zrm+xti**2*zti
xyzrm=xyzrm+xti*yti*zti
y2zrm=y2zrm+yti**2*zti
x2zwm=x2zwm+xti**2*zwj
xyzwm=xyzwm+xti*yti*zwj
y2zwm=y2zwm+yti**2*zwj
z2wm=z2wm+zwj*zwj
z2rm=z2rm+zti*zti
end do
c
c if(.not.(iproj.eq.0.and.j.eq.1))
c . write(nfile,111) istep,j,k,xti,yti,zti,rti,psinv11
if((iproj.eq.1.and.j.gt.1).or.(iproj.eq.0.and.j.eq.nrayr))
. write(nfile,111) istep,j,k,xti1,yti1,zti1,rti1,
. xdpsi1,ydpsi1,zdpsi1
if(iproj.eq.1) write(nfile,*) ' '
end do
c
write(nfile,*) ' '
c
write(12,99) istep,st,psinv11,rtimn,rtimx
c computation of the SI paraboloid
c
denw= x2y2m**3 + x4m*xy3m**2 + x3ym**2*y4m -
. x2y2m*(2*x3ym*xy3m + x4m*y4m)
aaw= -(x2y2m*xy3m*xyzwm) + x2y2m**2*y2zwm -
. x3ym*xy3m*y2zwm + x3ym*xyzwm*y4m +
. x2zwm*(xy3m**2 - x2y2m*y4m)
ccw= x2y2m**2*xyzwm + x4m*xy3m*y2zwm -
. x2y2m*(x2zwm*xy3m + x3ym*y2zwm) + x2zwm*x3ym*y4m -
. x4m*xyzwm*y4m
bbw= x2y2m**2*x2zwm - x2zwm*x3ym*xy3m + x4m*xy3m*xyzwm +
. x3ym**2*y2zwm - x2y2m*(x3ym*xyzwm + x4m*y2zwm)
aaw=aaw/denw
bbw=bbw/denw
ccw=ccw/denw
phiw = 0.5d0*atan(ccw/(aaw-bbw+1.0d-32))
phiwdeg=phiw*180.d0/pi
aaaw = 0.5d0*(aaw+bbw + (aaw-bbw)/cos(2.0d0*phiw))
bbbw = aaw+bbw - aaaw
errw= 2.0d0*aaw*bbw*x2y2m + ccw**2*x2y2m - 2.0d0*aaw*x2zwm +
- 2.0d0*aaw*ccw*x3ym + aaw**2*x4m + 2.0d0*bbw*ccw*xy3m -
- 2.0d0*ccw*xyzwm - 2.0d0*bbw*y2zwm + bbw**2*y4m + z2wm
errw=sqrt(abs(errw)/dble((nrayr-1)*nrayth))
wcsi = 1.0d0/sqrt(aaaw)
weta = 1.0d0/sqrt(bbbw)
c
c computation of paraboloid Sr=z-(ax^2+cxy+by^2)=const
c
denr= x2y2m**3 + x4m*xy3m**2 + x3ym**2*y4m -
. x2y2m*(2*x3ym*xy3m + x4m*y4m)
aar= -(x2y2m*xy3m*xyzrm) + x2y2m**2*y2zrm -
. x3ym*xy3m*y2zrm + x3ym*xyzrm*y4m +
. x2zrm*(xy3m**2 - x2y2m*y4m)
ccr= x2y2m**2*xyzrm + x4m*xy3m*y2zrm -
. x2y2m*(x2zrm*xy3m + x3ym*y2zrm) + x2zrm*x3ym*y4m -
. x4m*xyzrm*y4m
bbr= x2y2m**2*x2zrm - x2zrm*x3ym*xy3m + x4m*xy3m*xyzrm +
. x3ym**2*y2zrm - x2y2m*(x3ym*xyzrm + x4m*y2zrm)
aar=aar/denr
bbr=bbr/denr
ccr=ccr/denr
phir = 0.5d0*atan(ccr/(aar-bbr+1.0d-32))
phirdeg=phir*180.d0/pi
aaar = 0.5d0*(aar+bbr + (aar-bbr)/cos(2.0d0*phir))
bbbr = aar+bbr - aaar
errr= 2.0d0*aar*bbr*x2y2m + ccr**2*x2y2m - 2.0d0*aar*x2zrm +
- 2.0d0*aar*ccr*x3ym + aar**2*x4m + 2.0d0*bbr*ccr*xy3m -
- 2.0d0*ccr*xyzrm - 2.0d0*bbr*y2zrm + bbr**2*y4m + z2rm
errr=sqrt(abs(errr)/dble((nrayr-1)*nrayth))
rcicsi=-2.0d0*aaar
rcieta=-2.0d0*bbbr
c
c computation of Fourier Transform of exp[i k0 (Sr + i Si)]
c k spectrum
c
aar=-ak0*aar
bbr=-ak0*bbr
ccr=-ak0*ccr
aac=aar+ui*aaw
bbc=bbr+ui*bbw
ccc=ccr+ui*ccw
ddc=ccc*ccc-4.0d0*aac*bbc
aak=bbc/ddc
bbk=aac/ddc
cck=-ccc/ddc
akw=dimag(aak)
bkw=dimag(bbk)
ckw=dimag(cck)
dkpar2=4.0d0*(bxti**2*bkw+byti**2*akw-bxti*byti*ckw)/
. (4.0d0*akw*bkw-ckw*ckw)
phik = 0.5d0*atan(ckw/(akw-bkw+1.0d-32))
aakw = 0.5d0*(akw+bkw + (akw-bkw)/cos(2.0d0*phik))
bbkw = akw+bkw - aakw
dk1 = 1.0d0/sqrt(aakw)
dk2 = 1.0d0/sqrt(bbkw)
c co = cos(phik)
c si = sin(phik)
c bxtir= co*bxti+si*byti
c bytir=-si*bxti+co*byti
c dkpar2=bxtir**2/aakw+bytir**2/bbkw
dkpar=sqrt(dkpar2)
dnpar=dkpar/ak0
dnpara=0.5d0*dnpar
c
c spectral distribution of electric field E(k):
c exp[-(N//-N//0)^2/(DNPAR^2)]
c dnpar^2 = 2 (Delta N//)^2 , Maj !!!
c
c in vacuum dkpar^2 = 4/w0^2
c
c in common dnpara=dnpar/2 to match westerhof Delta function
c Delta -> exp[-(...)^2/(2*DeltaQ)]
c
c Spline fit
if(nrayr.gt.1) then
npoints=iray
xmin=-xmaxgrid
xmax=xmaxgrid
ymin=-xmaxgrid
ymax=xmaxgrid
nxgrid=2*nrayr-1
dxgrid=(xmax-xmin)/(nxgrid-1)
do i=1,nxgrid
xgridv(i)=xmin+(i-1)*dxgrid
ygridv(i)=xgridv(i)
end do
c call interp spline
iopt=0
sspl=1.0d-3
eps=1.0d-7
do iray=1,npoints
w(iray) = 1.0d0
end do
call surfit(iopt,npoints,xtiv,ytiv,zwjv,w,xmin,xmax,ymin,ymax,
. kspl,kspl,sspl,nxest,nxest,nxest,eps,
. nkntx,tx,nknty,ty,ccexp,resid,wrk1,lwrk1,wrk2,lwrk2,
. iwrk,kwrk,ierr)
if (ierr.gt.0) then
print*, 'surfit:',istep,nkntx,nknty,ierr,resid
do j=1,nxgrid
do i=1,nxgrid
zwint(nxgrid*(i-1)+j)=0.0d0
end do
end do
else
c call eval spline
call bispev(tx,nkntx,ty,nknty,ccexp,kspl,kspl,xgridv,nxgrid,
. ygridv,nxgrid,zwint,wrkbsp,lwrkbsp,iwrkbsp,liwrkbsp,ierr)
if (ierr.ne.0) print*, 'bispev:',istep,ierr
end if
do j=1,nxgrid
do i=1,nxgrid
ij=nxgrid*(i-1)+j
write(82,111) istep,i,j,xgridv(i),ygridv(j),zwint(ij),
. aaw*xgridv(i)**2+ccw*xgridv(i)*ygridv(j)+bbw*ygridv(j)**2
end do
write(82,*) ''
end do
write(82,*) ''
end if
write(12,99) istep,st,
. wcsi,weta,phiwdeg,rcicsi,rcieta,phirdeg,errw,errr,
. dk1,dk2,dkpar,phik*180.0d0/pi,dnpar
c
return
99 format(i5,12(1x,e16.8e3))
99 format(i5,22(1x,e16.8e3))
111 format(3i5,12(1x,e16.8e3))
end
c
c
c
@ -6561,7 +6940,7 @@ c ivac=-1 second interface vacuum-plasma WITHOUT wall reflection
y(4)=anv(1)
y(5)=anv(2)
y(6)=anv(3)
call fwork(y,dery)
call fwork(1,1,3,y,dery)
if (st.ge.smax.or.(psinv.gt.0.0d0.and.psinv.lt.psdbnd)) exit
i=i+1
end do