nocommon branch merged back into trunk
This commit is contained in:
parent
9eb901015e
commit
ce10204479
55
Makefile
55
Makefile
@ -2,8 +2,11 @@
|
||||
EXE=gray
|
||||
|
||||
# Objects list
|
||||
OBJ=gray.o grayl.o reflections.o green_func_p.o \
|
||||
const_and_precisions.o itm_constants.o itm_types.o
|
||||
MAINOBJ=main.o
|
||||
OTHOBJ= beamdata.o beams.o conical.o const_and_precisions.o coreprofiles.o \
|
||||
dierckx.o dispersion.o eccd.o eierf.o graycore.o gray-externals.o \
|
||||
gray_params.o equilibrium.o magsurf_data.o math.o minpack.o numint.o \
|
||||
pec.o polarization.o quadpack.o reflections.o simplespline.o utils.o
|
||||
|
||||
# Alternative search paths
|
||||
vpath %.f90 src
|
||||
@ -11,32 +14,56 @@ vpath %.f src
|
||||
|
||||
# Fortran compiler name and flags
|
||||
FC=gfortran
|
||||
FFLAGS=-O3 #-Wall -g -fcheck=all
|
||||
FFLAGS=-O3
|
||||
#FFLAGS=-Wall -g -finit-real=nan -ffpe-trap=invalid -fcheck=all -fbounds-check
|
||||
|
||||
DIRECTIVES = -DREVISION="'$(shell svnversion src)'"
|
||||
|
||||
all: $(EXE)
|
||||
|
||||
# Build executable from object files
|
||||
$(EXE): $(OBJ)
|
||||
$(EXE): $(MAINOBJ) $(OTHOBJ)
|
||||
$(FC) $(FFLAGS) -o $@ $^
|
||||
|
||||
# Dependencies on modules
|
||||
gray.o: green_func_p.o reflections.o
|
||||
green_func_p.o: const_and_precisions.o
|
||||
const_and_precisions.o: itm_types.o itm_constants.o
|
||||
itm_constants.o: itm_types.o
|
||||
main.o: const_and_precisions.o beams.o coreprofiles.o equilibrium.o \
|
||||
graycore.o gray_params.o reflections.o
|
||||
graycore.o: const_and_precisions.o beamdata.o beams.o coreprofiles.o \
|
||||
dispersion.o equilibrium.o gray-externals.o gray_params.o \
|
||||
pec.o polarization.o reflections.o utils.o
|
||||
gray-externals.o: const_and_precisions.o beams.o coreprofiles.o dierckx.o \
|
||||
dispersion.o eccd.o gray_params.o \
|
||||
equilibrium.o magsurf_data.o math.o numint.o quadpack.o \
|
||||
reflections.o simplespline.o utils.o beamdata.o
|
||||
beams.o: const_and_precisions.o dierckx.o reflections.o simplespline.o utils.o
|
||||
beamdata.o: const_and_precisions.o gray_params.o
|
||||
conical.o: const_and_precisions.o
|
||||
coreprofiles.o: const_and_precisions.o dierckx.o gray_params.o simplespline.o \
|
||||
utils.o
|
||||
dierckx.o: const_and_precisions.o
|
||||
dispersion.o: const_and_precisions.o eierf.o math.o quadpack.o
|
||||
eccd.o: const_and_precisions.o conical.o magsurf_data.o dierckx.o numint.o
|
||||
eierf.o: const_and_precisions.o
|
||||
gray_params.o: const_and_precisions.o utils.o
|
||||
equilibrium.o: const_and_precisions.o dierckx.o minpack.o simplespline.o \
|
||||
utils.o gray_params.o
|
||||
magsurf_data.o: const_and_precisions.o gray_params.o equilibrium.o dierckx.o \
|
||||
reflections.o simplespline.o utils.o
|
||||
math.o: const_and_precisions.o
|
||||
minpack.o: const_and_precisions.o
|
||||
numint.o: const_and_precisions.o
|
||||
pec.o: const_and_precisions.o beamdata.o equilibrium.o gray_params.o \
|
||||
magsurf_data.o utils.o
|
||||
polarization.o: const_and_precisions.o
|
||||
quadpack.o: const_and_precisions.o
|
||||
reflections.o: const_and_precisions.o utils.o
|
||||
simplespline.o: const_and_precisions.o
|
||||
utils.o: const_and_precisions.o
|
||||
|
||||
# General object compilation command
|
||||
%.o: %.f90
|
||||
$(FC) $(FFLAGS) -c $<
|
||||
|
||||
gray.o:gray.f green_func_p.o
|
||||
$(FC) -cpp $(DIRECTIVES) $(FFLAGS) -c $<
|
||||
|
||||
grayl.o:grayl.f
|
||||
$(FC) $(FFLAGS) -c $^
|
||||
|
||||
.PHONY: clean install
|
||||
# Remove output files
|
||||
clean:
|
||||
|
248
src/beamdata.f90
Normal file
248
src/beamdata.f90
Normal file
@ -0,0 +1,248 @@
|
||||
module beamdata
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
|
||||
integer, save :: nray,nrayr,nrayth,nstep,jray1
|
||||
real(wp_), save :: dst,h,hh,h6,rwmax,twodr2
|
||||
integer, parameter :: nfileproj0 = 8, nfilew = 12
|
||||
|
||||
contains
|
||||
|
||||
subroutine init_rtr(rtrparam,ywork,ypwork,xc,du1,gri,ggri, &
|
||||
psjki,tauv,alphav,ppabs,dids,ccci,p0jk,ext,eyt,iiv)
|
||||
use gray_params, only : rtrparam_type
|
||||
use const_and_precisions, only : zero,half,two
|
||||
implicit none
|
||||
type(rtrparam_type), intent(in) :: rtrparam
|
||||
real(wp_), dimension(:,:), intent(out), allocatable :: ywork,ypwork, &
|
||||
gri,psjki,tauv,alphav,ppabs,dids,ccci
|
||||
real(wp_), dimension(:,:,:), intent(out), allocatable :: xc,du1,ggri
|
||||
real(wp_), dimension(:), intent(out), allocatable :: p0jk
|
||||
complex(wp_), dimension(:), intent(out), allocatable :: ext, eyt
|
||||
integer, dimension(:), intent(out), allocatable :: iiv
|
||||
|
||||
dst=rtrparam%dst
|
||||
h=dst
|
||||
hh=h*half
|
||||
h6=h/6.0_wp_
|
||||
|
||||
nrayr=rtrparam%nrayr
|
||||
nrayth=rtrparam%nrayth
|
||||
if(nrayr==1) nrayth=1
|
||||
nray=(nrayr-1)*nrayth+1
|
||||
|
||||
rwmax=rtrparam%rwmax
|
||||
if(nrayr>1) then
|
||||
twodr2 = two*(rwmax/(nrayr-1))**2
|
||||
else
|
||||
twodr2 = two
|
||||
end if
|
||||
|
||||
nstep=rtrparam%nstep
|
||||
|
||||
call alloc_beam(ywork,ypwork,xc,du1,gri,ggri, &
|
||||
psjki,tauv,alphav,ppabs,dids,ccci,p0jk,ext,eyt,iiv)
|
||||
end subroutine init_rtr
|
||||
|
||||
function rayi2jk(i) result(jk)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
integer, dimension(2) :: jk
|
||||
integer :: ioff
|
||||
|
||||
if (i>1) then
|
||||
ioff = i - 2
|
||||
jk(1) = ioff/nrayth ! jr-2
|
||||
jk(2) = ioff - jk(1)*nrayth + 1 ! kt
|
||||
! jk(2) = mod(ioff,nrayth) + 1 ! kt
|
||||
jk(1) = jk(1) + 2 ! jr
|
||||
else
|
||||
jk = 1
|
||||
end if
|
||||
end function rayi2jk
|
||||
|
||||
function rayi2j(i) result(jr)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
integer :: jr
|
||||
|
||||
! jr = max(1, (i-2)/nrayth + 2)
|
||||
if (i>1) then
|
||||
jr = (i-2)/nrayth + 2
|
||||
else
|
||||
jr = 1
|
||||
end if
|
||||
end function rayi2j
|
||||
|
||||
function rayi2k(i) result(kt)
|
||||
implicit none
|
||||
integer, intent(in) :: i
|
||||
integer :: kt
|
||||
|
||||
! kt = max(1, mod(i-2,nrayth) + 1)
|
||||
if (i>1) then
|
||||
kt = mod(i-2,nrayth) + 1
|
||||
else
|
||||
kt = 1
|
||||
end if
|
||||
end function rayi2k
|
||||
|
||||
function rayjk2i(jr,kt) result(i)
|
||||
implicit none
|
||||
integer, intent(in) :: jr,kt
|
||||
integer :: i
|
||||
|
||||
! i = max(1, (jr-2)*nrayth + kt + 1)
|
||||
if (jr>1) then
|
||||
i = (jr-2)*nrayth + kt + 1
|
||||
else
|
||||
i = 1
|
||||
end if
|
||||
end function rayjk2i
|
||||
|
||||
subroutine alloc_beam(ywork,ypwork,xc,du1,gri,ggri, &
|
||||
psjki,tauv,alphav,ppabs,dids,ccci,p0jk,ext,eyt,iiv)
|
||||
implicit none
|
||||
real(wp_), dimension(:,:), intent(out), allocatable :: ywork,ypwork, &
|
||||
gri,psjki,tauv,alphav,ppabs,dids,ccci
|
||||
real(wp_), dimension(:,:,:), intent(out), allocatable :: xc,du1,ggri
|
||||
real(wp_), dimension(:), intent(out), allocatable :: p0jk
|
||||
complex(wp_), dimension(:), intent(out), allocatable :: ext, eyt
|
||||
integer, dimension(:), intent(out), allocatable :: iiv
|
||||
|
||||
call dealloc_beam(ywork,ypwork,xc,du1,gri,ggri, &
|
||||
psjki,tauv,alphav,ppabs,dids,ccci,p0jk,ext,eyt,iiv)
|
||||
|
||||
allocate(ywork(6,nray), ypwork(6,nray), gri(3,nray), ggri(3,3,nray), &
|
||||
xc(3,nrayth,nrayr), du1(3,nrayth,nrayr), &
|
||||
psjki(nray,nstep), tauv(nray,nstep), alphav(nray,nstep), &
|
||||
ppabs(nray,nstep), dids(nray,nstep), ccci(nray,nstep), &
|
||||
p0jk(nray), ext(nray), eyt(nray), iiv(nray))
|
||||
end subroutine alloc_beam
|
||||
|
||||
|
||||
subroutine dealloc_beam(ywork,ypwork,xc,du1,gri,ggri, &
|
||||
psjki,tauv,alphav,ppabs,dids,ccci,p0jk,ext,eyt,iiv)
|
||||
implicit none
|
||||
real(wp_), dimension(:,:), intent(out), allocatable :: ywork,ypwork, &
|
||||
gri,psjki,tauv,alphav,ppabs,dids,ccci
|
||||
real(wp_), dimension(:,:,:), intent(out), allocatable :: xc,du1,ggri
|
||||
real(wp_), dimension(:), intent(out), allocatable :: p0jk
|
||||
complex(wp_), dimension(:), intent(out), allocatable :: ext, eyt
|
||||
integer, dimension(:), intent(out), allocatable :: iiv
|
||||
|
||||
if (allocated(ywork)) deallocate(ywork)
|
||||
if (allocated(ypwork)) deallocate(ypwork)
|
||||
if (allocated(xc)) deallocate(xc)
|
||||
if (allocated(du1)) deallocate(du1)
|
||||
if (allocated(gri)) deallocate(gri)
|
||||
if (allocated(ggri)) deallocate(ggri)
|
||||
if (allocated(psjki)) deallocate(psjki)
|
||||
if (allocated(tauv)) deallocate(tauv)
|
||||
if (allocated(alphav)) deallocate(alphav)
|
||||
if (allocated(ppabs)) deallocate(ppabs)
|
||||
if (allocated(dids)) deallocate(dids)
|
||||
if (allocated(ccci)) deallocate(ccci)
|
||||
if (allocated(p0jk)) deallocate(p0jk)
|
||||
if (allocated(ext)) deallocate(ext)
|
||||
if (allocated(eyt)) deallocate(eyt)
|
||||
if (allocated(iiv)) deallocate(iiv)
|
||||
end subroutine dealloc_beam
|
||||
|
||||
subroutine pweight(p0,p0jk)
|
||||
! power associated to jk-th ray p0jk(j) for total beam power p0
|
||||
use const_and_precisions, only : wp_, zero, one, half, two
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: p0
|
||||
real(wp_), dimension(:), intent(out) :: p0jk
|
||||
! local variables
|
||||
integer :: j,jk,jkn
|
||||
real(wp_) :: dr,r,w,r0,w0,summ
|
||||
real(wp_), dimension(nrayr) :: q
|
||||
|
||||
if(nray==1) then
|
||||
q(1) = one
|
||||
else
|
||||
dr = rwmax/dble(nrayr - 1)
|
||||
summ = zero
|
||||
w0 = one
|
||||
do j = 1, nrayr
|
||||
r = (dble(j) - half)*dr
|
||||
w = exp(-two*r**2)
|
||||
q(j) = w - w0
|
||||
summ = summ + q(j)
|
||||
r0 = r
|
||||
w0 = w
|
||||
end do
|
||||
q = q/summ
|
||||
q(2:) = q(2:)/nrayth
|
||||
end if
|
||||
|
||||
p0jk(1)=q(1)*p0
|
||||
jk=2
|
||||
do j=2,nrayr
|
||||
jkn=jk+nrayth
|
||||
p0jk(jk:jkn-1)=q(j)*p0
|
||||
jk=jkn
|
||||
end do
|
||||
end subroutine pweight
|
||||
|
||||
subroutine print_projxyzt(st,ywrk,iproj)
|
||||
use const_and_precisions, only : wp_, comp_huge, zero, one
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: st
|
||||
real(wp_), dimension(:,:), intent(in) :: ywrk
|
||||
integer, intent(in) :: iproj
|
||||
! local variables
|
||||
integer :: jk,jkz,nfile
|
||||
integer, dimension(2) ::jkv
|
||||
real(wp_), dimension(3) :: xv1,dir,dxv
|
||||
real(wp_) :: dirm,rtimn,rtimx,csth1,snth1,csps1,snps1,xti,yti,zti,rti
|
||||
! common/external functions/variables
|
||||
|
||||
nfile = nfileproj0 + iproj
|
||||
|
||||
xv1 = ywrk(1:3,1)
|
||||
dir = ywrk(4:6,1)
|
||||
dirm = sqrt(dir(1)**2 + dir(2)**2 + dir(3)**2)
|
||||
dir = dir/dirm
|
||||
csth1 = dir(3)
|
||||
snth1 = sqrt(one - csth1**2)
|
||||
if(snth1 > zero) then
|
||||
csps1=dir(2)/snth1
|
||||
snps1=dir(1)/snth1
|
||||
else
|
||||
csps1=one
|
||||
snps1=zero
|
||||
end if
|
||||
|
||||
if(iproj==0) then
|
||||
jkz = nray - nrayth + 1
|
||||
else
|
||||
jkz = 1
|
||||
end if
|
||||
|
||||
rtimn = comp_huge
|
||||
rtimx = zero
|
||||
do jk = jkz, nray
|
||||
dxv = ywrk(1:3,jk) - xv1
|
||||
xti = dxv(1)*csps1 - dxv(2)*snps1
|
||||
yti =(dxv(1)*snps1 + dxv(2)*csps1)*csth1 - dxv(3)*snth1
|
||||
zti =(dxv(1)*snps1 + dxv(2)*csps1)*snth1 + dxv(3)*csth1
|
||||
rti = sqrt(xti**2 + yti**2)
|
||||
|
||||
jkv=rayi2jk(jk)
|
||||
if(.not.(iproj==0 .and. jk==1)) &
|
||||
write(nfile,'(1x,e16.8e3,2i5,4(1x,e16.8e3))') st,jkv,xti,yti,zti,rti
|
||||
if(iproj==1 .and. jkv(2)==nrayth) write(nfile,*) ' '
|
||||
|
||||
if(rti>=rtimx .and. jkv(1)==nrayr) rtimx = rti
|
||||
if(rti<=rtimn .and. jkv(1)==nrayr) rtimn = rti
|
||||
end do
|
||||
write(nfile,*) ' '
|
||||
write(nfilew,'(3(1x,e16.8e3))') st,rtimn,rtimx
|
||||
end subroutine print_projxyzt
|
||||
|
||||
end module beamdata
|
763
src/beams.f90
Normal file
763
src/beams.f90
Normal file
@ -0,0 +1,763 @@
|
||||
module beams
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
|
||||
contains
|
||||
|
||||
subroutine read_beam0(file_beam,fghz,x00,y00,z00, &
|
||||
wcsi,weta,rcicsi,rcieta,phiw,phir,unit)
|
||||
use const_and_precisions, only : pi,vc=>ccgs_
|
||||
use utils, only : get_free_unit
|
||||
implicit none
|
||||
! arguments
|
||||
character(len=*), intent(in) :: file_beam
|
||||
real(wp_), intent(out) :: fGHz,x00,y00,z00
|
||||
real(wp_), intent(out) :: wcsi,weta,rcicsi,rcieta,phir,phiw
|
||||
integer, intent(in), optional :: unit
|
||||
! local variables
|
||||
integer :: u
|
||||
real(wp_) :: ak0,zrcsi,zreta,w0csi,w0eta,d0csi,d0eta
|
||||
|
||||
if (present(unit)) then
|
||||
u=unit
|
||||
else
|
||||
u = get_free_unit()
|
||||
end if
|
||||
open(unit=u,file=trim(file_beam),status='OLD',action='READ')
|
||||
|
||||
! fghz wave frequency (GHz)
|
||||
read(u,*) fGHz
|
||||
! x00,y00,z00 coordinates of launching point in cm
|
||||
read(u,*) x00, y00, z00
|
||||
! beams parameters in local reference system
|
||||
! w0 -> waist, d0 -> waist distance from launching point
|
||||
! phiw angle of spot ellipse
|
||||
read(u,*) w0csi,w0eta,d0csi,d0eta,phiw
|
||||
close(u)
|
||||
|
||||
ak0=2.0e9_wp_*pi*fghz/vc
|
||||
zrcsi=0.5_wp_*ak0*w0csi**2
|
||||
zreta=0.5_wp_*ak0*w0eta**2
|
||||
|
||||
wcsi=w0csi*sqrt(1.0_wp_+(d0csi/zrcsi)**2)
|
||||
weta=w0eta*sqrt(1.0_wp_+(d0eta/zreta)**2)
|
||||
rcicsi=-d0csi/(d0csi**2+zrcsi**2)
|
||||
rcieta=-d0eta/(d0eta**2+zreta**2)
|
||||
phir=phiw
|
||||
|
||||
end subroutine read_beam0
|
||||
|
||||
|
||||
|
||||
subroutine read_beam1(file_beam,alpha0,beta0,fghz,x00,y00,z00, &
|
||||
wcsi,weta,rcicsi,rcieta,phiw,phir,unit)
|
||||
use const_and_precisions, only : pi,vc=>ccgs_
|
||||
use simplespline, only : spli, difcs
|
||||
use utils, only : get_free_unit,locate
|
||||
implicit none
|
||||
! arguments
|
||||
character(len=*), intent(in) :: file_beam
|
||||
real(wp_), intent(in) :: alpha0
|
||||
real(wp_), intent(out) :: fghz,x00,y00,z00,beta0
|
||||
real(wp_), intent(out) :: wcsi,weta,rcicsi,rcieta,phir,phiw
|
||||
integer, intent(in), optional :: unit
|
||||
! local variables
|
||||
integer :: u,ierr,iopt,ier,nisteer,i,k,ii
|
||||
real(wp_) :: steer,dal
|
||||
real(wp_), dimension(:), allocatable :: alphastv,betastv,x00v,y00v, &
|
||||
z00v,waist1v,waist2v,rci1v,rci2v,phi1v,phi2v, &
|
||||
cbeta,cx0,cy0,cz0,cwaist1,cwaist2, &
|
||||
crci1,crci2,cphi1,cphi2
|
||||
|
||||
if (present(unit)) then
|
||||
u=unit
|
||||
else
|
||||
u = get_free_unit()
|
||||
end if
|
||||
open(unit=u,file=file_beam,status='OLD',action='READ')
|
||||
|
||||
read(u,*) fghz
|
||||
|
||||
read(u,*) nisteer
|
||||
|
||||
allocate(alphastv(nisteer),betastv(nisteer),waist1v(nisteer), &
|
||||
waist2v(nisteer),rci1v(nisteer),rci2v(nisteer), &
|
||||
phi1v(nisteer),phi2v(nisteer),x00v(nisteer), &
|
||||
y00v(nisteer),z00v(nisteer),cbeta(4*nisteer), &
|
||||
cx0(4*nisteer),cy0(4*nisteer),cz0(4*nisteer), &
|
||||
cwaist1(4*nisteer),cwaist2(4*nisteer),crci1(4*nisteer), &
|
||||
crci2(4*nisteer),cphi1(4*nisteer),cphi2(4*nisteer), &
|
||||
stat=ierr)
|
||||
if (ierr/=0) then
|
||||
close(u)
|
||||
deallocate(alphastv,betastv,waist1v,waist2v,rci1v,rci2v, &
|
||||
phi1v,phi2v,x00v,y00v,z00v,cbeta, &
|
||||
cx0,cy0,cz0,cwaist1,cwaist2,crci1,crci2,cphi1,cphi2)
|
||||
write(*,*) 'cannot allocate arrays for beam data'
|
||||
stop
|
||||
end if
|
||||
|
||||
do i=1,nisteer
|
||||
read(u,*) steer,alphastv(i),betastv(i),x00v(i),y00v(i),z00v(i), &
|
||||
waist1v(i),waist2v(i),rci1v(i),rci2v(i),phi1v(i),phi2v(i)
|
||||
end do
|
||||
close(u)
|
||||
! initial beam data measured in mm -> transformed to cm
|
||||
x00v = 0.1_wp_*x00v
|
||||
y00v = 0.1_wp_*y00v
|
||||
z00v = 0.1_wp_*z00v
|
||||
waist1v = 0.1_wp_*waist1v
|
||||
waist2v = 0.1_wp_*waist2v
|
||||
rci1v = 10._wp_*rci1v
|
||||
rci2v = 10._wp_*rci2v
|
||||
|
||||
iopt=0
|
||||
call difcs(alphastv,betastv,nisteer,iopt,cbeta,ier)
|
||||
call difcs(alphastv,waist1v,nisteer,iopt,cwaist1,ier)
|
||||
call difcs(alphastv,rci1v,nisteer,iopt,crci1,ier)
|
||||
call difcs(alphastv,waist2v,nisteer,iopt,cwaist2,ier)
|
||||
call difcs(alphastv,rci2v,nisteer,iopt,crci2,ier)
|
||||
call difcs(alphastv,phi1v,nisteer,iopt,cphi1,ier)
|
||||
call difcs(alphastv,phi2v,nisteer,iopt,cphi2,ier)
|
||||
call difcs(alphastv,x00v,nisteer,iopt,cx0,ier)
|
||||
call difcs(alphastv,y00v,nisteer,iopt,cy0,ier)
|
||||
call difcs(alphastv,z00v,nisteer,iopt,cz0,ier)
|
||||
|
||||
if((alpha0 > alphastv(1)).and.(alpha0 < alphastv(nisteer))) then
|
||||
call locate(alphastv,nisteer,alpha0,k)
|
||||
dal=alpha0-alphastv(k)
|
||||
beta0=spli(cbeta,nisteer,k,dal)
|
||||
x00=spli(cx0,nisteer,k,dal)
|
||||
y00=spli(cy0,nisteer,k,dal)
|
||||
z00=spli(cz0,nisteer,k,dal)
|
||||
wcsi=spli(cwaist1,nisteer,k,dal)
|
||||
weta=spli(cwaist2,nisteer,k,dal)
|
||||
rcicsi=spli(crci1,nisteer,k,dal)
|
||||
rcieta=spli(crci2,nisteer,k,dal)
|
||||
phiw=spli(cphi1,nisteer,k,dal)
|
||||
phir=spli(cphi2,nisteer,k,dal)
|
||||
else
|
||||
write(*,*) ' alpha0 outside table range !!!'
|
||||
if(alpha0 >= alphastv(nisteer)) ii=nisteer
|
||||
if(alpha0 <= alphastv(1)) ii=1
|
||||
beta0=betastv(ii)
|
||||
x00=x00v(ii)
|
||||
y00=y00v(ii)
|
||||
z00=z00v(ii)
|
||||
wcsi=waist1v(ii)
|
||||
weta=waist2v(ii)
|
||||
rcicsi=rci1v(ii)
|
||||
rcieta=rci2v(ii)
|
||||
phiw=phi1v(ii)
|
||||
phir=phi2v(ii)
|
||||
end if
|
||||
|
||||
deallocate(alphastv,betastv,waist1v,waist2v,rci1v,rci2v, &
|
||||
phi1v,phi2v,x00v,y00v,z00v,cbeta, &
|
||||
cx0,cy0,cz0,cwaist1,cwaist2,crci1,crci2,cphi1,cphi2)
|
||||
|
||||
end subroutine read_beam1
|
||||
|
||||
|
||||
subroutine read_beam2(file_beam,beamid,alpha0,beta0,fghz,iox,x00,y00,z00, &
|
||||
wcsi,weta,rcicsi,rcieta,phiw,phir,unit)
|
||||
use utils, only : get_free_unit, intlin, locate
|
||||
use reflections, only : inside
|
||||
use dierckx, only : curfit, splev, surfit, bispev
|
||||
implicit none
|
||||
character(len=*), intent(in) :: file_beam
|
||||
integer, intent(in) :: beamid
|
||||
real(wp_), intent(inout) :: alpha0,beta0
|
||||
real(wp_), intent(out) :: fghz,x00,y00,z00, wcsi,weta,rcicsi,rcieta,phir,phiw
|
||||
integer, intent(out) :: iox
|
||||
integer, intent(in), optional :: unit
|
||||
|
||||
character(len=20) :: beamname
|
||||
integer :: u
|
||||
integer :: i, ier, nisteer, fdeg, jumprow, nbeam, nalpha, nbeta
|
||||
integer :: iopt, incheck, nxcoord, nycoord, nxest, nyest, lwrk, kwrk
|
||||
integer :: nxwaist1, nywaist1, nxwaist2, nywaist2, nxrci1, nyrci1, nxrci2
|
||||
integer :: nyrci2, nxphi1, nyphi1, nxphi2, nyphi2, nxx0, nyx0, nxy0, nyy0
|
||||
integer :: nxz0, nyz0, kx, ky, ii, npolyg, nmax, lwrk2, in
|
||||
integer :: nxycoord
|
||||
integer, DIMENSION(:), ALLOCATABLE :: iwrk
|
||||
real(wp_) :: alphast,betast, waist1, waist2, rci1, rci2, phi1, phi2
|
||||
real(wp_) :: fp, minx, maxx, miny, maxy, eps, xcoord0, ycoord0
|
||||
real(wp_), DIMENSION(:), ALLOCATABLE :: x00v, y00v, z00v, alphastv, &
|
||||
betastv, waist1v, waist2v, rci1v, rci2v, phi1v, phi2v, xcoord, &
|
||||
ycoord, wrk, txwaist1, tywaist1, txwaist2, tywaist2, &
|
||||
txrci1, tyrci1, txrci2, tyrci2, txphi1, typhi1, txphi2, typhi2, &
|
||||
txx0, tyx0, txy0, tyy0, txz0, tyz0, txycoord, cycoord, cwaist1, &
|
||||
cwaist2, crci1, crci2, cphi1,cphi2, cx0, cy0, cz0, w, wrk2, &
|
||||
xpolyg, ypolyg, xpolygA, ypolygA, xpolygB, ypolygB, xpolygC, &
|
||||
ypolygC, xpolygD, ypolygD
|
||||
real(wp_), DIMENSION(4) :: xvert, yvert
|
||||
real(wp_), dimension(1) :: fi
|
||||
integer, parameter :: kspl=1
|
||||
real(wp_), parameter :: sspl=0.01_wp_
|
||||
|
||||
if (present(unit)) then
|
||||
u=unit
|
||||
else
|
||||
u = get_free_unit()
|
||||
end if
|
||||
open(unit=u,file=file_beam,status='OLD',action='READ')
|
||||
!=======================================================================================
|
||||
! # of beams
|
||||
read(u,*) nbeam
|
||||
!
|
||||
! unused beams' data
|
||||
jumprow=0
|
||||
! c====================================================================================
|
||||
do i=1,beamid-1
|
||||
read(u,*) beamname, iox, fghz, nalpha, nbeta
|
||||
jumprow = jumprow+nalpha*nbeta
|
||||
end do
|
||||
! c====================================================================================
|
||||
!
|
||||
! beam of interest
|
||||
read(u,*) beamname, iox, fghz, nalpha, nbeta
|
||||
!
|
||||
! c====================================================================================
|
||||
! unused beams' data grids
|
||||
do i=1,(nbeam - beamid)
|
||||
read(u,*) beamname
|
||||
end do
|
||||
do i=1,jumprow
|
||||
read(u,*) alphast,betast,x00,y00,z00,waist1,waist2,rci1,rci2,phi1,phi2
|
||||
end do
|
||||
! c====================================================================================
|
||||
!
|
||||
! # of elements in beam data grid
|
||||
nisteer = nalpha*nbeta
|
||||
!
|
||||
allocate(alphastv(nisteer),betastv(nisteer),waist1v(nisteer), &
|
||||
waist2v(nisteer),rci1v(nisteer),rci2v(nisteer),phi1v(nisteer), &
|
||||
phi2v(nisteer),x00v(nisteer),y00v(nisteer),z00v(nisteer), &
|
||||
xcoord(nisteer),ycoord(nisteer))
|
||||
!
|
||||
! c====================================================================================
|
||||
! beam data grid reading
|
||||
do i=1,nisteer
|
||||
read(u,*) alphast,betast,x00,y00,z00,waist1,waist2,rci1,rci2,phi1,phi2
|
||||
!
|
||||
! initial beam data (x00, y00, z00) are measured in mm -> transformed to cm
|
||||
x00v(i)=0.1d0*x00
|
||||
y00v(i)=0.1d0*y00
|
||||
z00v(i)=0.1d0*z00
|
||||
alphastv(i)=alphast
|
||||
betastv(i)=betast
|
||||
waist1v(i)=0.1d0*waist1
|
||||
rci1v(i)=1.0d1*rci1
|
||||
waist2v(i)=0.1d0*waist2
|
||||
rci2v(i)=1.0d1*rci2
|
||||
phi1v(i)=phi1
|
||||
phi2v(i)=phi2
|
||||
end do
|
||||
close(u)
|
||||
! c====================================================================================
|
||||
!
|
||||
! fdeg = 0 alpha, beta free variables
|
||||
! 1 alpha free variable
|
||||
! 2 beta free variable
|
||||
! 3 no free variables
|
||||
fdeg = 2*(1/nalpha) + 1/nbeta
|
||||
|
||||
!#######################################################################################
|
||||
!
|
||||
! no free variables
|
||||
if(fdeg.eq.3) then
|
||||
alpha0=alphastv(1)
|
||||
beta0=betastv(1)
|
||||
x00=x00v(1)
|
||||
y00=y00v(1)
|
||||
z00=z00v(1)
|
||||
wcsi=waist1v(1)
|
||||
weta=waist2v(1)
|
||||
rcicsi=rci1v(1)
|
||||
rcieta=rci2v(1)
|
||||
phiw=phi1v(1)
|
||||
phir=phi2v(1)
|
||||
return
|
||||
end if
|
||||
!#######################################################################################
|
||||
!
|
||||
!
|
||||
!#######################################################################################
|
||||
if(fdeg.eq.2) then
|
||||
! beta = independent variable
|
||||
! alpha = dependent variable
|
||||
xcoord = betastv
|
||||
ycoord = alphastv
|
||||
xcoord0 = beta0
|
||||
ycoord0 = alpha0
|
||||
kx=min(nbeta-1,kspl)
|
||||
! c====================================================================================
|
||||
else
|
||||
! c====================================================================================
|
||||
! alpha = independent variable
|
||||
! beta = dependent/independent (fdeg = 1/0)
|
||||
xcoord = alphastv
|
||||
ycoord = betastv
|
||||
xcoord0 = alpha0
|
||||
ycoord0 = beta0
|
||||
nxcoord = nalpha
|
||||
nycoord = nbeta
|
||||
kx=min(nalpha-1,kspl)
|
||||
ky=min(nbeta-1,kspl)
|
||||
end if
|
||||
!#######################################################################################
|
||||
!
|
||||
iopt = 0
|
||||
incheck = 0
|
||||
!
|
||||
!#######################################################################################
|
||||
if(fdeg.ne.0) then
|
||||
nxest = kx + nxcoord + 1
|
||||
lwrk = (nxcoord*(kx+1)+nxest*(7+3*kx))
|
||||
kwrk = nxest
|
||||
allocate(cycoord(nxest), txycoord(nxest), cwaist1(nxest), &
|
||||
txwaist1(nxest), cwaist2(nxest), txwaist2(nxest), &
|
||||
crci1(nxest), txrci1(nxest), crci2(nxest), txrci2(nxest), &
|
||||
cphi1(nxest), txphi1(nxest), cphi2(nxest), txphi2(nxest), &
|
||||
cx0(nxest), txx0(nxest), cy0(nxest), txy0(nxest), &
|
||||
cz0(nxest), txz0(nxest), w(nxcoord), wrk(lwrk), iwrk(kwrk))
|
||||
!
|
||||
w = 1.d0
|
||||
!
|
||||
! 2D interpolation
|
||||
call curfit(iopt,nxcoord,xcoord,ycoord,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxycoord, &
|
||||
txycoord,cycoord,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,waist1v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxwaist1, &
|
||||
txwaist1,cwaist1,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,waist2v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxwaist2, &
|
||||
txwaist2,cwaist2,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,rci1v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxrci1, &
|
||||
txrci1,crci1,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,rci2v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxrci2, &
|
||||
txrci2,crci2,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,phi1v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxphi1, &
|
||||
txphi1,cphi1,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,phi2v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxphi2, &
|
||||
txphi2,cphi2,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,x00v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxx0, &
|
||||
txx0,cx0,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,y00v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxy0, &
|
||||
txy0,cy0,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
call curfit(iopt,nxcoord,xcoord,z00v,w, &
|
||||
xcoord(1),xcoord(nxcoord),kx,sspl,nxest,nxz0, &
|
||||
txz0,cz0,fp,wrk,lwrk,iwrk,ier)
|
||||
!
|
||||
! check if xcoord0 is out of table range
|
||||
! incheck = 1 inside / 0 outside
|
||||
if(xcoord0.gt.xcoord(1).and.xcoord0.lt.xcoord(nisteer)) incheck=1
|
||||
! c====================================================================================
|
||||
else
|
||||
! c====================================================================================
|
||||
npolyg = 2*(nxcoord+nycoord-2)
|
||||
minx = minval(xcoord)
|
||||
maxx = maxval(xcoord)
|
||||
miny = minval(ycoord)
|
||||
maxy = maxval(ycoord)
|
||||
nxest = kx + 1 + int(sqrt(nisteer/2.))
|
||||
nyest = ky + 1 + int(sqrt(nisteer/2.))
|
||||
nmax = max(nxest,nyest)
|
||||
eps = 10.**(-8)
|
||||
lwrk = (nmax-2)**2*(7*nmax-2)+18*nmax+8*nisteer-19
|
||||
lwrk2 = (nmax-2)**2*(4*nmax-1)+4*nmax-2
|
||||
kwrk = nisteer+(nmax-3)*(nmax-3)
|
||||
allocate(cwaist1(nxest*nyest), txwaist1(nmax), tywaist1(nmax), &
|
||||
cwaist2(nxest*nyest), txwaist2(nmax), tywaist2(nmax), &
|
||||
crci1(nxest*nyest), txrci1(nmax), tyrci1(nmax), &
|
||||
crci2(nxest*nyest), txrci2(nmax), tyrci2(nmax), &
|
||||
cphi1(nxest*nyest), txphi1(nmax), typhi1(nmax), &
|
||||
cphi2(nxest*nyest), txphi2(nmax), typhi2(nmax), &
|
||||
cx0(nxest*nyest), txx0(nmax), tyx0(nmax), &
|
||||
cy0(nxest*nyest), txy0(nmax), tyy0(nmax), &
|
||||
cz0(nxest*nyest), txz0(nmax), tyz0(nmax), &
|
||||
wrk(lwrk), wrk2(lwrk2), iwrk(kwrk), &
|
||||
xpolyg(npolyg), ypolyg(npolyg), w(nisteer))
|
||||
!
|
||||
w = 1.d0
|
||||
!
|
||||
! 3D interpolation
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,waist1v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxwaist1,txwaist1,nywaist1,tywaist1,cwaist1,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
!
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,waist2v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxwaist2,txwaist2,nywaist2,tywaist2,cwaist2,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
!
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,rci1v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxrci1,txrci1,nyrci1,tyrci1,crci1,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
!
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,rci2v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxrci2,txrci2,nyrci2,tyrci2,crci2,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
!
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,phi1v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxphi1,txphi1,nyphi1,typhi1,cphi1,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
!
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,phi2v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxphi2,txphi2,nyphi2,typhi2,cphi2,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
!
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,x00v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxx0,txx0,nyx0,tyx0,cx0,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
!
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,y00v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxy0,txy0,nyy0,tyy0,cy0,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
!
|
||||
call surfit(iopt,nisteer,xcoord,ycoord,z00v,w, &
|
||||
minx,maxx,miny,maxy,kx,ky,sspl,nxest,nyest,nmax,eps, &
|
||||
nxz0,txz0,nyz0,tyz0,cz0,fp,wrk,lwrk,wrk2,lwrk2,iwrk,kwrk,ier)
|
||||
! data range polygon
|
||||
xpolyg(1:nxcoord) = xcoord(1:nxcoord)
|
||||
ypolyg(1:nxcoord) = ycoord(1:nxcoord)
|
||||
!
|
||||
! c====================================================================================
|
||||
do i=1,nycoord-2
|
||||
xpolyg(nxcoord+i) = xcoord((i+1)*nxcoord)
|
||||
xpolyg(2*nxcoord+nycoord-2+i) = xcoord((nycoord-i-1)*nxcoord+1)
|
||||
ypolyg(nxcoord+i) = ycoord((i+1)*nxcoord)
|
||||
ypolyg(2*nxcoord+nycoord-2+i) = ycoord((nycoord-i-1)*nxcoord+1)
|
||||
end do
|
||||
! c====================================================================================
|
||||
do i=1,nxcoord
|
||||
xpolyg(nxcoord+nycoord-2+i) = xcoord(nxcoord*nycoord-i+1)
|
||||
ypolyg(nxcoord+nycoord-2+i) = ycoord(nxcoord*nycoord-i+1)
|
||||
end do
|
||||
! c====================================================================================
|
||||
!
|
||||
! check if (xcoord0, ycoord0) is out of table range
|
||||
! incheck = 1 inside / 0 outside
|
||||
if(inside(xpolyg,ypolyg,npolyg,xcoord0,ycoord0)) incheck = 1
|
||||
end if
|
||||
deallocate(wrk,iwrk)
|
||||
!#######################################################################################
|
||||
!
|
||||
!
|
||||
!#######################################################################################
|
||||
if(fdeg.ne.0) then
|
||||
! c====================================================================================
|
||||
if(incheck.eq.1) then
|
||||
call splev(txycoord,nxycoord,cycoord,kx,(/xcoord0/),fi,1,ier)
|
||||
ycoord0=fi(1)
|
||||
call splev(txwaist1,nxwaist1,cwaist1,kx,(/xcoord0/),fi,1,ier)
|
||||
wcsi=fi(1)
|
||||
call splev(txwaist2,nxwaist2,cwaist2,kx,(/xcoord0/),fi,1,ier)
|
||||
weta=fi(1)
|
||||
call splev(txrci1,nxrci1,crci1,kx,(/xcoord0/),fi,1,ier)
|
||||
rcicsi=fi(1)
|
||||
call splev(txrci2,nxrci2,crci2,kx,(/xcoord0/),fi,1,ier)
|
||||
rcieta=fi(1)
|
||||
call splev(txphi1,nxphi1,cphi1,kx,(/xcoord0/),fi,1,ier)
|
||||
phiw=fi(1)
|
||||
call splev(txphi2,nxphi2,cphi2,kx,(/xcoord0/),fi,1,ier)
|
||||
phir=fi(1)
|
||||
call splev(txx0,nxx0,cx0,kx,(/xcoord0/),fi,1,ier)
|
||||
x00=fi(1)
|
||||
call splev(txy0,nxy0,cy0,kx,(/xcoord0/),fi,1,ier)
|
||||
y00=fi(1)
|
||||
call splev(txz0,nxz0,cz0,kx,(/xcoord0/),fi,1,ier)
|
||||
z00=fi(1)
|
||||
! c----------------------------------------------------------------------------------
|
||||
else
|
||||
! c----------------------------------------------------------------------------------
|
||||
if(xcoord0.ge.xcoord(nisteer)) ii=nisteer
|
||||
if(xcoord0.le.xcoord(1)) ii=1
|
||||
!
|
||||
xcoord0=xcoord(ii)
|
||||
ycoord0=ycoord(ii)
|
||||
x00=x00v(ii)
|
||||
y00=y00v(ii)
|
||||
z00=z00v(ii)
|
||||
wcsi=waist1v(ii)
|
||||
weta=waist2v(ii)
|
||||
rcicsi=rci1v(ii)
|
||||
rcieta=rci2v(ii)
|
||||
phiw=phi1v(ii)
|
||||
phir=phi2v(ii)
|
||||
end if
|
||||
! c====================================================================================
|
||||
else
|
||||
! c====================================================================================
|
||||
if(incheck.eq.0) then
|
||||
allocate(xpolygA(nxcoord), ypolygA(nxcoord), xpolygC(nxcoord), &
|
||||
ypolygC(nxcoord), xpolygB(nycoord), ypolygB(nycoord), &
|
||||
xpolygD(nycoord), ypolygD(nycoord))
|
||||
! coordinates of vertices v1,v2,v3,v4
|
||||
xvert(1) = xpolyg(1)
|
||||
xvert(2) = xpolyg(nxcoord)
|
||||
xvert(3) = xpolyg(nxcoord+nycoord-1)
|
||||
xvert(4) = xpolyg(2*nxcoord+nycoord-2)
|
||||
yvert(1) = ypolyg(1)
|
||||
yvert(2) = ypolyg(nxcoord)
|
||||
yvert(3) = ypolyg(nxcoord+nycoord-1)
|
||||
yvert(4) = ypolyg(2*nxcoord+nycoord-2)
|
||||
! coordinates of side A,B,C,D
|
||||
xpolygA = xpolyg(1:nxcoord)
|
||||
ypolygA = ypolyg(1:nxcoord)
|
||||
xpolygB = xpolyg(nxcoord:nxcoord+nycoord-1)
|
||||
ypolygB = ypolyg(nxcoord:nxcoord+nycoord-1)
|
||||
xpolygC = xpolyg(nxcoord+nycoord-1:2*nxcoord+nycoord-2)
|
||||
ypolygC = ypolyg(nxcoord+nycoord-1:2*nxcoord+nycoord-2)
|
||||
xpolygD(1:nycoord-1) = xpolyg(2*nxcoord+nycoord-2:npolyg)
|
||||
xpolygD(nycoord) = xpolyg(1)
|
||||
ypolygD(1:nycoord-1) = ypolyg(2*nxcoord+nycoord-2:npolyg)
|
||||
ypolygD(nycoord) = ypolyg(1)
|
||||
! c----------------------------------------------------------------------------------
|
||||
! search for position of xcoord0, ycoord0 with respect to (alpha,beta) data grid
|
||||
!
|
||||
! | |
|
||||
! (6) (5) (4)
|
||||
! | |
|
||||
! _ _ _ v4 _________________v3_ _ _ _
|
||||
! | C | (1)->(8) outside regions
|
||||
! | |
|
||||
! (7) D | | B (3) v1->v4 grid vertices
|
||||
! | |
|
||||
! _ _ _ _ |_________________| _ _ _ _ A-D grid sides
|
||||
! v1 A v2
|
||||
! | |
|
||||
! (8) (1) (2)
|
||||
! | |
|
||||
!
|
||||
if(xcoord0.gt.xvert(1).and.xcoord0.lt.xvert(2).and.ycoord0.le.maxval(ypolygA)) then
|
||||
in=1
|
||||
else if(ycoord0.gt.yvert(2).and.ycoord0.lt.yvert(3).and.xcoord0.ge.minval(xpolygB)) then
|
||||
in=3
|
||||
else if(xcoord0.lt.xvert(3).and.xcoord0.gt.xvert(4).and.ycoord0.ge.minval(ypolygC)) then
|
||||
in=5
|
||||
else if(ycoord0.lt.yvert(4).and.ycoord0.gt.yvert(1).and.xcoord0.le.maxval(xpolygD)) then
|
||||
in=7
|
||||
else if(xcoord0.ge.xvert(2).and.ycoord0.le.yvert(2)) then
|
||||
in=2
|
||||
else if(xcoord0.ge.xvert(3).and.ycoord0.ge.yvert(3)) then
|
||||
in=4
|
||||
else if(xcoord0.le.xvert(4).and.ycoord0.ge.yvert(4)) then
|
||||
in=6
|
||||
else if(xcoord0.le.xvert(1).and.ycoord0.le.yvert(1)) then
|
||||
in=8
|
||||
endif
|
||||
! c----------------------------------------------------------------------------------
|
||||
!
|
||||
! c----------------------------------------------------------------------------------
|
||||
! (xcoord0,ycoord0) is set to its nearest point on (alpha, beta) grid border
|
||||
! depending on the region
|
||||
! 1: xcoord0 unchanged, ycoord0 moved on side A
|
||||
! 3: xcoord0 moved on side B, ycoord0 unchanged
|
||||
! 5: xcoord0 unchanged, ycoord0 moved on side C
|
||||
! 7: xcoord0 moved on side D, ycoord0 unchanged
|
||||
! 2,4,6,8: (xcoord0,ycoord0) set to nearest vertex coordinates
|
||||
! in 1,3,5,7 incheck is set back to 1 to evaluate x00,y00,z00,waist,rci,phi in
|
||||
! new (xcoord0,ycoord0)
|
||||
! in 2,4,6,8 incheck remains 0 and x00,y00,z00,waist,rci,phi values at the
|
||||
! (xcoord0,ycoord0) vertex are used
|
||||
alpha0 = xcoord0
|
||||
beta0 = ycoord0
|
||||
SELECT CASE (in)
|
||||
CASE (1)
|
||||
write(*,*) ' beta0 outside table range !!!'
|
||||
! locate position of xcoord0 with respect to x coordinates of side A
|
||||
call locate(xpolygA,nxcoord,xcoord0,ii)
|
||||
! find corresponding y value on side A for xcoord position
|
||||
call intlin(xpolygA(ii),ypolygA(ii),xpolygA(ii+1),ypolygA(ii+1),xcoord0,ycoord0)
|
||||
incheck = 1
|
||||
CASE (2)
|
||||
write(*,*) ' alpha0 and beta0 outside table range !!!'
|
||||
! xcoord0, ycoord0 set
|
||||
xcoord0 = xvert(2)
|
||||
ycoord0 = yvert(2)
|
||||
ii = nxcoord !indice per assegnare valori waist, rci, phi
|
||||
CASE (3)
|
||||
write(*,*) ' alpha0 outside table range !!!'
|
||||
call locate(ypolygB,nycoord,ycoord0,ii)
|
||||
call intlin(ypolygB(ii),xpolygB(ii),ypolygB(ii+1),xpolygB(ii+1),ycoord0,xcoord0)
|
||||
incheck = 1
|
||||
CASE (4)
|
||||
write(*,*) ' alpha0 and beta0 outside table range !!!'
|
||||
xcoord0 = xvert(3)
|
||||
ycoord0 = yvert(3)
|
||||
ii = nxcoord+nycoord-1
|
||||
CASE (5)
|
||||
write(*,*) ' beta0 outside table range !!!'
|
||||
call locate(xpolygC,nxcoord,xcoord0,ii)
|
||||
call intlin(xpolygC(ii+1),ypolygC(ii+1),xpolygC(ii),ypolygC(ii),xcoord0,ycoord0)
|
||||
incheck = 1
|
||||
CASE (6)
|
||||
write(*,*) ' alpha0 and beta0 outside table range !!!'
|
||||
xcoord0 = xvert(4)
|
||||
ycoord0 = yvert(4)
|
||||
ii = 2*nxcoord+nycoord-2
|
||||
CASE (7)
|
||||
write(*,*) ' alpha0 outside table range !!!'
|
||||
call locate(ypolygD,nycoord,ycoord0,ii)
|
||||
call intlin(ypolygD(ii),xpolygD(ii),ypolygD(ii+1),xpolygD(ii+1),ycoord0,xcoord0)
|
||||
incheck = 1
|
||||
CASE (8)
|
||||
write(*,*) ' alpha0 and beta0 outside table range !!!!'
|
||||
xcoord0 = xvert(1)
|
||||
ycoord0 = yvert(1)
|
||||
ii = 1
|
||||
END SELECT
|
||||
! c----------------------------------------------------------------------------------
|
||||
!
|
||||
deallocate(xpolygA, ypolygA, xpolygC, ypolygC, xpolygB, ypolygB, xpolygD, ypolygD)
|
||||
end if
|
||||
! c====================================================================================
|
||||
!
|
||||
! c====================================================================================
|
||||
if(incheck.eq.1) then
|
||||
lwrk = 2*(kx+ky+2)
|
||||
kwrk = 4
|
||||
allocate(wrk(lwrk),iwrk(kwrk))
|
||||
call bispev(txwaist1,nxwaist1,tywaist1,nywaist1,cwaist1, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
wcsi=fi(1)
|
||||
call bispev(txwaist2,nxwaist2,tywaist2,nywaist2,cwaist2, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
weta=fi(1)
|
||||
call bispev(txrci1,nxrci1,tyrci1,nyrci1,crci1, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
rcicsi=fi(1)
|
||||
call bispev(txrci2,nxrci2,tyrci2,nyrci2,crci2, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
rcieta=fi(1)
|
||||
call bispev(txphi1,nxphi1,typhi1,nyphi1,cphi1, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
phiw=fi(1)
|
||||
call bispev(txphi2,nxphi2,typhi2,nyphi2,cphi2, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
phir=fi(1)
|
||||
call bispev(txx0,nxx0,tyx0,nyx0,cx0, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
x00=fi(1)
|
||||
call bispev(txy0,nxy0,tyy0,nyy0,cy0, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
y00=fi(1)
|
||||
call bispev(txz0,nxz0,tyz0,nyz0,cz0, &
|
||||
kx,ky,(/xcoord0/),1,(/ycoord0/),1,fi,wrk,lwrk,iwrk,kwrk,ier)
|
||||
z00=fi(1)
|
||||
deallocate(wrk,iwrk)
|
||||
! c----------------------------------------------------------------------------------
|
||||
else
|
||||
! c----------------------------------------------------------------------------------
|
||||
x00=x00v(ii)
|
||||
y00=y00v(ii)
|
||||
z00=z00v(ii)
|
||||
wcsi=waist1v(ii)
|
||||
weta=waist2v(ii)
|
||||
rcicsi=rci1v(ii)
|
||||
rcieta=rci2v(ii)
|
||||
phiw=phi1v(ii)
|
||||
phir=phi2v(ii)
|
||||
end if
|
||||
! c====================================================================================
|
||||
end if
|
||||
!#######################################################################################
|
||||
!
|
||||
if(fdeg.ne.0) then
|
||||
deallocate(cycoord, txycoord, cwaist1, txwaist1, cwaist2, &
|
||||
txwaist2, crci1, txrci1, crci2, txrci2, cphi1, txphi1, &
|
||||
cphi2, txphi2, cx0, txx0, cy0, txy0, cz0, txz0, w)
|
||||
else
|
||||
deallocate(cwaist1, txwaist1, tywaist1, cwaist2, txwaist2, tywaist2, &
|
||||
crci1, txrci1, tyrci1, crci2, txrci2, tyrci2, &
|
||||
cphi1, txphi1, typhi1, cphi2, txphi2, typhi2, &
|
||||
cx0, txx0, tyx0, cy0, txy0, tyy0, cz0, txz0, tyz0, &
|
||||
wrk2, xpolyg, ypolyg, w)
|
||||
end if
|
||||
!
|
||||
!#######################################################################################
|
||||
! set correct values for alpha, beta
|
||||
if(fdeg.eq.2) then
|
||||
alpha0 = ycoord0
|
||||
beta0 = xcoord0
|
||||
else
|
||||
alpha0 = xcoord0
|
||||
beta0 = ycoord0
|
||||
end if
|
||||
!#######################################################################################
|
||||
deallocate(alphastv,betastv,waist1v,waist2v,rci1v,rci2v,phi1v, &
|
||||
phi2v,x00v,y00v,z00v,xcoord,ycoord)
|
||||
!
|
||||
end subroutine read_beam2
|
||||
|
||||
|
||||
subroutine launchangles2n(alpha,beta,xv,anv)
|
||||
use const_and_precisions, only : degree
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: alpha,beta,xv(3)
|
||||
real(wp_), intent(out) :: anv(3)
|
||||
! local variables
|
||||
real(wp_) :: r,anr,anphi,a,b
|
||||
|
||||
r=sqrt(xv(1)**2+xv(2)**2)
|
||||
! phi=atan2(y,x)
|
||||
print'(a,2f8.3)','alpha0, beta0 = ',alpha,beta
|
||||
print'(a,4f8.3)','x00, y00, R00, z00 = ',xv(1:2),r,xv(3)
|
||||
print*,' '
|
||||
a = degree*alpha
|
||||
b = degree*beta
|
||||
!
|
||||
! angles alpha, beta in a local reference system as proposed by Gribov et al
|
||||
!
|
||||
anr = -cos(b)*cos(a)
|
||||
anphi = sin(b)
|
||||
! anx = -cos(b)*cos(a)
|
||||
! any = sin(b)
|
||||
|
||||
anv(1) = (anr*xv(1) - anphi*xv(2))/r ! = anx
|
||||
anv(2) = (anr*xv(2) + anphi*xv(1))/r ! = any
|
||||
! anr = (anx*xv(1) + any*xv(2))/r
|
||||
! anphi = (any*xv(1) - anx*xv(2))/r
|
||||
|
||||
anv(3) =-cos(b)*sin(a) ! = anz
|
||||
end subroutine launchangles2n
|
||||
|
||||
subroutine xgygcoeff(fghz,ak0,bres,xgcn)
|
||||
use const_and_precisions, only : qe=>ecgs_,me=>mecgs_,vc=>ccgs_,pi,wce1_
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: fghz
|
||||
real(wp_), intent(out) :: ak0,bres,xgcn
|
||||
! local variables
|
||||
real(wp_) :: omega
|
||||
|
||||
omega=2.0e9_wp_*pi*fghz ! [rad/s]
|
||||
ak0=omega/vc ! [rad/cm]
|
||||
!
|
||||
! yg=btot/bres
|
||||
!
|
||||
bres=omega/wce1_ ! [T]
|
||||
!
|
||||
! xg=xgcn*dens19
|
||||
!
|
||||
xgcn=4.0e13_wp_*pi*qe**2/(me*omega**2) ! [10^-19 m^3]
|
||||
end subroutine xgygcoeff
|
||||
end module beams
|
853
src/conical.f90
Normal file
853
src/conical.f90
Normal file
@ -0,0 +1,853 @@
|
||||
module conical
|
||||
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
|
||||
contains
|
||||
|
||||
function fconic(x,tau,m)
|
||||
!
|
||||
! this function subprogram computes the conical functions of the
|
||||
! first kind P sub(-1/2 + i*tau) (x) for m = 0 and m = 1.
|
||||
! Ref. in Kolbig, Comp. Phys. Commun. 23 (1981) 51
|
||||
!
|
||||
implicit none
|
||||
real(wp_), intent(in) :: x, tau
|
||||
integer, intent(in) :: m
|
||||
real(wp_) :: fconic
|
||||
real(wp_) :: t(7),h(9),v(11)
|
||||
real(wp_) :: aa,a0,a1,a2,a3,a4,a5,a6,b0,b1,fm,fn,fn1,r1,r2,s,s0,s1
|
||||
real(wp_) :: x1,y,y2,y3,z
|
||||
integer :: jp,j,n
|
||||
real(wp_), parameter :: rpi=1.7724538509055_wp_,pi2=0.63661977236758_wp_
|
||||
real(wp_), parameter :: eps=1.0e-14_wp_
|
||||
integer, parameter :: nout=2,nmax=200
|
||||
!
|
||||
complex(wp_) a,b,c,ti,r,rr,q,u,u0,u1,u2,uu
|
||||
complex(wp_) v0,v1,v2,vv,w(19)
|
||||
!
|
||||
logical lm0,lm1,lta
|
||||
|
||||
fconic=0.0_wp_
|
||||
lm0=m == 0
|
||||
lm1=m == 1
|
||||
if(.not.(lm0 .or. lm1)) then
|
||||
write(nout,"(1x,'fconic ... illegal value for m = ',i4)") m
|
||||
return
|
||||
end if
|
||||
fm=m
|
||||
fconic=1.0_wp_-fm
|
||||
if(x == 1.0_wp_) return
|
||||
!
|
||||
fconic=0.0_wp_
|
||||
if(tau == 0.0_wp_ .and. abs(x-1.0_wp_) > 0.01_wp_) then
|
||||
if(x > 1.0_wp_) then
|
||||
y=sqrt((x-1.0_wp_)/(x+1.0_wp_))
|
||||
z=ellick(y)
|
||||
s=sqrt(0.5_wp_*(x+1.0_wp_))
|
||||
if(lm0) fconic=pi2*z/s
|
||||
if(lm1) fconic=pi2*s*(ellice(y)-z)/sqrt(x**2-1.0_wp_)
|
||||
return
|
||||
else
|
||||
y=sqrt(0.5_wp_*(1.0_wp_-x))
|
||||
z=ellick(y)
|
||||
if(lm0) fconic=pi2*z
|
||||
if(lm1) fconic=pi2*(ellice(y)-0.5_wp_*(1.0_wp_+x)*z)/ &
|
||||
sqrt(1.0_wp_-x**2)
|
||||
return
|
||||
end if
|
||||
else
|
||||
ti=cmplx(0._wp_,tau,wp_)
|
||||
!
|
||||
if((-1._wp_ < x .and. x <= 0.0_wp_).or. &
|
||||
(0.0_wp_ < x .and. x <= 0.1_wp_ .and.tau<= 17.0_wp_).or. &
|
||||
(0.1_wp_ < x .and. x <= 0.2_wp_ .and.tau<= 5.0_wp_)) then
|
||||
lta=tau <= 10.0_wp_
|
||||
x1=x**2
|
||||
a=0.5_wp_*(0.5_wp_-fm-ti)
|
||||
b=0.5_wp_*(0.5_wp_-fm+ti)
|
||||
c=0.5_wp_
|
||||
jp=30
|
||||
else if((0.1_wp_ < x .and. x <= 0.2_wp_ .and.tau<= 17.0_wp_) &
|
||||
.or.(0.2_wp_ < x .and. x <= 1.5_wp_ .and.tau<= 20.0_wp_)) &
|
||||
then
|
||||
lta=x > 1.0_wp_ .or. x <= 1.0_wp_ .and. tau <= 5.0_wp_
|
||||
x1=(1.0_wp_-x)/2._wp_
|
||||
a=0.5_wp_+fm-ti
|
||||
b=0.5_wp_+fm+ti
|
||||
c=fm+1.0_wp_
|
||||
jp=32
|
||||
else if(1.5_wp_ < x .and. tau <= max(20.0_wp_,x)) then
|
||||
lta=.true.
|
||||
x1=1.0_wp_/x**2
|
||||
u=exp((-0.5_wp_+ti)*log(2.0_wp_*x)+clogam(1.0_wp_+ti) &
|
||||
-clogam(1.5_wp_-fm+ti))
|
||||
a=0.5_wp_*(0.5_wp_-fm-ti)
|
||||
b=0.5_wp_*(1.5_wp_-fm-ti)
|
||||
c=1.0_wp_-ti
|
||||
jp=33
|
||||
else
|
||||
if(x > 1.0_wp_) then
|
||||
s=sqrt(x**2-1.0_wp_)
|
||||
t(1)=log(x+s)
|
||||
h(1)=tau*t(1)
|
||||
b0=besj0l(h(1))
|
||||
b1=besj1l(h(1))
|
||||
z=1.0_wp_
|
||||
else
|
||||
s=sqrt(1.0_wp_-x**2)
|
||||
t(1)=acos(x)
|
||||
h(1)=tau*t(1)
|
||||
b0=besi0(h(1))
|
||||
b1=besi1(h(1))
|
||||
z=-1.0_wp_
|
||||
end if
|
||||
h(1)=t(1)*x/s
|
||||
v(1)=tau
|
||||
do j = 2,7
|
||||
t(j)=t(j-1)*t(1)
|
||||
h(j)=h(j-1)*h(1)
|
||||
end do
|
||||
do j = 2,11
|
||||
v(j)=v(j-1)*v(1)
|
||||
end do
|
||||
!
|
||||
if(lm1) then
|
||||
aa=-1.0_wp_
|
||||
a0=3.0_wp_*(1.0_wp_-h(1))/(8.0_wp_*t(1))
|
||||
a1=(-15.0_wp_*h(2)+6.0_wp_*h(1)+9.0_wp_+z*8.0_wp_*t(2))/ &
|
||||
(128.0_wp_*t(2))
|
||||
a2=3.0_wp_*(-35.0_wp_*h(3)-15.0_wp_*h(2)+15.0_wp_*h(1)+35.0_wp_ &
|
||||
+z*t(2)*(32.0_wp_*h(1)+8.0_wp_))/(1024.0_wp_*t(3))
|
||||
a3=(-4725.0_wp_*h(4)-6300.0_wp_*h(3)-3150.0_wp_*h(2)+3780.0_wp_*h(1) &
|
||||
+10395.0_wp_-1216.0_wp_*t(4)+z*t(2)*(6000.0_wp_*h(2) &
|
||||
+5760.0_wp_*h(1)+1680.0_wp_)) /(32768.0_wp_*t(4))
|
||||
a4=7.0_wp_*(-10395.0_wp_*h(5)-23625.0_wp_*h(4)-28350.0_wp_*h(3) &
|
||||
-14850.0_wp_*h(2)+19305.0_wp_*h(1)+57915.0_wp_ &
|
||||
-t(4)*(6336.0_wp_*h(1)+6080.0_wp_)+z*t(2)*(16800.0_wp_*h(3) &
|
||||
+30000.0_wp_*h(2)+25920.0_wp_*h(1)+7920.0_wp_))/ &
|
||||
(262144.0_wp_*t(5))
|
||||
a5=(-2837835.0_wp_*h(6)-9168390.0_wp_*h(5)-16372125.0_wp_*h(4) &
|
||||
-18918900*h(3) -10135125.0_wp_*h(2)+13783770.0_wp_*h(1) &
|
||||
+43648605.0_wp_-t(4)*(3044160.0_wp_*h(2)+5588352.0_wp_*h(1) &
|
||||
+4213440.0_wp_)+z*t(2)*(5556600.0_wp_*h(4)+14817600.0_wp_*h(3) &
|
||||
+20790000.0_wp_*h(2)+17297280.0_wp_*h(1)+5405400.0_wp_ &
|
||||
+323072.0_wp_*t(4)))/ (4194304.0_wp_*t(6))
|
||||
a6=0.0_wp_
|
||||
else
|
||||
aa=0.0_wp_
|
||||
a0=1.0_wp_
|
||||
a1=(h(1)-1.0_wp_)/(8.0_wp_*t(1))
|
||||
a2=(9.0_wp_*h(2)+6.0_wp_*h(1)-15.0_wp_-z*8.0_wp_*t(2))/ &
|
||||
(128.0_wp_*t(2))
|
||||
a3=5.0_wp_*(15.0_wp_*h(3)+27.0_wp_*h(2)+21.0_wp_*h(1)-63.0_wp_ &
|
||||
-z*t(2)*(16.0_wp_*h(1)+24.0_wp_))/(1024.0_wp_*t(3))
|
||||
a4=7.0_wp_*(525.0_wp_*h(4)+1500.0_wp_*h(3)+2430.0_wp_*h(2) &
|
||||
+1980.0_wp_*h(1)-6435.0_wp_+192.0_wp_*t(4)-z*t(2)* &
|
||||
(720.0_wp_*h(2)+1600.0_wp_*h(1)+2160.0_wp_))/(32768.0_wp_*t(4))
|
||||
a5=21.0_wp_*(2835.0_wp_*h(5)+11025.0_wp_*h(4)+24750.0_wp_*h(3) &
|
||||
+38610.0_wp_*h(2)+32175.0_wp_*h(1)-109395.0_wp_+t(4) &
|
||||
*(1984.0_wp_*h(1)+4032.0_wp_)-z*t(2) &
|
||||
*(4800.0_wp_*h(3)+15120.0_wp_*h(2)+26400.0_wp_*h(1)+34320.0_wp_)) &
|
||||
/(262144.0_wp_*t(5))
|
||||
a6=11.0_wp_*(218295.0_wp_*h(6)+1071630.0_wp_*h(5)+3009825.0_wp_*h(4) &
|
||||
+6142500.0_wp_*h(3)+9398025.0_wp_*h(2)+7936110.0_wp_*h(1) &
|
||||
-27776385.0_wp_+t(4)*(254016.0_wp_*h(2) &
|
||||
+749952.0_wp_*h(1)+1100736.0_wp_)-z*t(2)*(441000.0_wp_*h(4) &
|
||||
+1814400.0_wp_*h(3)+4127760.0_wp_*h(2)+6552000.0_wp_*h(1) &
|
||||
+8353800.0_wp_+31232.0_wp_*t(4)))/(4194304.0_wp_*t(6))
|
||||
end if
|
||||
s0=a0+(-4.0_wp_*a3/t(1)+a4)/v(4)+(-192.0_wp_*a5/t(3) &
|
||||
+144.0_wp_*a6/t(2))/v(8)+z*(-a2/v(2)+(-24.0_wp_*a4/t(2) &
|
||||
+12.0_wp_*a5/t(1)-a6)/v(6)+(-1920.0_wp_*a6/t(4))/v(10))
|
||||
s1=a1/v(1)+(8.0_wp_*(a3/t(2)-a4/t(1))+a5)/v(5)+(384.0_wp_*a5/t(4) &
|
||||
-768.0_wp_*a6/t(3))/v(9)+z*(aa*v(1)+(2.0_wp_*a2/t(1)-a3)/v(3) &
|
||||
+(48.0_wp_*a4/t(3)-72.0_wp_*a5/t(2) &
|
||||
+18.0_wp_*a6/t(1))/v(7)+(3840.0_wp_*a6/t(5))/v(11))
|
||||
fconic=sqrt(t(1)/s)*(b0*s0+b1*s1)
|
||||
return
|
||||
end if
|
||||
!
|
||||
do
|
||||
if(lta) then
|
||||
y=-x1
|
||||
y2=y**2
|
||||
y3=y**3
|
||||
w(1)=a+1.0_wp_
|
||||
w(2)=a+2.0_wp_
|
||||
w(3)=b+1.0_wp_
|
||||
w(4)=b+2.0_wp_
|
||||
w(5)=c+1.0_wp_
|
||||
w(6)=c*w(5)
|
||||
w(7)=a+b
|
||||
w(8)=a*b
|
||||
w(9)=(w(8)/c)*y
|
||||
w(10)=w(1)*w(3)
|
||||
w(11)=w(2)*w(4)
|
||||
w(12)=1.0_wp_+(w(11)/(2.0_wp_*w(5)))*y
|
||||
w(13)=w(7)-6.0_wp_
|
||||
w(14)=w(7)+6.0_wp_
|
||||
w(15)=2.0_wp_-w(8)
|
||||
w(16)=w(15)-2.0_wp_*w(7)
|
||||
!
|
||||
v0=1.0_wp_
|
||||
v1=1.0_wp_+(w(10)/(2.0_wp_*c))*y
|
||||
v2=w(12)+(w(10)*w(11)/(12.0_wp_*w(6)))*y2
|
||||
u0=1.0_wp_
|
||||
u1=v1-w(9)
|
||||
u2=v2-w(9)*w(12)+(w(8)*w(10)/(2.0_wp_*w(6)))*y2
|
||||
!
|
||||
r=1.0_wp_
|
||||
n=2
|
||||
do
|
||||
n=n+1
|
||||
if(n > nmax) then
|
||||
write(nout,200) x,tau,m
|
||||
return
|
||||
end if
|
||||
rr=r
|
||||
fn=n
|
||||
h(1)=fn-1.0_wp_
|
||||
h(2)=fn-2.0_wp_
|
||||
h(3)=fn-3.0_wp_
|
||||
h(4)=2.0_wp_*fn
|
||||
h(5)=h(4)-3.0_wp_
|
||||
h(6)=2.0_wp_*h(5)
|
||||
h(7)=4.0_wp_*(h(4)-1.0_wp_)*h(5)
|
||||
h(8)=8.0_wp_*h(5)**2*(h(4)-5.0_wp_)
|
||||
h(9)=3.0_wp_*fn**2
|
||||
w(1)=a+h(1)
|
||||
w(2)=a+h(2)
|
||||
w(3)=b+h(1)
|
||||
w(4)=b+h(2)
|
||||
w(5)=c+h(1)
|
||||
w(6)=c+h(2)
|
||||
w(7)=c+h(3)
|
||||
w(8)=h(2)-a
|
||||
w(9)=h(2)-b
|
||||
w(10)=h(1)-c
|
||||
w(11)=w(1)*w(3)
|
||||
w(12)=w(5)*w(6)
|
||||
!
|
||||
w(17)=1.0_wp_+((h(9)+w(13)*fn+w(16))/(h(6)*w(5)))*y
|
||||
w(18)=-((w(11)*w(10)/h(6)+(h(9)-w(14)*fn+w(15))* &
|
||||
w(11)*y/h(7))/w(12))*y
|
||||
w(19)=(w(2)*w(11)*w(4)*w(8)*w(9)/(h(8)*w(7)*w(12)))*y3
|
||||
vv=w(17)*v2+w(18)*v1+w(19)*v0
|
||||
uu=w(17)*u2+w(18)*u1+w(19)*u0
|
||||
r=uu/vv
|
||||
if(abs(r-rr) < eps) exit
|
||||
v0=v1
|
||||
v1=v2
|
||||
v2=vv
|
||||
u0=u1
|
||||
u1=u2
|
||||
u2=uu
|
||||
end do
|
||||
else
|
||||
r=1.0_wp_
|
||||
q=1.0_wp_
|
||||
do n = 1,nmax
|
||||
fn=n
|
||||
fn1=fn-1.0_wp_
|
||||
rr=r
|
||||
q=q*x1*(a+fn1)*(b+fn1)/((c+fn1)*fn)
|
||||
r=r+q
|
||||
if(abs(r-rr) < eps) exit
|
||||
end do
|
||||
if (n > nmax) then
|
||||
write(nout,200) x,tau,m
|
||||
return
|
||||
end if
|
||||
end if
|
||||
if (jp/=30) exit
|
||||
r1=real(r)/abs(exp(clogam(a+0.5_wp_)))**2
|
||||
a=0.5_wp_*(1.5_wp_-fm-ti)
|
||||
b=0.5_wp_*(1.5_wp_-fm+ti)
|
||||
c=1.5_wp_
|
||||
jp=31
|
||||
end do
|
||||
if (jp==31) then
|
||||
r2=real(r)/abs(exp(clogam(a-0.5_wp_)))**2
|
||||
fconic=rpi*(r1-2.0_wp_*x*r2)
|
||||
if(lm1) fconic=(2.0_wp_/sqrt(1.0_wp_-x1))*fconic
|
||||
return
|
||||
else if (jp==32) then
|
||||
fconic=real(r)
|
||||
if(.not.lm0) then
|
||||
fconic=0.5_wp_*(tau**2+0.25_wp_)*sqrt(abs(x**2-1.0_wp_))*fconic
|
||||
if(x > 1.0_wp_) fconic=-fconic
|
||||
end if
|
||||
return
|
||||
else if (jp==33) then
|
||||
fconic=2.0_wp_*real(u*r*(0.5_wp_-fm+ti)/ti)/rpi
|
||||
if(lm1) fconic=fconic/sqrt(1.0_wp_-x1)
|
||||
return
|
||||
end if
|
||||
end if
|
||||
!
|
||||
200 format(1x,'fconic ... convergence difficulties for c function, x = ', &
|
||||
e12.4,5x,'tau = ',e12.4,5x,'m = ',i5)
|
||||
!
|
||||
end function fconic
|
||||
|
||||
function clogam(z)
|
||||
!
|
||||
implicit none
|
||||
complex(wp_) :: clogam
|
||||
complex(wp_), intent(in) :: z
|
||||
complex(wp_) :: v,h,r
|
||||
integer :: i,n
|
||||
real(wp_) :: x,t,a,c,d,e,f
|
||||
integer, parameter :: nout=2
|
||||
real(wp_), parameter :: pi=3.1415926535898_wp_
|
||||
real(wp_), dimension(10), parameter :: b= &
|
||||
(/+8.3333333333333e-2_wp_, -2.7777777777778e-3_wp_, &
|
||||
+7.9365079365079e-4_wp_, -5.9523809523810e-4_wp_, &
|
||||
+8.4175084175084e-4_wp_, -1.9175269175269e-3_wp_, &
|
||||
+6.4102564102564e-3_wp_, -2.9550653594771e-2_wp_, &
|
||||
+1.7964437236883e-1_wp_, -1.3924322169059e+0_wp_/)
|
||||
!
|
||||
x=real(z)
|
||||
t=aimag(z)
|
||||
if(-abs(x) == aint(x) .and. t == 0.0_wp_) then
|
||||
write(nout,'(1x,f20.2)') x
|
||||
clogam=(0.0_wp_,0.0_wp_)
|
||||
return
|
||||
end if
|
||||
f=abs(t)
|
||||
v=cmplx(x,f,wp_)
|
||||
if(x < 0.0_wp_) v=1.0_wp_-v
|
||||
h=(0.0_wp_,0.0_wp_)
|
||||
c=real(v)
|
||||
if(c < 7.0_wp_) then
|
||||
n=6-int(c)
|
||||
h=v
|
||||
d=aimag(v)
|
||||
a=atan2(d,c)
|
||||
do i = 1,n
|
||||
c=c+1.0_wp_
|
||||
v=cmplx(c,d,wp_)
|
||||
h=h*v
|
||||
a=a+atan2(d,c)
|
||||
end do
|
||||
h=cmplx(0.5_wp_*log(real(h)**2+aimag(h)**2),a,wp_)
|
||||
v=v+1.0_wp_
|
||||
end if
|
||||
r=1.0_wp_/v**2
|
||||
clogam=0.91893853320467_wp_+(v-0.5_wp_)*log(v)-v+(b(1)+r*(b(2)+r*(b(3) &
|
||||
+r*(b(4)+r*(b(5)+r*(b(6)+r*(b(7)+r*(b(8)+r*(b(9)+r*b(10)))))))))) &
|
||||
/v-h
|
||||
if(x < 0.0_wp_) then
|
||||
!
|
||||
a=aint(x)-1.0_wp_
|
||||
c=pi*(x-a)
|
||||
d=pi*f
|
||||
e=exp(-2.0_wp_*d)
|
||||
f=sin(c)
|
||||
e=d+0.5_wp_*log(e*f**2+0.25_wp_*(1.0_wp_-e)**2)
|
||||
f=atan2(cos(c)*tanh(d),f)-a*pi
|
||||
clogam=1.1447298858494_wp_-cmplx(e,f,wp_)-clogam
|
||||
!
|
||||
end if
|
||||
if(t < 0.0_wp_) clogam=conjg(clogam)
|
||||
!
|
||||
end function clogam
|
||||
|
||||
function ellick(xk)
|
||||
implicit none
|
||||
real(wp_), intent(in) :: xk
|
||||
real(wp_) :: ellick, ellice
|
||||
integer :: i
|
||||
real(wp_) :: eta,pa,pb,pc,pd
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
a=(/9.6573590280856e-2_wp_, 3.0885146271305e-2_wp_, &
|
||||
1.4938013532687e-2_wp_, 8.7898018745551e-3_wp_, &
|
||||
6.1796274460533e-3_wp_, 6.8479092826245e-3_wp_, &
|
||||
9.8489293221769e-3_wp_, 8.0030039806500e-3_wp_, &
|
||||
2.2966348983970e-3_wp_, 1.3930878570066e-4_wp_/), &
|
||||
b=(/1.2499999999991e-1_wp_, 7.0312499739038e-2_wp_, &
|
||||
4.8828041906862e-2_wp_, 3.7377739758624e-2_wp_, &
|
||||
3.0124849012899e-2_wp_, 2.3931913323111e-2_wp_, &
|
||||
1.5530941631977e-2_wp_, 5.9739042991554e-3_wp_, &
|
||||
9.2155463496325e-4_wp_, 2.9700280966556e-5_wp_/), &
|
||||
c=(/4.4314718056089e-1_wp_, 5.6805194567559e-2_wp_, &
|
||||
2.1831811676130e-2_wp_, 1.1569595745295e-2_wp_, &
|
||||
7.5950934225594e-3_wp_, 7.8204040609596e-3_wp_, &
|
||||
1.0770635039866e-2_wp_, 8.6384421736041e-3_wp_, &
|
||||
2.4685033304607e-3_wp_, 1.4946621757181e-4_wp_/), &
|
||||
d=(/2.4999999999990e-1_wp_, 9.3749999721203e-2_wp_, &
|
||||
5.8593661255531e-2_wp_, 4.2717890547383e-2_wp_, &
|
||||
3.3478943665762e-2_wp_, 2.6145014700314e-2_wp_, &
|
||||
1.6804023346363e-2_wp_, 6.4321465864383e-3_wp_, &
|
||||
9.8983328462254e-4_wp_, 3.1859195655502e-5_wp_/)
|
||||
!
|
||||
if(abs(xk) >= 1.0_wp_) then
|
||||
ellick=0.0_wp_
|
||||
return
|
||||
end if
|
||||
eta=1.0_wp_-xk**2
|
||||
pa=a(10)
|
||||
do i = 1,9
|
||||
pa=pa*eta+a(10-i)
|
||||
end do
|
||||
pa=pa*eta
|
||||
pb=b(10)
|
||||
do i = 1,9
|
||||
pb=pb*eta+b(10-i)
|
||||
end do
|
||||
pb=pb*eta
|
||||
ellick=1.3862943611199_wp_+pa-log(eta)*(0.5_wp_+pb)
|
||||
return
|
||||
!
|
||||
entry ellice(xk)
|
||||
!
|
||||
if (abs(xk) >= 1.0_wp_) then
|
||||
if (abs(xk) > 1.0_wp_) then
|
||||
ellick=0.0_wp_
|
||||
else
|
||||
ellick=1.0_wp_
|
||||
end if
|
||||
return
|
||||
end if
|
||||
eta=1.0_wp_-xk**2
|
||||
pc=c(10)
|
||||
do i = 1,9
|
||||
pc=pc*eta+c(10-i)
|
||||
end do
|
||||
pc=pc*eta
|
||||
pd=d(10)
|
||||
do i = 1,9
|
||||
pd=pd*eta+d(10-i)
|
||||
end do
|
||||
pd=pd*eta
|
||||
ellick=1.0_wp_+pc-log(eta)*pd
|
||||
end function ellick
|
||||
|
||||
function besjy(x)
|
||||
implicit none
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: besjy,besj0l,besj1l
|
||||
real(wp_) :: besy0,besy1
|
||||
logical :: l
|
||||
real(wp_) :: v,f,a,b,p,q
|
||||
integer, parameter :: nout=2
|
||||
!
|
||||
entry besj0l(x)
|
||||
!
|
||||
l=.true.
|
||||
v=abs(x)
|
||||
if(v >= 8.0_wp_) go to 4
|
||||
8 f=0.0625_wp_*x**2-2.0_wp_
|
||||
a = - 0.0000000000000008_wp_
|
||||
b = f * a + 0.0000000000000413_wp_
|
||||
a = f * b - a - 0.0000000000019438_wp_
|
||||
b = f * a - b + 0.0000000000784870_wp_
|
||||
a = f * b - a - 0.0000000026792535_wp_
|
||||
b = f * a - b + 0.0000000760816359_wp_
|
||||
a = f * b - a - 0.0000017619469078_wp_
|
||||
b = f * a - b + 0.0000324603288210_wp_
|
||||
a = f * b - a - 0.0004606261662063_wp_
|
||||
b = f * a - b + 0.0048191800694676_wp_
|
||||
a = f * b - a - 0.0348937694114089_wp_
|
||||
b = f * a - b + 0.1580671023320973_wp_
|
||||
a = f * b - a - 0.3700949938726498_wp_
|
||||
b = f * a - b + 0.2651786132033368_wp_
|
||||
a = f * b - a - 0.0087234423528522_wp_
|
||||
a = f * a - b + 0.3154559429497802_wp_
|
||||
besjy=0.5_wp_*(a-b)
|
||||
if(l) return
|
||||
!
|
||||
a = + 0.0000000000000016_wp_
|
||||
b = f * a - 0.0000000000000875_wp_
|
||||
a = f * b - a + 0.0000000000040263_wp_
|
||||
b = f * a - b - 0.0000000001583755_wp_
|
||||
a = f * b - a + 0.0000000052487948_wp_
|
||||
b = f * a - b - 0.0000001440723327_wp_
|
||||
a = f * b - a + 0.0000032065325377_wp_
|
||||
b = f * a - b - 0.0000563207914106_wp_
|
||||
a = f * b - a + 0.0007531135932578_wp_
|
||||
b = f * a - b - 0.0072879624795521_wp_
|
||||
a = f * b - a + 0.0471966895957634_wp_
|
||||
b = f * a - b - 0.1773020127811436_wp_
|
||||
a = f * b - a + 0.2615673462550466_wp_
|
||||
b = f * a - b + 0.1790343140771827_wp_
|
||||
a = f * b - a - 0.2744743055297453_wp_
|
||||
a = f * a - b - 0.0662922264065699_wp_
|
||||
besjy=0.636619772367581_wp_*log(x)*besjy+0.5_wp_*(a-b)
|
||||
return
|
||||
!
|
||||
4 f=256.0_wp_/x**2-2.0_wp_
|
||||
b = + 0.0000000000000007_wp_
|
||||
a = f * b - 0.0000000000000051_wp_
|
||||
b = f * a - b + 0.0000000000000433_wp_
|
||||
a = f * b - a - 0.0000000000004305_wp_
|
||||
b = f * a - b + 0.0000000000051683_wp_
|
||||
a = f * b - a - 0.0000000000786409_wp_
|
||||
b = f * a - b + 0.0000000016306465_wp_
|
||||
a = f * b - a - 0.0000000517059454_wp_
|
||||
b = f * a - b + 0.0000030751847875_wp_
|
||||
a = f * b - a - 0.0005365220468132_wp_
|
||||
a = f * a - b + 1.9989206986950373_wp_
|
||||
p=a-b
|
||||
b = - 0.0000000000000006_wp_
|
||||
a = f * b + 0.0000000000000043_wp_
|
||||
b = f * a - b - 0.0000000000000334_wp_
|
||||
a = f * b - a + 0.0000000000003006_wp_
|
||||
b = f * a - b - 0.0000000000032067_wp_
|
||||
a = f * b - a + 0.0000000000422012_wp_
|
||||
b = f * a - b - 0.0000000007271916_wp_
|
||||
a = f * b - a + 0.0000000179724572_wp_
|
||||
b = f * a - b - 0.0000007414498411_wp_
|
||||
a = f * b - a + 0.0000683851994261_wp_
|
||||
a = f * a - b - 0.0311117092106740_wp_
|
||||
q=8.0_wp_*(a-b)/v
|
||||
f=v-0.785398163397448_wp_
|
||||
a=cos(f)
|
||||
b=sin(f)
|
||||
f=0.398942280401432_wp_/sqrt(v)
|
||||
if(l) go to 6
|
||||
besjy=f*(q*a+p*b)
|
||||
return
|
||||
6 besjy=f*(p*a-q*b)
|
||||
return
|
||||
!
|
||||
entry besj1l(x)
|
||||
!
|
||||
l=.true.
|
||||
v=abs(x)
|
||||
if(v >= 8.0_wp_) go to 5
|
||||
3 f=0.0625_wp_*x**2-2.0_wp_
|
||||
b = + 0.0000000000000114_wp_
|
||||
a = f * b - 0.0000000000005777_wp_
|
||||
b = f * a - b + 0.0000000000252812_wp_
|
||||
a = f * b - a - 0.0000000009424213_wp_
|
||||
b = f * a - b + 0.0000000294970701_wp_
|
||||
a = f * b - a - 0.0000007617587805_wp_
|
||||
b = f * a - b + 0.0000158870192399_wp_
|
||||
a = f * b - a - 0.0002604443893486_wp_
|
||||
b = f * a - b + 0.0032402701826839_wp_
|
||||
a = f * b - a - 0.0291755248061542_wp_
|
||||
b = f * a - b + 0.1777091172397283_wp_
|
||||
a = f * b - a - 0.6614439341345433_wp_
|
||||
b = f * a - b + 1.2879940988576776_wp_
|
||||
a = f * b - a - 1.1918011605412169_wp_
|
||||
a = f * a - b + 1.2967175412105298_wp_
|
||||
besjy=0.0625_wp_*(a-b)*x
|
||||
if(l) return
|
||||
!
|
||||
b = - 0.0000000000000244_wp_
|
||||
a = f * b + 0.0000000000012114_wp_
|
||||
b = f * a - b - 0.0000000000517212_wp_
|
||||
a = f * b - a + 0.0000000018754703_wp_
|
||||
b = f * a - b - 0.0000000568844004_wp_
|
||||
a = f * b - a + 0.0000014166243645_wp_
|
||||
b = f * a - b - 0.0000283046401495_wp_
|
||||
a = f * b - a + 0.0004404786298671_wp_
|
||||
b = f * a - b - 0.0051316411610611_wp_
|
||||
a = f * b - a + 0.0423191803533369_wp_
|
||||
b = f * a - b - 0.2266249915567549_wp_
|
||||
a = f * b - a + 0.6756157807721877_wp_
|
||||
b = f * a - b - 0.7672963628866459_wp_
|
||||
a = f * b - a - 0.1286973843813500_wp_
|
||||
a = f * a - b + 0.0406082117718685_wp_
|
||||
besjy=0.636619772367581_wp_*log(x)*besjy-0.636619772367581_wp_/x &
|
||||
+0.0625_wp_*(a-b)*x
|
||||
return
|
||||
!
|
||||
5 f=256.0_wp_/x**2-2.0_wp_
|
||||
b = - 0.0000000000000007_wp_
|
||||
a = f * b + 0.0000000000000055_wp_
|
||||
b = f * a - b - 0.0000000000000468_wp_
|
||||
a = f * b - a + 0.0000000000004699_wp_
|
||||
b = f * a - b - 0.0000000000057049_wp_
|
||||
a = f * b - a + 0.0000000000881690_wp_
|
||||
b = f * a - b - 0.0000000018718907_wp_
|
||||
a = f * b - a + 0.0000000617763396_wp_
|
||||
b = f * a - b - 0.0000039872843005_wp_
|
||||
a = f * b - a + 0.0008989898330859_wp_
|
||||
a = f * a - b + 2.0018060817200274_wp_
|
||||
p=a-b
|
||||
b = + 0.0000000000000007_wp_
|
||||
a = f * b - 0.0000000000000046_wp_
|
||||
b = f * a - b + 0.0000000000000360_wp_
|
||||
a = f * b - a - 0.0000000000003264_wp_
|
||||
b = f * a - b + 0.0000000000035152_wp_
|
||||
a = f * b - a - 0.0000000000468636_wp_
|
||||
b = f * a - b + 0.0000000008229193_wp_
|
||||
a = f * b - a - 0.0000000209597814_wp_
|
||||
b = f * a - b + 0.0000009138615258_wp_
|
||||
a = f * b - a - 0.0000962772354916_wp_
|
||||
a = f * a - b + 0.0935555741390707_wp_
|
||||
q=8.0_wp_*(a-b)/v
|
||||
f=v-2.356194490192345_wp_
|
||||
a=cos(f)
|
||||
b=sin(f)
|
||||
f=0.398942280401432_wp_/sqrt(v)
|
||||
if(l) go to 7
|
||||
besjy=f*(q*a+p*b)
|
||||
return
|
||||
7 besjy=f*(p*a-q*b)
|
||||
if(x < 0.0_wp_) besjy=-besjy
|
||||
return
|
||||
!
|
||||
entry besy0(x)
|
||||
!
|
||||
if(x <= 0.0_wp_) go to 9
|
||||
l=.false.
|
||||
v=x
|
||||
if(v >= 8.0_wp_) go to 4
|
||||
go to 8
|
||||
entry besy1(x)
|
||||
!
|
||||
if(x <= 0.0_wp_) go to 9
|
||||
l=.false.
|
||||
v=x
|
||||
if(v >= 8.0_wp_) go to 5
|
||||
go to 3
|
||||
!
|
||||
9 besjy=0.0_wp_
|
||||
write(nout,"(1x,'besjy ... non-positive argument x = ',e15.4)") x
|
||||
end function besjy
|
||||
|
||||
function besik(x)
|
||||
implicit none
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: besik,ebesi0,besi0,ebesi1,besi1,ebesk0,besk0,ebesk1,besk1
|
||||
logical :: l,e
|
||||
real(wp_) :: v,f,a,b,z
|
||||
integer, parameter :: nout=2
|
||||
!
|
||||
entry ebesi0(x)
|
||||
!
|
||||
e=.true.
|
||||
go to 1
|
||||
!
|
||||
entry besi0(x)
|
||||
!
|
||||
e=.false.
|
||||
1 l=.true.
|
||||
v=abs(x)
|
||||
if(v >= 8.0_wp_) go to 4
|
||||
8 f=0.0625_wp_*x**2-2.0_wp_
|
||||
a = 0.000000000000002_wp_
|
||||
b = f * a + 0.000000000000120_wp_
|
||||
a = f * b - a + 0.000000000006097_wp_
|
||||
b = f * a - b + 0.000000000268828_wp_
|
||||
a = f * b - a + 0.000000010169727_wp_
|
||||
b = f * a - b + 0.000000326091051_wp_
|
||||
a = f * b - a + 0.000008738315497_wp_
|
||||
b = f * a - b + 0.000192469359688_wp_
|
||||
a = f * b - a + 0.003416331766012_wp_
|
||||
b = f * a - b + 0.047718748798174_wp_
|
||||
a = f * b - a + 0.509493365439983_wp_
|
||||
b = f * a - b + 4.011673760179349_wp_
|
||||
a = f * b - a + 22.274819242462231_wp_
|
||||
b = f * a - b + 82.489032744024100_wp_
|
||||
a = f * b - a + 190.494320172742844_wp_
|
||||
a = f * a - b + 255.466879624362167_wp_
|
||||
besik=0.5_wp_*(a-b)
|
||||
if(l .and. e) besik=exp(-v)*besik
|
||||
if(l) return
|
||||
!
|
||||
a = + 0.000000000000003_wp_
|
||||
b = f * a + 0.000000000000159_wp_
|
||||
a = f * b - a + 0.000000000007658_wp_
|
||||
b = f * a - b + 0.000000000318588_wp_
|
||||
a = f * b - a + 0.000000011281211_wp_
|
||||
b = f * a - b + 0.000000335195256_wp_
|
||||
a = f * b - a + 0.000008216025940_wp_
|
||||
b = f * a - b + 0.000162708379043_wp_
|
||||
a = f * b - a + 0.002536308188086_wp_
|
||||
b = f * a - b + 0.030080722420512_wp_
|
||||
a = f * b - a + 0.259084432434900_wp_
|
||||
b = f * a - b + 1.511535676029228_wp_
|
||||
a = f * b - a + 5.283632866873920_wp_
|
||||
b = f * a - b + 8.005368868700334_wp_
|
||||
a = f * b - a - 4.563433586448395_wp_
|
||||
a = f * a - b - 21.057660177402440_wp_
|
||||
besik=-log(0.125_wp_*x)*besik+0.5_wp_*(a-b)
|
||||
if(e) besik=exp(x)*besik
|
||||
return
|
||||
!
|
||||
4 f=32.0_wp_/v-2.0_wp_
|
||||
b = - 0.000000000000001_wp_
|
||||
a = f * b - 0.000000000000001_wp_
|
||||
b = f * a - b + 0.000000000000004_wp_
|
||||
a = f * b - a + 0.000000000000010_wp_
|
||||
b = f * a - b - 0.000000000000024_wp_
|
||||
a = f * b - a - 0.000000000000104_wp_
|
||||
b = f * a - b + 0.000000000000039_wp_
|
||||
a = f * b - a + 0.000000000000966_wp_
|
||||
b = f * a - b + 0.000000000001800_wp_
|
||||
a = f * b - a - 0.000000000004497_wp_
|
||||
b = f * a - b - 0.000000000033127_wp_
|
||||
a = f * b - a - 0.000000000078957_wp_
|
||||
b = f * a - b + 0.000000000029802_wp_
|
||||
a = f * b - a + 0.000000001238425_wp_
|
||||
b = f * a - b + 0.000000008513091_wp_
|
||||
a = f * b - a + 0.000000056816966_wp_
|
||||
b = f * a - b + 0.000000513587727_wp_
|
||||
a = f * b - a + 0.000007247591100_wp_
|
||||
b = f * a - b + 0.000172700630778_wp_
|
||||
a = f * b - a + 0.008445122624921_wp_
|
||||
a = f * a - b + 2.016558410917480_wp_
|
||||
besik=0.199471140200717_wp_*(a-b)/sqrt(v)
|
||||
if(e) return
|
||||
besik=exp(v)*besik
|
||||
return
|
||||
!
|
||||
entry ebesi1(x)
|
||||
!
|
||||
e=.true.
|
||||
go to 2
|
||||
!
|
||||
entry besi1(x)
|
||||
!
|
||||
e=.false.
|
||||
2 l=.true.
|
||||
v=abs(x)
|
||||
if(v >= 8.0_wp_) go to 3
|
||||
7 f=0.0625_wp_*x**2-2.0_wp_
|
||||
a = + 0.000000000000001_wp_
|
||||
b = f * a + 0.000000000000031_wp_
|
||||
a = f * b - a + 0.000000000001679_wp_
|
||||
b = f * a - b + 0.000000000079291_wp_
|
||||
a = f * b - a + 0.000000003227617_wp_
|
||||
b = f * a - b + 0.000000111946285_wp_
|
||||
a = f * b - a + 0.000003264138122_wp_
|
||||
b = f * a - b + 0.000078756785754_wp_
|
||||
a = f * b - a + 0.001543019015627_wp_
|
||||
b = f * a - b + 0.023993079147841_wp_
|
||||
a = f * b - a + 0.287855511804672_wp_
|
||||
b = f * a - b + 2.571459906347755_wp_
|
||||
a = f * b - a + 16.334550552522066_wp_
|
||||
b = f * a - b + 69.395917633734448_wp_
|
||||
a = f * b - a + 181.312616040570265_wp_
|
||||
a = f * a - b + 259.890237806477292_wp_
|
||||
besik=0.0625_wp_*(a-b)*x
|
||||
if(l .and. e) besik=exp(-v)*besik
|
||||
if(l) return
|
||||
!
|
||||
a = + 0.000000000000001_wp_
|
||||
b = f * a + 0.000000000000042_wp_
|
||||
a = f * b - a + 0.000000000002163_wp_
|
||||
b = f * a - b + 0.000000000096660_wp_
|
||||
a = f * b - a + 0.000000003696783_wp_
|
||||
b = f * a - b + 0.000000119367971_wp_
|
||||
a = f * b - a + 0.000003202510692_wp_
|
||||
b = f * a - b + 0.000070010627855_wp_
|
||||
a = f * b - a + 0.001217056994516_wp_
|
||||
b = f * a - b + 0.016300049289816_wp_
|
||||
a = f * b - a + 0.161074301656148_wp_
|
||||
b = f * a - b + 1.101461993004852_wp_
|
||||
a = f * b - a + 4.666387026862842_wp_
|
||||
b = f * a - b + 9.361617831395389_wp_
|
||||
a = f * b - a - 1.839239224286199_wp_
|
||||
a = f * a - b - 26.688095480862668_wp_
|
||||
besik=log(0.125_wp_*x)*besik+1.0_wp_/x-0.0625_wp_*(a-b)*x
|
||||
if(e) besik=exp(x)*besik
|
||||
return
|
||||
!
|
||||
3 f=32.0_wp_/v-2.0_wp_
|
||||
b = + 0.000000000000001_wp_
|
||||
a = f * b + 0.000000000000001_wp_
|
||||
b = f * a - b - 0.000000000000005_wp_
|
||||
a = f * b - a - 0.000000000000010_wp_
|
||||
b = f * a - b + 0.000000000000026_wp_
|
||||
a = f * b - a + 0.000000000000107_wp_
|
||||
b = f * a - b - 0.000000000000053_wp_
|
||||
a = f * b - a - 0.000000000001024_wp_
|
||||
b = f * a - b - 0.000000000001804_wp_
|
||||
a = f * b - a + 0.000000000005103_wp_
|
||||
b = f * a - b + 0.000000000035408_wp_
|
||||
a = f * b - a + 0.000000000081531_wp_
|
||||
b = f * a - b - 0.000000000047563_wp_
|
||||
a = f * b - a - 0.000000001401141_wp_
|
||||
b = f * a - b - 0.000000009613873_wp_
|
||||
a = f * b - a - 0.000000065961142_wp_
|
||||
b = f * a - b - 0.000000629724239_wp_
|
||||
a = f * b - a - 0.000009732146728_wp_
|
||||
b = f * a - b - 0.000277205360764_wp_
|
||||
a = f * b - a - 0.024467442963276_wp_
|
||||
a = f * a - b + 1.951601204652572_wp_
|
||||
besik=0.199471140200717_wp_*(a-b)/sqrt(v)
|
||||
if(x < 0.0_wp_) besik=-besik
|
||||
if(e) return
|
||||
besik=exp(v)*besik
|
||||
return
|
||||
!
|
||||
entry ebesk0 (x)
|
||||
!
|
||||
e=.true.
|
||||
go to 11
|
||||
!
|
||||
entry besk0(x)
|
||||
!
|
||||
e=.false.
|
||||
11 if(x <= 0.0_wp_) go to 9
|
||||
l=.false.
|
||||
v=x
|
||||
if(x < 5.0_wp_) go to 8
|
||||
f=20.0_wp_/x-2.0_wp_
|
||||
a = - 0.000000000000002_wp_
|
||||
b = f * a + 0.000000000000011_wp_
|
||||
a = f * b - a - 0.000000000000079_wp_
|
||||
b = f * a - b + 0.000000000000581_wp_
|
||||
a = f * b - a - 0.000000000004580_wp_
|
||||
b = f * a - b + 0.000000000039044_wp_
|
||||
a = f * b - a - 0.000000000364547_wp_
|
||||
b = f * a - b + 0.000000003792996_wp_
|
||||
a = f * b - a - 0.000000045047338_wp_
|
||||
b = f * a - b + 0.000000632575109_wp_
|
||||
a = f * b - a - 0.000011106685197_wp_
|
||||
b = f * a - b + 0.000269532612763_wp_
|
||||
a = f * b - a - 0.011310504646928_wp_
|
||||
a = f * a - b + 1.976816348461652_wp_
|
||||
besik=0.626657068657750_wp_*(a-b)/sqrt(x)
|
||||
if(e) return
|
||||
z=besik
|
||||
besik=0.0_wp_
|
||||
if(x < 180.0_wp_) besik=exp(-x)*z
|
||||
return
|
||||
!
|
||||
entry ebesk1(x)
|
||||
!
|
||||
e=.true.
|
||||
go to 12
|
||||
!
|
||||
entry besk1(x)
|
||||
!
|
||||
e=.false.
|
||||
12 if(x <= 0.0_wp_) go to 9
|
||||
l=.false.
|
||||
v=x
|
||||
if(x < 5.0_wp_) go to 7
|
||||
f=20.0_wp_/x-2.0_wp_
|
||||
a = + 0.000000000000002_wp_
|
||||
b = f * a - 0.000000000000013_wp_
|
||||
a = f * b - a + 0.000000000000089_wp_
|
||||
b = f * a - b - 0.000000000000663_wp_
|
||||
a = f * b - a + 0.000000000005288_wp_
|
||||
b = f * a - b - 0.000000000045757_wp_
|
||||
a = f * b - a + 0.000000000435417_wp_
|
||||
b = f * a - b - 0.000000004645555_wp_
|
||||
a = f * b - a + 0.000000057132218_wp_
|
||||
b = f * a - b - 0.000000845172048_wp_
|
||||
a = f * b - a + 0.000016185063810_wp_
|
||||
b = f * a - b - 0.000468475028167_wp_
|
||||
a = f * b - a + 0.035465291243331_wp_
|
||||
a = f * a - b + 2.071901717544716_wp_
|
||||
besik=0.626657068657750_wp_*(a-b)/sqrt(x)
|
||||
if(e) return
|
||||
z=besik
|
||||
besik=0.0_wp_
|
||||
if(x < 180.0_wp_) besik=exp(-x)*z
|
||||
return
|
||||
9 besik=0.0_wp_
|
||||
write(nout,"(1x,'besik ... non-positive argument x = ',e15.4)") x
|
||||
end function besik
|
||||
!
|
||||
! routines for conical function: end
|
||||
!
|
||||
end module conical
|
@ -1,17 +1,21 @@
|
||||
!########################################################################!
|
||||
|
||||
MODULE const_and_precisions
|
||||
use itm_types, only : wp_ => r8
|
||||
use itm_constants, only : pi => itm_pi, e_ => itm_qe, me_ => itm_me, c_ => itm_c
|
||||
!########################################################################!
|
||||
IMPLICIT NONE
|
||||
PUBLIC
|
||||
!------------------------------------------------------------------------
|
||||
! common precisions
|
||||
!------------------------------------------------------------------------
|
||||
! INTEGER, PARAMETER :: sp_ = 4 ! single precision
|
||||
! INTEGER, PARAMETER :: dp_ = 8 ! double precision
|
||||
! INTEGER, PARAMETER :: wp_ = dp_ ! work-precision
|
||||
! INTEGER, PARAMETER :: i1 = SELECTED_INT_KIND (2) ! Integer*1
|
||||
! INTEGER, PARAMETER :: i2 = SELECTED_INT_KIND (4) ! Integer*2
|
||||
INTEGER, PARAMETER :: i4 = SELECTED_INT_KIND (9) ! Integer*4
|
||||
INTEGER, PARAMETER :: i8 = SELECTED_INT_KIND (18) ! Integer*8
|
||||
INTEGER, PARAMETER :: r4 = SELECTED_REAL_KIND (6, 37) ! Real*4
|
||||
INTEGER, PARAMETER :: r8 = SELECTED_REAL_KIND (15, 300) ! Real*8
|
||||
! INTEGER, PARAMETER :: sp_ = r4 ! single precision
|
||||
! INTEGER, PARAMETER :: dp_ = r8 ! double precision
|
||||
INTEGER, PARAMETER :: wp_ = r8 ! work-precision
|
||||
! INTEGER, PARAMETER :: odep_ = dp_ ! ODE-solver precision
|
||||
! INTEGER, PARAMETER :: xp_ = wp_ ! for ext. modules if necessary
|
||||
!------------------------------------------------------------------------
|
||||
@ -26,31 +30,36 @@
|
||||
!!========================================================================
|
||||
! Arithmetic constants
|
||||
!========================================================================
|
||||
integer, parameter :: izero = 0
|
||||
REAL(wp_), PARAMETER :: zero = 0.0_wp_
|
||||
REAL(wp_), PARAMETER :: unit = 1.0_wp_
|
||||
! REAL(wp_), PARAMETER :: pi = 3.141592653589793_wp_
|
||||
! REAL(wp_), PARAMETER :: sqrt_pi = 1.772453850905516_wp_
|
||||
REAL(wp_), PARAMETER :: half = 0.5_wp_
|
||||
REAL(wp_), PARAMETER :: one = 1.0_wp_
|
||||
REAL(wp_), PARAMETER :: two = 2.0_wp_
|
||||
real(wp_), parameter :: pi = 3.141592653589793_wp_ ! 3.141592653589793238462643383280
|
||||
real(wp_), parameter :: pihalf = 1.57079632679489661923_wp_
|
||||
REAL(wp_), PARAMETER :: sqrt_pi = 1.772453850905516_wp_
|
||||
! REAL(wp_), PARAMETER :: sqrt_2 = 1.414213562373095_wp_
|
||||
! REAL(wp_), PARAMETER :: rad = pi/180.0_wp_
|
||||
REAL(wp_), PARAMETER :: degree = pi/180.0_wp_
|
||||
REAL(wp_), PARAMETER :: emn1 = 0.367879441171442_wp_ ! exp(-1)
|
||||
!---
|
||||
! REAL(wp_), PARAMETER :: ex(1:3) = (/unit,zero,zero/)
|
||||
! REAL(wp_), PARAMETER :: ey(1:3) = (/zero,unit,zero/)
|
||||
! REAL(wp_), PARAMETER :: ez(1:3) = (/zero,zero,unit/)
|
||||
! REAL(wp_), PARAMETER :: ex(1:3) = (/one ,zero,zero/)
|
||||
! REAL(wp_), PARAMETER :: ey(1:3) = (/zero,one ,zero/)
|
||||
! REAL(wp_), PARAMETER :: ez(1:3) = (/zero,zero,one /)
|
||||
!---
|
||||
! REAL(wp_), PARAMETER :: kron(3,3) = reshape((/unit,zero,zero, &
|
||||
! zero,unit,zero, &
|
||||
! zero,zero,unit/),(/3,3/))
|
||||
! COMPLEX(wp_), PARAMETER :: im = (0.0_wp_,1.0_wp_)
|
||||
! COMPLEX(wp_), PARAMETER :: czero = (0.0_wp_,0.0_wp_)
|
||||
! COMPLEX(wp_), PARAMETER :: cunit = (1.0_wp_,0.0_wp_)
|
||||
! REAL(wp_), PARAMETER :: kron(3,3) = reshape((/one ,zero,zero, &
|
||||
! zero,one ,zero, &
|
||||
! zero,zero,one /),(/3,3/))
|
||||
COMPLEX(wp_), PARAMETER :: im = (0.0_wp_,1.0_wp_)
|
||||
COMPLEX(wp_), PARAMETER :: czero = (0.0_wp_,0.0_wp_)
|
||||
COMPLEX(wp_), PARAMETER :: cunit = (1.0_wp_,0.0_wp_)
|
||||
! COMPLEX(wp_), PARAMETER :: ctwo = (2.0_wp_,0.0_wp_)
|
||||
!========================================================================
|
||||
! Computer constants
|
||||
!========================================================================
|
||||
REAL(wp_), PARAMETER :: comp_eps = EPSILON(unit)
|
||||
REAL(wp_), PARAMETER :: comp_eps = EPSILON(one)
|
||||
! REAL(wp_), PARAMETER :: comp_eps2 = comp_eps**2
|
||||
! REAL(wp_), PARAMETER :: comp_tiny = TINY(unit)
|
||||
! REAL(wp_), PARAMETER :: comp_huge = HUGE(unit)
|
||||
REAL(wp_), PARAMETER :: comp_tiny = TINY(one)
|
||||
REAL(wp_), PARAMETER :: comp_huge = HUGE(one)
|
||||
! REAL(wp_), PARAMETER :: comp_tinylog =-200 ! LOG10(comp_tiny)
|
||||
! REAL(wp_), PARAMETER :: comp_hugelog =+200 ! LOG10(comp_huge)
|
||||
! REAL(wp_), PARAMETER :: comp_tiny1 = 1d+50*comp_tiny
|
||||
@ -60,26 +69,42 @@
|
||||
!------------------------------------------------------------------------
|
||||
! Conventional constants
|
||||
!------------------------------------------------------------------------
|
||||
INTEGER, PARAMETER :: int_invalid = -999999999
|
||||
REAL(R8), PARAMETER :: r8_invalid = -9.0e40_r8
|
||||
! REAL(wp_), PARAMETER :: output_tiny = 1.0d-66
|
||||
! REAL(wp_), PARAMETER :: output_huge = 1.0d+66
|
||||
!========================================================================
|
||||
! Physical constants (SI)
|
||||
!========================================================================
|
||||
! REAL(wp_), PARAMETER :: e_ = 1.602176487d-19 ! [C]
|
||||
! REAL(wp_), PARAMETER :: me_ = 9.10938215d-31 ! [kg]
|
||||
! REAL(wp_), PARAMETER :: mp_ = 1.672621637d-27 ! [kg]
|
||||
! REAL(wp_), PARAMETER :: rmpe_ = mp_/me_
|
||||
! REAL(wp_), PARAMETER :: c_ = 2.99792458d+08 ! [m/s]
|
||||
! REAL(wp_), PARAMETER :: eps0_ = 8.854187817d-12 ! [F/m]
|
||||
real (wp_), parameter :: e_ = 1.602176487e-19_wp_ ! elementary charge, C
|
||||
real (wp_), parameter :: me_ = 9.10938215e-31_wp_ ! electron mass, kg
|
||||
! real (wp_), parameter :: mp_ = 1.672621637e-27_wp_ ! proton mass, kg
|
||||
! real (wp_), parameter :: md_ = 3.34358320e-27_wp_ ! deuteron mass, kg
|
||||
! real (wp_), parameter :: mt_ = 5.00735588e-27_wp_ ! triton mass, kg
|
||||
! real (wp_), parameter :: ma_ = 6.64465620e-27_wp_ ! alpha mass, kg
|
||||
! real (wp_), parameter :: amu_ = 1.660538782e-27_wp_ ! amu, kg
|
||||
! REAL (wp_), PARAMETER :: rmpe_ = mp_/me_ ! proton-electron mass ratio
|
||||
real (wp_), parameter :: c_ = 2.99792458e8_wp_ ! speed of light, m/s
|
||||
real (wp_), parameter :: mu0_ = 4.0e-7_wp_ * pi ! magnetic permeability of vacuum
|
||||
real (wp_), parameter :: eps0_ = 1.0_wp_ / (mu0_ * c_**2) ! dielectric constant of vacuum, F/m
|
||||
! real (wp_), parameter :: avogr = 6.02214179e23_wp_
|
||||
! real (wp_), parameter :: KBolt = 1.3806504e-23_wp_
|
||||
!========================================================================
|
||||
! Physical constants (cgs)
|
||||
!========================================================================
|
||||
real (wp_), parameter :: ccgs_ = c_*1.e2_wp_ ! speed of light, cm/s
|
||||
real (wp_), parameter :: mecgs_ = me_*1.e3_wp_ ! electron mass, g
|
||||
real (wp_), parameter :: ecgs_ = e_*c_*10._wp_ ! elementary charge, statcoul
|
||||
!------------------------------------------------------------------------
|
||||
! Useful definitions
|
||||
!------------------------------------------------------------------------
|
||||
REAL(wp_), PARAMETER :: keV_ = 1000*e_ ! [J]
|
||||
REAL(wp_), PARAMETER :: keV_ = 1.e3_wp_*e_ ! [J]
|
||||
REAL(wp_), PARAMETER :: mc2_SI = me_*c_**2 ! [J]
|
||||
REAL(wp_), PARAMETER :: mc2_ = mc2_SI/keV_ ! [keV]
|
||||
REAL(wp_), PARAMETER :: mu0inv = 1._wp_/mu0_ !
|
||||
! REAL(wp_), PARAMETER :: mc_ = me_*c_ ! [kg*m/s]
|
||||
! ! f_ce = fce1_*B (B in Tesla): !
|
||||
! REAL(wp_), PARAMETER :: wce1_ = e_/me_ ! [rad/s]
|
||||
REAL(wp_), PARAMETER :: wce1_ = e_/me_ ! [rad/s]
|
||||
! REAL(wp_), PARAMETER :: fce1_ = wce1_/(2*pi) ! [1/s]
|
||||
! ! f_pl = fpe1_*sqrt(Ne) (Ne in 1/m**3): !
|
||||
! REAL(wp_), PARAMETER :: wpe1_ = 56.4049201 ! [rad/s]
|
||||
@ -100,6 +125,33 @@
|
||||
! REAL(wp_), PARAMETER :: Npar_min = 1.0d-3
|
||||
!########################################################################!
|
||||
|
||||
interface is_valid
|
||||
module procedure is_valid_int4, is_valid_int8, is_valid_real8
|
||||
end interface
|
||||
|
||||
contains
|
||||
|
||||
logical function is_valid_int4(in_int)
|
||||
implicit none
|
||||
integer(i4), intent(in) :: in_int
|
||||
is_valid_int4 = in_int /= int_invalid
|
||||
return
|
||||
end function is_valid_int4
|
||||
|
||||
logical function is_valid_int8(in_int)
|
||||
implicit none
|
||||
integer(i8), intent(in) :: in_int
|
||||
is_valid_int8 = in_int /= int_invalid
|
||||
return
|
||||
end function is_valid_int8
|
||||
|
||||
logical function is_valid_real8(in_real)
|
||||
implicit none
|
||||
real(r8), intent(in) :: in_real
|
||||
is_valid_real8 = abs(in_real - r8_invalid) > abs(r8_invalid) * 1.0e-15_r8
|
||||
return
|
||||
end function is_valid_real8
|
||||
|
||||
END MODULE const_and_precisions
|
||||
|
||||
!########################################################################!
|
||||
|
328
src/coreprofiles.f90
Normal file
328
src/coreprofiles.f90
Normal file
@ -0,0 +1,328 @@
|
||||
module coreprofiles
|
||||
use const_and_precisions, only : wp_,zero,one
|
||||
implicit none
|
||||
|
||||
INTEGER, SAVE :: npp,nsfd
|
||||
REAL(wp_), SAVE :: psdbnd,psnpp,denpp,ddenpp,d2denpp
|
||||
REAL(wp_), DIMENSION(:), ALLOCATABLE, SAVE :: tfn,cfn,psrad
|
||||
REAL(wp_), DIMENSION(:,:), ALLOCATABLE, SAVE :: ct,cz
|
||||
REAL(wp_), SAVE :: dens0,aln1,aln2,te0,dte0,alt1,alt2,zeffan
|
||||
|
||||
contains
|
||||
|
||||
subroutine density(psin,dens,ddens)
|
||||
use gray_params, only : iprof
|
||||
use dierckx, only : splev,splder
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: psin
|
||||
real(wp_), intent(out) :: dens,ddens
|
||||
! local variables
|
||||
integer, parameter :: nn=3, nn1=nn+1, nn2=nn+2
|
||||
integer :: ier,nu
|
||||
real(wp_) :: profd,dprofd,dpsib,tt,fp,dfp,fh,dfh
|
||||
real(wp_), dimension(1) :: xxs,ffs
|
||||
real(wp_), dimension(npp+4) :: wrkfd
|
||||
|
||||
!
|
||||
! computation of density [10^19 m^-3] and derivative wrt psi
|
||||
!
|
||||
dens=zero
|
||||
ddens=zero
|
||||
if((psin >= psdbnd).or.(psin < zero)) return
|
||||
!
|
||||
if(iprof == 0) then
|
||||
if(psin > one) return
|
||||
profd=(one-psin**aln1)**aln2
|
||||
dens=dens0*profd
|
||||
dprofd=-aln1*aln2*psin**(aln1-one) &
|
||||
*(one-psin**aln1)**(aln2-one)
|
||||
ddens=dens0*dprofd
|
||||
else
|
||||
if(psin > psnpp) then
|
||||
|
||||
! smooth interpolation for psnpp < psi < psdbnd
|
||||
! dens = fp * fh
|
||||
! fp: parabola matched at psi=psnpp with given profile density
|
||||
! fh=(1-t)^3(1+3t+6t^2) is a smoothing function:
|
||||
! fh(0)=1, fh(1)=0 and zero first and second deriv at t=0,1
|
||||
!
|
||||
dpsib=psin-psnpp
|
||||
fp=denpp+dpsib*ddenpp+0.5_wp_*dpsib**2*d2denpp
|
||||
dfp=ddenpp+dpsib*d2denpp
|
||||
tt=dpsib/(psdbnd-psnpp)
|
||||
fh=(one-tt)**3*(one+3.0_wp_*tt+6.0_wp_*tt**2)
|
||||
dfh=-30.0_wp_*(one-tt)**2*tt**2/(psdbnd-psnpp)
|
||||
dens=fp*fh
|
||||
ddens=dfp*fh+fp*dfh
|
||||
else
|
||||
xxs(1)=psin
|
||||
ier=0
|
||||
call splev(tfn,nsfd,cfn,3,xxs,ffs,1,ier)
|
||||
dens=ffs(1)
|
||||
nu=1
|
||||
ier=0
|
||||
call splder(tfn,nsfd,cfn,3,nu,xxs,ffs,1,wrkfd,ier)
|
||||
ddens=ffs(1)
|
||||
if(ier > 0) print*,ier
|
||||
if(abs(dens) < 1.0e-10_wp_) dens=zero
|
||||
end if
|
||||
if(dens < zero) print*,' DENSITY NEGATIVE',dens
|
||||
! if(dens < zero) then
|
||||
! dens=zero
|
||||
! ddens=zero
|
||||
! end if
|
||||
end if
|
||||
end subroutine density
|
||||
|
||||
function temp(psin)
|
||||
use const_and_precisions, only : wp_,zero,one
|
||||
use gray_params, only : iprof
|
||||
use utils, only : locate
|
||||
use simplespline, only :spli
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: psin
|
||||
real(wp_) :: temp
|
||||
! local variables
|
||||
integer :: k
|
||||
real(wp_) :: proft,dps
|
||||
|
||||
temp=zero
|
||||
if((psin >= one).or.(psin < zero)) return
|
||||
if(iprof == 0) then
|
||||
proft=(1.0_wp_-psin**alt1)**alt2
|
||||
temp=(te0-dte0)*proft+dte0
|
||||
else
|
||||
call locate(psrad,npp,psin,k)
|
||||
k=max(1,min(k,npp-1))
|
||||
dps=psin-psrad(k)
|
||||
temp=spli(ct,npp,k,dps)
|
||||
endif
|
||||
end function temp
|
||||
|
||||
function fzeff(psin)
|
||||
use const_and_precisions, only : wp_,zero,one
|
||||
use gray_params, only : iprof
|
||||
use utils, only : locate
|
||||
use simplespline, only :spli
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: psin
|
||||
real(wp_) :: fzeff
|
||||
! local variables
|
||||
integer :: k
|
||||
real(wp_) :: dps
|
||||
|
||||
fzeff=one
|
||||
if((psin >= one).or.(psin < zero)) return
|
||||
if(iprof == 0) then
|
||||
fzeff=zeffan
|
||||
else
|
||||
call locate(psrad,npp,psin,k)
|
||||
k=max(1,min(k,npp-1))
|
||||
dps=psin-psrad(k)
|
||||
fzeff=spli(cz,npp,k,dps)
|
||||
endif
|
||||
end function fzeff
|
||||
|
||||
subroutine read_profiles(filenm,psin,te,ne,zeff,unit)
|
||||
use utils, only : get_free_unit
|
||||
implicit none
|
||||
! arguments
|
||||
character(len=*), intent(in) :: filenm
|
||||
real(wp_), dimension(:), allocatable, intent(out) :: psin,te,ne,zeff
|
||||
integer, optional, intent(in) :: unit
|
||||
! local variables
|
||||
integer :: u, i, n
|
||||
|
||||
if (present(unit)) then
|
||||
u=unit
|
||||
else
|
||||
u=get_free_unit()
|
||||
end if
|
||||
open(file=trim(filenm),status='old',action='read',unit=u)
|
||||
read(u,*) n
|
||||
if(allocated(psin)) deallocate(psin)
|
||||
if(allocated(te)) deallocate(te)
|
||||
if(allocated(ne)) deallocate(ne)
|
||||
if(allocated(zeff)) deallocate(zeff)
|
||||
allocate(psin(n),te(n),ne(n),zeff(n))
|
||||
do i=1,n
|
||||
read(u,*) psin(i),te(i),ne(i),zeff(i)
|
||||
end do
|
||||
psin(1)=max(psin(1),zero)
|
||||
close(u)
|
||||
end subroutine read_profiles
|
||||
|
||||
subroutine read_profiles_an(filenm,te,ne,zeff,unit)
|
||||
use utils, only : get_free_unit
|
||||
implicit none
|
||||
! arguments
|
||||
character(len=*), intent(in) :: filenm
|
||||
real(wp_), dimension(:), allocatable, intent(out) :: te,ne,zeff
|
||||
integer, optional, intent(in) :: unit
|
||||
! local variables
|
||||
integer :: u
|
||||
|
||||
if (present(unit)) then
|
||||
u=unit
|
||||
else
|
||||
u=get_free_unit()
|
||||
end if
|
||||
|
||||
if(allocated(te)) deallocate(te)
|
||||
if(allocated(ne)) deallocate(ne)
|
||||
if(allocated(zeff)) deallocate(zeff)
|
||||
allocate(te(4),ne(3),zeff(1))
|
||||
|
||||
open(file=trim(filenm),status='old',action='read',unit=u)
|
||||
read(u,*) ne(1:3) ! dens0,aln1,aln2
|
||||
read(u,*) te(1:4) ! te0,dte0,alt1,alt2
|
||||
read(u,*) zeff(1) ! zeffan
|
||||
close(u)
|
||||
end subroutine read_profiles_an
|
||||
|
||||
subroutine tene_scal(te,ne,tfact,nfact,bfact,iscal,iprof)
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), dimension(:), intent(inout) :: te,ne
|
||||
real(wp_), intent(in) :: tfact,nfact,bfact
|
||||
integer, intent(in) :: iscal,iprof
|
||||
! local variables
|
||||
real(wp_) :: aat,aan,ffact
|
||||
integer :: lastte,lastne
|
||||
|
||||
if (iscal==0) then
|
||||
aat=2.0_wp_/3.0_wp_
|
||||
aan=4.0_wp_/3.0_wp_
|
||||
else
|
||||
aat=1.0_wp_
|
||||
aan=1.0_wp_
|
||||
end if
|
||||
if(iscal==2) then
|
||||
ffact=1.0_wp_
|
||||
else
|
||||
ffact=bfact
|
||||
end if
|
||||
if (iprof==0) then
|
||||
lastte=2
|
||||
lastne=1
|
||||
else
|
||||
lastte=size(te)
|
||||
lastne=size(ne)
|
||||
end if
|
||||
te(1:lastte)=te(1:lastte)*ffact**aat*tfact
|
||||
ne(1:lastne)=ne(1:lastne)*ffact**aan*nfact
|
||||
end subroutine tene_scal
|
||||
|
||||
subroutine set_prfspl(psin,te,ne,zeff,ssplne,psdbndmx)
|
||||
use simplespline, only : difcs
|
||||
use dierckx, only : curfit, splev, splder
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), dimension(:), intent(in) :: psin,te,ne,zeff
|
||||
real(wp_), intent(in) :: ssplne,psdbndmx
|
||||
! local variables
|
||||
integer, parameter :: iopt=0, kspl=3
|
||||
integer :: n, npest, lwrkf, ier
|
||||
real(wp_) :: xb, xe, fp, xnv, xxp,xxm,delta2
|
||||
real(wp_), dimension(:), allocatable :: wf, wrkf
|
||||
integer, dimension(:), allocatable :: iwrkf
|
||||
real(wp_), dimension(1) :: dedge,ddedge,d2dedge
|
||||
|
||||
n=size(psin)
|
||||
npest=n+4
|
||||
lwrkf=n*4+npest*16
|
||||
allocate(wrkf(lwrkf),iwrkf(npest),wf(n))
|
||||
|
||||
! if necessary, reallocate spline arrays
|
||||
if(.not.allocated(psrad)) then
|
||||
allocate(psrad(n),ct(n,4),cz(n,4))
|
||||
else
|
||||
if(size(psrad)<n) then
|
||||
deallocate(psrad,ct,cz)
|
||||
allocate(psrad(n),ct(n,4),cz(n,4))
|
||||
end if
|
||||
end if
|
||||
if(.not.allocated(cfn)) then
|
||||
allocate(tfn(npest),cfn(npest))
|
||||
else
|
||||
if(size(cfn)<npest) then
|
||||
deallocate(tfn,cfn)
|
||||
allocate(tfn(npest),cfn(npest))
|
||||
end if
|
||||
end if
|
||||
|
||||
! spline approximation of temperature and Zeff
|
||||
call difcs(psin,te, n,iopt,ct,ier)
|
||||
call difcs(psin,zeff,n,iopt,cz,ier)
|
||||
psrad=psin
|
||||
npp=n
|
||||
|
||||
! spline approximation of density
|
||||
xb=zero
|
||||
xe=psin(n)
|
||||
wf(:)=one
|
||||
call curfit(iopt,n,psin,ne,wf,xb,xe,kspl,ssplne,npest, &
|
||||
nsfd,tfn,cfn,fp,wrkf,lwrkf,iwrkf,ier)
|
||||
|
||||
! compute polinomial extrapolation matching the spline boundary up to the
|
||||
! 2nd order derivative, extending the profile up to psi=psdbnd where
|
||||
! ne=ne'=ne''=0
|
||||
! spline value and derivatives at the edge
|
||||
call splev(tfn,nsfd,cfn,kspl,psin(n:n),dedge(1:1),1,ier)
|
||||
call splder(tfn,nsfd,cfn,kspl,1,psin(n:n),ddedge(1:1), 1,wrkf(1:nsfd),ier)
|
||||
call splder(tfn,nsfd,cfn,kspl,2,psin(n:n),d2dedge(1:1),1,wrkf(1:nsfd),ier)
|
||||
! determination of the boundary
|
||||
psdbnd=psdbndmx
|
||||
|
||||
psnpp=psin(n)
|
||||
denpp=dedge(1)
|
||||
ddenpp=ddedge(1)
|
||||
d2denpp=d2dedge(1)
|
||||
|
||||
delta2=(ddenpp/d2denpp)**2-2.0_wp_*denpp/d2denpp
|
||||
xnv=psnpp-ddenpp/d2denpp
|
||||
if(delta2 < zero) then
|
||||
if(xnv > psnpp) psdbnd=min(psdbnd,xnv)
|
||||
else
|
||||
xxm=xnv-sqrt(delta2)
|
||||
xxp=xnv+sqrt(delta2)
|
||||
if(xxm > psnpp) then
|
||||
psdbnd=min(psdbnd,xxm)
|
||||
else if (xxp > psnpp) then
|
||||
psdbnd=min(psdbnd,xxp)
|
||||
end if
|
||||
end if
|
||||
|
||||
deallocate(iwrkf,wrkf,wf)
|
||||
end subroutine set_prfspl
|
||||
|
||||
subroutine unset_prfspl
|
||||
implicit none
|
||||
|
||||
if(allocated(psrad)) deallocate(psrad)
|
||||
if(allocated(ct)) deallocate(ct)
|
||||
if(allocated(cz)) deallocate(cz)
|
||||
if(allocated(tfn)) deallocate(tfn)
|
||||
if(allocated(cfn)) deallocate(cfn)
|
||||
end subroutine unset_prfspl
|
||||
|
||||
subroutine set_prfan(te,ne,zeff)
|
||||
implicit none
|
||||
REAL(wp_), dimension(:), intent(in) :: te,ne,zeff
|
||||
|
||||
te0=te(1)
|
||||
dte0=te(2)
|
||||
alt1=te(3)
|
||||
alt2=te(4)
|
||||
dens0=ne(1)
|
||||
aln1=ne(2)
|
||||
aln2=ne(3)
|
||||
zeffan=zeff(1)
|
||||
|
||||
psdbnd=1.0_wp_
|
||||
end subroutine set_prfan
|
||||
|
||||
end module coreprofiles
|
4609
src/dierckx.f90
Normal file
4609
src/dierckx.f90
Normal file
File diff suppressed because it is too large
Load Diff
1334
src/dispersion.f90
Normal file
1334
src/dispersion.f90
Normal file
File diff suppressed because it is too large
Load Diff
888
src/eccd.f90
Normal file
888
src/eccd.f90
Normal file
@ -0,0 +1,888 @@
|
||||
module eccd
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
real(wp_), parameter, private :: cst2min=1.0e-6_wp_ ! min width of trap. cone
|
||||
integer, parameter, private :: nfpp=13, & ! number of extra parameters passed
|
||||
nfpp1=nfpp+ 1, nfpp2=nfpp+ 2, & ! to the integrand function fpp
|
||||
nfpp3=nfpp+ 3, nfpp4=nfpp+ 4, &
|
||||
nfpp5=nfpp+ 5
|
||||
!########################################################################
|
||||
! the following parameters are used by N.M. subroutines:
|
||||
! The module contains few subroutines which are requested to calculate
|
||||
! the current drive value by adjoint approach
|
||||
!########################################################################
|
||||
CHARACTER, PRIVATE, PARAMETER :: adj_appr(1:6) = & ! adj. approach switcher
|
||||
(/ 'l', & ! (1)='l': collisionless limit
|
||||
! (1)='c': collisional (classical) limit,
|
||||
! w/o trap. part.
|
||||
'm', & ! (2)='m': momentum conservation
|
||||
! (2)='h': high-speed limit
|
||||
!---
|
||||
'l', & ! DO NOT CHANGE!
|
||||
'r', & ! DO NOT CHANGE!
|
||||
'v', & ! DO NOT CHANGE!
|
||||
'i' /) ! DO NOT CHANGE!
|
||||
!-------
|
||||
REAL(wp_), PRIVATE :: r2,q2,gp1 ! coefficients for HSL integrand function
|
||||
!-------
|
||||
REAL(wp_), PRIVATE, PARAMETER :: delta = 1e-4 ! border for recalculation
|
||||
!------- for N.M. subroutines (variational principle) -------
|
||||
REAL(wp_), PRIVATE :: sfd(1:4) ! polyn. exp. of the "Spitzer"-function
|
||||
INTEGER, PRIVATE, PARAMETER :: nre = 2 ! order of rel. correct.
|
||||
REAL(wp_), PRIVATE, PARAMETER :: vp_mee(0:4,0:4,0:2) = &
|
||||
RESHAPE((/0.0, 0.0, 0.0, 0.0, 0.0, &
|
||||
0.0, 0.184875, 0.484304, 1.06069, 2.26175, &
|
||||
0.0, 0.484304, 1.41421, 3.38514, 7.77817, &
|
||||
0.0, 1.06069, 3.38514, 8.73232, 21.4005, &
|
||||
0.0, 2.26175, 7.77817, 21.4005, 55.5079, &
|
||||
! &
|
||||
0.0, -1.33059,-2.57431, -5.07771, -10.3884, &
|
||||
-0.846284,-1.46337, -1.4941, -0.799288, 2.57505, &
|
||||
-1.1601, -1.4941, 2.25114, 14.159, 50.0534, &
|
||||
-1.69257, -0.799288, 14.159, 61.4168, 204.389, &
|
||||
-2.61022, 2.57505, 50.0534, 204.389, 683.756, &
|
||||
! &
|
||||
0.0, 2.62498, 0.985392,-5.57449, -27.683, &
|
||||
0.0, 3.45785, 5.10096, 9.34463, 22.9831, &
|
||||
-0.652555, 5.10096, 20.5135, 75.8022, 268.944, &
|
||||
-2.11571, 9.34463, 75.8022, 330.42, 1248.69, &
|
||||
-5.38358, 22.9831, 268.944, 1248.69, 4876.48/),&
|
||||
(/5,5,3/))
|
||||
REAL(wp_), PRIVATE, PARAMETER :: vp_mei(0:4,0:4,0:2) = &
|
||||
RESHAPE((/0.0, 0.886227, 1.0, 1.32934, 2.0, &
|
||||
0.886227,1.0, 1.32934, 2.0, 3.32335, &
|
||||
1.0, 1.32934, 2.0, 3.32335, 6.0, &
|
||||
1.32934, 2.0, 3.32335, 6.0, 11.6317, &
|
||||
2.0, 3.32335, 6.0, 11.6317, 24.0, &
|
||||
! &
|
||||
0.0, 0.332335, 1.0, 2.49251, 6.0, &
|
||||
1.66168, 1.0, 2.49251, 6.0, 14.5397, &
|
||||
3.0, 2.49251, 6.0, 14.5397, 36.0, &
|
||||
5.81586, 6.0, 14.5397, 36.0, 91.5999, &
|
||||
12.0, 14.5397, 36.0, 91.5999, 240.0, &
|
||||
! &
|
||||
0.0, -0.103855, 0.0, 1.09047, 6.0, &
|
||||
0.726983,0.0, 1.09047, 6.0, 24.5357, &
|
||||
3.0, 1.09047, 6.0, 24.5357, 90.0, &
|
||||
9.81427, 6.0, 24.5357, 90.0, 314.875, &
|
||||
30.0, 24.5357, 90.0, 314.875, 1080.0 /), &
|
||||
(/5,5,3/))
|
||||
REAL(wp_), PRIVATE, PARAMETER :: vp_oee(0:4,0:4,0:2) = &
|
||||
RESHAPE((/0.0, 0.56419, 0.707107, 1.0073, 1.59099, &
|
||||
0.56419, 0.707107, 1.0073, 1.59099, 2.73981, &
|
||||
0.707107,1.0073, 1.59099, 2.73981, 5.08233, &
|
||||
1.0073, 1.59099, 2.73981, 5.08233, 10.0627, &
|
||||
1.59099, 2.73981, 5.08233, 10.0627, 21.1138, &
|
||||
! &
|
||||
0.0, 1.16832, 1.90035, 3.5758, 7.41357, &
|
||||
2.17562, 1.90035, 3.5758, 7.41357, 16.4891, &
|
||||
3.49134, 3.5758, 7.41357, 16.4891, 38.7611, &
|
||||
6.31562, 7.41357, 16.4891, 38.7611, 95.4472, &
|
||||
12.4959, 16.4891, 38.7611, 95.4472, 244.803, &
|
||||
! &
|
||||
0.0, 2.65931, 4.64177, 9.6032, 22.6941, &
|
||||
4.8652, 4.64177, 9.6032, 22.6941, 59.1437, &
|
||||
9.51418, 9.6032, 22.6941, 59.1437, 165.282, &
|
||||
21.061, 22.6941, 59.1437, 165.282, 485.785, &
|
||||
50.8982, 59.1437, 165.282, 485.785, 1483.22/), &
|
||||
(/5,5,3/))
|
||||
REAL(wp_), PRIVATE, PARAMETER :: vp_g(0:4,0:2) = &
|
||||
RESHAPE((/1.32934, 2.0, 3.32335, 6.0, 11.6317, &
|
||||
2.49251, 0.0, 2.90793, 12.0, 39.2571, &
|
||||
1.09047, 6.0, 11.45, 30.0, 98.9606/), &
|
||||
(/5,3/))
|
||||
!########################################################################
|
||||
|
||||
interface setcdcoeff
|
||||
module procedure setcdcoeff_notrap,setcdcoeff_cohen,setcdcoeff_ncl
|
||||
end interface setcdcoeff
|
||||
|
||||
contains
|
||||
|
||||
subroutine setcdcoeff_notrap(zeff,cst2,eccdpar)
|
||||
implicit none
|
||||
real(wp_), intent(in) :: zeff
|
||||
real(wp_), intent(out) :: cst2
|
||||
real(wp_), dimension(:), allocatable, intent(out) :: eccdpar
|
||||
|
||||
cst2=0.0_wp_
|
||||
allocate(eccdpar(1))
|
||||
eccdpar(1)=zeff
|
||||
end subroutine setcdcoeff_notrap
|
||||
|
||||
subroutine setcdcoeff_cohen(zeff,rbn,rbx,cst2,eccdpar)
|
||||
! cohen model
|
||||
! rbn=B/B_min
|
||||
! rbx=B/B_max
|
||||
! cst2=1.0_wp_-B/B_max
|
||||
! alams=sqrt(1-B_min/B_max)
|
||||
! Zeff < 31 !!!
|
||||
! fp0s= P_a (alams)
|
||||
use conical, only : fconic
|
||||
implicit none
|
||||
real(wp_), intent(in) :: zeff,rbn,rbx
|
||||
real(wp_), intent(out) :: cst2
|
||||
real(wp_), dimension(:), allocatable, intent(out) :: eccdpar
|
||||
real(wp_) :: alams,pa,fp0s
|
||||
|
||||
cst2=1.0_wp_-rbx
|
||||
if(cst2<cst2min) cst2=0.0_wp_
|
||||
alams=sqrt(1.0_wp_-rbx/rbn)
|
||||
pa=sqrt(32.0_wp_/(Zeff+1.0_wp_)-1.0_wp_)/2.0_wp_
|
||||
fp0s=fconic(alams,pa,0)
|
||||
allocate(eccdpar(5))
|
||||
eccdpar(1)=zeff
|
||||
eccdpar(2)=rbn
|
||||
eccdpar(3)=alams
|
||||
eccdpar(4)=pa
|
||||
eccdpar(5)=fp0s
|
||||
end subroutine setcdcoeff_cohen
|
||||
|
||||
subroutine setcdcoeff_ncl(zeff,rbx,fc,amu,rhop,cst2,eccdpar)
|
||||
use magsurf_data, only : ch,tjp,tlm,njpt,nlmt
|
||||
use dierckx, only : profil
|
||||
implicit none
|
||||
integer, parameter :: ksp=3
|
||||
real(wp_), intent(in) :: zeff,rbx,fc,amu,rhop
|
||||
real(wp_), intent(out) :: cst2
|
||||
real(wp_), dimension(:), allocatable, intent(out) :: eccdpar
|
||||
real(wp_), dimension(nlmt) :: chlm
|
||||
integer :: nlm,ierr,npar
|
||||
|
||||
cst2=1.0_wp_-rbx
|
||||
if(cst2<cst2min) cst2=0.0_wp_
|
||||
call SpitzFuncCoeff(amu,Zeff,fc)
|
||||
nlm=nlmt
|
||||
call profil(0,tjp,njpt,tlm,nlmt,ch,ksp,ksp,rhop,nlm,chlm,ierr)
|
||||
if(ierr>0) write(*,*) ' Hlambda profil =',ierr
|
||||
npar=3+2*nlm
|
||||
allocate(eccdpar(npar))
|
||||
eccdpar(1)=zeff
|
||||
eccdpar(2) = fc
|
||||
eccdpar(3) = rbx
|
||||
eccdpar(4:3+nlm) = tlm
|
||||
eccdpar(4+nlm:npar) = chlm
|
||||
end subroutine setcdcoeff_ncl
|
||||
|
||||
subroutine eccdeff(yg,anpl,anprre,dens,amu,ex,ey,ez,nhmn,nhmx, &
|
||||
ithn,cst2,fcur,eccdpar,effjcd,iokhawa,ierr)
|
||||
use const_and_precisions, only : pi,qesi=>e_,mesi=>me_, &
|
||||
vcsi=>c_,qe=>ecgs_,me=>mecgs_,vc=>ccgs_,mc2=>mc2_
|
||||
use quadpack, only : dqagsmv
|
||||
implicit none
|
||||
! local constants
|
||||
real(wp_), parameter :: mc2m2=1.0_wp_/mc2**2, &
|
||||
canucc=2.0e13_wp_*pi*qe**4/(me**2*vc**3),ceff=qesi/(mesi*vcsi)
|
||||
real(wp_), parameter :: epsa=0.0_wp_,epsr=1.0e-2_wp_,xxcr=16.0_wp_
|
||||
real(wp_), parameter :: dumin=1.0e-6_wp_
|
||||
integer, parameter :: lw=5000,liw=lw/4
|
||||
! arguments
|
||||
integer :: i,nhmn,nhmx,ithn,iokhawa,ierr
|
||||
real(wp_) :: yg,anpl,anprre,dens,amu,cst2,effjcd
|
||||
real(wp_), dimension(:) :: eccdpar
|
||||
complex(wp_) :: ex,ey,ez
|
||||
! local variables
|
||||
integer :: nhn,neval,ier,last,npar
|
||||
integer, dimension(liw) :: iw
|
||||
real(wp_) :: anpl2,dnl,ygn,ygn2,resji,rdu2,upltp,upltm,uplp,uplm, &
|
||||
rdu,rdu2t,duu,uu1,uu2,xx1,xx2,resj,resp,eji,epp,anum,denom, &
|
||||
cstrdut,anucc
|
||||
real(wp_), dimension(lw) :: w
|
||||
real(wp_), dimension(nfpp+size(eccdpar)) :: apar
|
||||
real(wp_), dimension(0:1) :: uleft,uright
|
||||
! common/external functions/variables
|
||||
real(wp_), external :: fcur
|
||||
!
|
||||
! effjpl = <J_parallel>/<p_d> /(B_min/<B>) [A m /W]
|
||||
!
|
||||
apar(1) = yg
|
||||
apar(2) = anpl
|
||||
apar(3) = amu
|
||||
apar(4) = anprre
|
||||
apar(5) = dble(ex)
|
||||
apar(6) = dimag(ex)
|
||||
apar(7) = dble(ey)
|
||||
apar(8) = dimag(ey)
|
||||
apar(9) = dble(ez)
|
||||
apar(10) = dimag(ez)
|
||||
apar(11) = dble(ithn)
|
||||
|
||||
npar=size(apar)
|
||||
apar(nfpp+1:npar) = eccdpar
|
||||
|
||||
anpl2=anpl*anpl
|
||||
|
||||
effjcd=0.0_wp_
|
||||
anum=0.0_wp_
|
||||
denom=0.0_wp_
|
||||
iokhawa=0
|
||||
ierr=0
|
||||
do nhn=nhmn,nhmx
|
||||
ygn=nhn*yg
|
||||
ygn2=ygn*ygn
|
||||
|
||||
rdu2=anpl2+ygn2-1.0_wp_
|
||||
|
||||
if (rdu2.lt.0.0_wp_) cycle
|
||||
rdu=sqrt(rdu2)
|
||||
dnl=1.0_wp_-anpl2
|
||||
uplp=(anpl*ygn+rdu)/dnl
|
||||
uplm=(anpl*ygn-rdu)/dnl
|
||||
|
||||
uu1=uplm
|
||||
uu2=uplp
|
||||
xx1=amu*(anpl*uu1+ygn-1.0_wp_)
|
||||
xx2=amu*(anpl*uu2+ygn-1.0_wp_)
|
||||
|
||||
if(xx2.gt.xxcr) uu2=(xxcr/amu-ygn+1.0_wp_)/anpl
|
||||
if(xx1.gt.xxcr) uu1=(xxcr/amu-ygn+1.0_wp_)/anpl
|
||||
duu=abs(uu1-uu2)
|
||||
|
||||
if(duu.le.dumin) cycle
|
||||
|
||||
apar(12) = dble(nhn)
|
||||
apar(13) = ygn
|
||||
|
||||
call dqagsmv(fpp,uu1,uu2,apar(1:nfpp),nfpp,epsa,epsr,resp, &
|
||||
epp,neval,ier,liw,lw,last,iw,w)
|
||||
|
||||
if (ier.gt.0) then
|
||||
ierr=90
|
||||
return
|
||||
end if
|
||||
|
||||
rdu2t=cst2*anpl2+ygn2-1.0_wp_
|
||||
|
||||
if (rdu2t.gt.0.0_wp_.and.cst2.gt.0.0_wp_) then
|
||||
!
|
||||
! resonance curve crosses the trapping region
|
||||
!
|
||||
iokhawa=1
|
||||
cstrdut=sqrt(cst2*rdu2t)
|
||||
upltm=(cst2*anpl*ygn-cstrdut)/(1.0_wp_-cst2*anpl2)
|
||||
upltp=(cst2*anpl*ygn+cstrdut)/(1.0_wp_-cst2*anpl2)
|
||||
uleft(0)=uplm
|
||||
uright(0)=upltm
|
||||
uleft(1)=upltp
|
||||
uright(1)=uplp
|
||||
else
|
||||
!
|
||||
! resonance curve does not cross the trapping region
|
||||
!
|
||||
iokhawa=0
|
||||
uleft(0)=uplm
|
||||
uright(0)=uplp
|
||||
end if
|
||||
|
||||
resj=0.0_wp_
|
||||
! do i=0,iokhawa
|
||||
do i=0,1
|
||||
resji=0.0_wp_
|
||||
xx1=amu*(anpl*uleft(i)+ygn-1.0_wp_)
|
||||
xx2=amu*(anpl*uright(i)+ygn-1.0_wp_)
|
||||
if(xx1.lt.xxcr.or.xx2.lt.xxcr) then
|
||||
if(xx2.gt.xxcr) uright(i)=(xxcr/amu-ygn+1.0_wp_)/anpl
|
||||
if(xx1.gt.xxcr) uleft(i)=(xxcr/amu-ygn+1.0_wp_)/anpl
|
||||
duu=abs(uleft(i)-uright(i))
|
||||
if(duu.gt.dumin) then
|
||||
call dqagsmv(fcur,uleft(i),uright(i),apar,npar,epsa,epsr, &
|
||||
resji,eji,neval,ier,liw,lw,last,iw,w)
|
||||
if (ier.gt.0) then
|
||||
if (abs(resji).lt.1.0e-10_wp_) then
|
||||
resji=0.0_wp_
|
||||
else
|
||||
ierr=91+iokhawa+i
|
||||
return
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
resj=resj+resji
|
||||
if(iokhawa.eq.0) exit
|
||||
end do
|
||||
anum=anum+resj
|
||||
denom=denom+resp
|
||||
end do
|
||||
|
||||
if(denom.gt.0.0_wp_) then
|
||||
anucc=canucc*dens*(48.0_wp_-log(1.0e7_wp_*dens*mc2m2*amu**2))
|
||||
effjcd=-ceff*anum/(anucc*denom)
|
||||
end if
|
||||
|
||||
end subroutine eccdeff
|
||||
|
||||
function fpp(upl,extrapar,npar)
|
||||
!
|
||||
! computation of integral for power density, integrand function fpp
|
||||
!
|
||||
! ith=0 : polarization term = const
|
||||
! ith=1 : polarization term Larmor radius expansion to lowest order
|
||||
! ith=2 : full polarization term (J Bessel)
|
||||
!
|
||||
! integration variable upl passed explicitly. other variables passed
|
||||
! as array of extra parameters of length npar=size(extrapar)
|
||||
!
|
||||
! extrapar(1) = yg
|
||||
! extrapar(2) = anpl
|
||||
! extrapar(3) = amu
|
||||
! extrapar(4) = Re(anprw)
|
||||
! extrapar(5) = Re(ex)
|
||||
! extrapar(6) = Im(ex)
|
||||
! extrapar(7) = Re(ey)
|
||||
! extrapar(8) = Im(ey)
|
||||
! extrapar(9) = Re(ez)
|
||||
! extrapar(10) = Im(ez)
|
||||
! extrapar(11) = double(ithn)
|
||||
! extrapar(12) = double(nhn)
|
||||
! extrapar(13) = ygn
|
||||
!
|
||||
use const_and_precisions, only : ui=>im
|
||||
use math, only : fact
|
||||
implicit none
|
||||
! arguments
|
||||
integer :: npar
|
||||
real(wp_) :: upl,fpp
|
||||
real(wp_), dimension(npar) :: extrapar
|
||||
! local variables
|
||||
integer :: ithn,nhn !,nm,np
|
||||
real(wp_) :: yg,anpl,amu,anprre,ygn,upr,upr2,gam,ee,thn2,thn2u,bb,cth !, &
|
||||
! ajbnm,ajbnp,ajbn
|
||||
real(wp_), dimension(3) :: ajb
|
||||
complex(wp_) :: ex,ey,ez,emxy,epxy
|
||||
|
||||
yg=extrapar(1)
|
||||
anpl=extrapar(2)
|
||||
amu=extrapar(3)
|
||||
anprre=extrapar(4)
|
||||
ex=cmplx(extrapar(5),extrapar(6),wp_)
|
||||
ey=cmplx(extrapar(7),extrapar(8),wp_)
|
||||
ez=cmplx(extrapar(9),extrapar(10),wp_)
|
||||
ithn=int(extrapar(11))
|
||||
nhn=int(extrapar(12))
|
||||
ygn=extrapar(13)
|
||||
|
||||
gam=anpl*upl+ygn
|
||||
upr2=gam*gam-1.0_wp_-upl*upl
|
||||
ee=exp(-amu*(gam-1))
|
||||
|
||||
! thn2=1.0_wp_
|
||||
thn2u=upr2 !*thn2
|
||||
if(ithn.gt.0) then
|
||||
emxy=ex-ui*ey
|
||||
epxy=ex+ui*ey
|
||||
if(upr2.gt.0.0_wp_) then
|
||||
upr=sqrt(upr2)
|
||||
bb=anprre*upr/yg
|
||||
if(ithn.eq.1) then
|
||||
! Larmor radius expansion polarization term at lowest order
|
||||
cth=1.0_wp_
|
||||
if(nhn.gt.1) cth=(0.5_wp_*bb)**(nhn-1)*nhn/fact(nhn)
|
||||
thn2=(0.5_wp_*cth*abs(emxy+ez*anprre*upl/ygn))**2
|
||||
thn2u=upr2*thn2
|
||||
else
|
||||
! Full polarization term
|
||||
! nm=nhn-1
|
||||
! np=nhn+1
|
||||
! ajbnm=dbesjn(nm, bb)
|
||||
! ajbnp=dbesjn(np, bb)
|
||||
! ajbn=dbesjn(nhn, bb)
|
||||
! thn2u=(abs(ez*ajbn*upl+upr*(ajbnp*epxy+ajbnm*emxy)/2.0_wp_))**2
|
||||
ajb=bessel_jn(nhn-1, nhn+1, bb)
|
||||
thn2u=(abs(ez*ajb(2)*upl+upr*(ajb(3)*epxy+ajb(1)*emxy)/2.0_wp_))**2
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
|
||||
fpp=ee*thn2u
|
||||
end function fpp
|
||||
|
||||
function fjch(upl,extrapar,npar)
|
||||
!
|
||||
! computation of integral for current density
|
||||
! integrand for Cohen model with trapping
|
||||
!
|
||||
! integration variable upl passed explicitly. Other variables passed
|
||||
! as array of extra parameters of length npar=size(extrapar).
|
||||
! variables with index 1..nfpp must be passed to fpp
|
||||
! variable with index nfpp+1 is zeff
|
||||
! variables with index gt nfpp+1 are specific of the cd model
|
||||
!
|
||||
! extrapar(2) = anpl
|
||||
! extrapar(4) = Re(anprw)
|
||||
! extrapar(13) = ygn
|
||||
!
|
||||
! extrapar(14) = zeff
|
||||
! extrapar(15) = rb
|
||||
! extrapar(16) = alams
|
||||
! extrapar(17) = pa
|
||||
! extrapar(18) = fp0s
|
||||
!
|
||||
use conical, only : fconic
|
||||
implicit none
|
||||
! arguments
|
||||
integer :: npar
|
||||
real(wp_) :: upl,fjch
|
||||
real(wp_), dimension(npar) :: extrapar
|
||||
! local variables
|
||||
real(wp_) :: anpl,anprre,ygn,zeff,rb,alams,pa,fp0s, &
|
||||
upr2,gam,u2,u,z5,xi,xib,xibi,fu2b,fu2,gu,gg,dgg,alam,fp0, &
|
||||
dfp0,fh,dfhl,eta
|
||||
|
||||
anpl=extrapar(2)
|
||||
anprre=extrapar(4)
|
||||
ygn=extrapar(13)
|
||||
zeff=extrapar(nfpp1)
|
||||
rb=extrapar(nfpp2)
|
||||
alams=extrapar(nfpp3)
|
||||
pa=extrapar(nfpp4)
|
||||
fp0s=extrapar(nfpp5)
|
||||
|
||||
gam=anpl*upl+ygn
|
||||
u2=gam*gam-1.0_wp_
|
||||
upr2=u2-upl*upl
|
||||
u=sqrt(u2)
|
||||
z5=Zeff+5.0_wp_
|
||||
xi=1.0_wp_/z5**2
|
||||
xib=1.0_wp_-xi
|
||||
xibi=1.0_wp_/xib
|
||||
fu2b=1.0_wp_+xib*u2
|
||||
fu2=1.0_wp_+xi*u2
|
||||
gu=(1.0_wp_-1.0_wp_/fu2b**xibi)/sqrt(fu2)
|
||||
gg=u*gu/z5
|
||||
dgg=(gu+u2*(2.0_wp_/fu2b**(1.0_wp_+xibi)/sqrt(fu2)-xi*gu/fu2))/z5
|
||||
|
||||
alam=sqrt(1.0_wp_-upr2/u2/rb)
|
||||
fp0=fconic(alam,pa,0)
|
||||
dfp0=-(pa*pa/2.0_wp_+0.125_wp_)
|
||||
if (alam.lt.1.0_wp_) dfp0=-fconic(alam,pa,1)/sqrt(1.0_wp_-alam**2)
|
||||
fh=alam*(1.0_wp_-alams*fp0/(alam*fp0s))
|
||||
dfhl=1.0_wp_-alams*dfp0/fp0s
|
||||
|
||||
eta=gam*fh*(gg/u+dgg)+upl*(anpl*u2-upl*gam)*gg*dfhl/(u2*u*rb*alam)
|
||||
|
||||
if(upl.lt.0.0_wp_) eta=-eta
|
||||
fjch=eta*fpp(upl,extrapar(1:nfpp),nfpp)
|
||||
|
||||
end function fjch
|
||||
|
||||
function fjch0(upl,extrapar,npar)
|
||||
!
|
||||
! computation of integral for current density
|
||||
! integrand for Cohen model without trapping
|
||||
!
|
||||
! integration variable upl passed explicitly. Other variables passed
|
||||
! as array of extra parameters of length npar=size(extrapar).
|
||||
! variables with index 1..nfpp must be passed to fpp
|
||||
! variable with index nfpp+1 is zeff
|
||||
! variables with index gt nfpp+1 are specific of the cd model
|
||||
!
|
||||
! extrapar(2) = anpl
|
||||
! extrapar(13) = ygn
|
||||
!
|
||||
! extrapar(14) = zeff
|
||||
!
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_) :: upl,fjch0
|
||||
integer :: npar
|
||||
real(wp_), dimension(npar) :: extrapar
|
||||
! local variables
|
||||
real(wp_) :: anpl,ygn,zeff,gam,u2,u,z5,xi,xib,xibi,fu2b,fu2,gu,gg,dgg,eta
|
||||
!
|
||||
anpl=extrapar(2)
|
||||
ygn=extrapar(13)
|
||||
zeff=extrapar(nfpp1)
|
||||
|
||||
gam=anpl*upl+ygn
|
||||
u2=gam*gam-1.0_wp_
|
||||
u=sqrt(u2)
|
||||
z5=Zeff+5.0_wp_
|
||||
xi=1.0_wp_/z5**2
|
||||
xib=1.0_wp_-xi
|
||||
xibi=1.0_wp_/xib
|
||||
fu2b=1.0_wp_+xib*u2
|
||||
fu2=1.0_wp_+xi*u2
|
||||
gu=(1.0_wp_-1.0_wp_/fu2b**xibi)/sqrt(fu2)
|
||||
gg=u*gu/z5
|
||||
dgg=(gu+u2*(2.0_wp_/fu2b**(1.0_wp_+xibi)/sqrt(fu2)-xi*gu/fu2))/z5
|
||||
eta=anpl*gg+gam*upl*dgg/u
|
||||
fjch0=eta*fpp(upl,extrapar(1:nfpp),nfpp)
|
||||
|
||||
end function fjch0
|
||||
|
||||
function fjncl(upl,extrapar,npar)
|
||||
!
|
||||
! computation of integral for current density
|
||||
! integrand for momentum conserv. model K(u) from Maruschenko
|
||||
! gg=F(u)/u with F(u) as in Cohen paper
|
||||
!
|
||||
! integration variable upl passed explicitly. Other variables passed
|
||||
! as array of extra parameters of length npar=size(extrapar).
|
||||
! variables with index 1..nfpp must be passed to fpp
|
||||
! variable with index nfpp+1 is zeff
|
||||
! variables with index gt nfpp+1 are specific of the cd model
|
||||
!
|
||||
! extrapar(2) = anpl
|
||||
! extrapar(3) = amu
|
||||
! extrapar(13) = ygn
|
||||
!
|
||||
! extrapar(14) = zeff
|
||||
! extrapar(15) = fc
|
||||
! extrapar(16) = rbx
|
||||
! extrapar(17:16+(npar-16)/2) = tlm
|
||||
! extrapar(17+(npar-16)/2:npar) = chlm
|
||||
!
|
||||
use dierckx, only : splev,splder
|
||||
implicit none
|
||||
! arguments
|
||||
integer :: npar
|
||||
real(wp_) :: upl,fjncl
|
||||
real(wp_), dimension(npar) :: extrapar
|
||||
! local variables
|
||||
integer :: nlm
|
||||
real(wp_) :: anpl,amu,ygn,zeff,fc,rbx,gam,u2,u,upr2, &
|
||||
bth,uth,fk,dfk,alam,fu,dfu,eta
|
||||
! local variables
|
||||
integer :: ier
|
||||
real(wp_), dimension((npar-nfpp3)/2) :: wrk
|
||||
real(wp_), dimension(1) :: xs,ys
|
||||
!
|
||||
anpl=extrapar(2)
|
||||
amu=extrapar(3)
|
||||
ygn=extrapar(13)
|
||||
zeff=extrapar(nfpp1)
|
||||
fc=extrapar(nfpp2)
|
||||
rbx=extrapar(nfpp3)
|
||||
|
||||
gam=anpl*upl+ygn
|
||||
u2=gam*gam-1.0_wp_
|
||||
u=sqrt(u2)
|
||||
upr2=u2-upl*upl
|
||||
bth=sqrt(2.0_wp_/amu)
|
||||
uth=u/bth
|
||||
call GenSpitzFunc(Zeff,fc,uth,u,gam,fk,dfk)
|
||||
fk=fk*(4.0_wp_/amu**2)
|
||||
dfk=dfk*(2.0_wp_/amu)*bth
|
||||
|
||||
alam=upr2/u2/rbx
|
||||
xs(1)=alam
|
||||
nlm=(npar-nfpp3)/2
|
||||
!
|
||||
! extrapar(17:16+(npar-16)/2) = tlm
|
||||
! extrapar(17+(npar-16)/2:npar) = chlm
|
||||
!
|
||||
call splev(extrapar(nfpp4:nfpp3+nlm),nlm,extrapar(nfpp4+nlm:npar),3, &
|
||||
xs(1),ys(1),1,ier)
|
||||
fu=ys(1)
|
||||
call splder(extrapar(nfpp4:nfpp3+nlm),nlm,extrapar(nfpp4+nlm:npar),3,1, &
|
||||
xs(1),ys(1),1,wrk,ier)
|
||||
dfu=ys(1)
|
||||
|
||||
eta=gam*fu*dfk/u-2.0_wp_*(anpl-gam*upl/u2)*fk*dfu*upl/u2/rbx
|
||||
if(upl.lt.0) eta=-eta
|
||||
fjncl=eta*fpp(upl,extrapar(1:nfpp),nfpp)
|
||||
end function fjncl
|
||||
|
||||
SUBROUTINE GenSpitzFunc(Zeff,fc,u,q,gam, K,dKdu)
|
||||
!=======================================================================
|
||||
! Author: N.B.Marushchenko
|
||||
! June 2005: as start point the subroutine of Ugo Gasparino (198?)
|
||||
! SpitzFunc() is taken and modified.
|
||||
! 1. adapted to the Fortran-95
|
||||
! 2. derivative of Spitzer function is added
|
||||
! 3. separation for 2 brunches is done:
|
||||
! 1st is referenced as 'with conservation of the moment',
|
||||
! 2nd - as 'high speed limit'.
|
||||
! The last one is taken from the Lin-Liu formulation
|
||||
! (Phys.Plasmas 10 (2003) 4064) with K = F*fc.
|
||||
! The asymptotical high speed limit (Taguchi-Fisch model)
|
||||
! is also included as the reference case.
|
||||
! Feb. 2008: non-relativ. version is replaced by the relativistic one;
|
||||
! the method is the the same, but the trial-function is
|
||||
! based on the relativistic formulation.
|
||||
! The relativistic corrections for the collisional operator
|
||||
! up to the second order, i.e. (1/mu)**2, are applied.
|
||||
! Sep. 2008: generalized Spitzer function for arbitrary collisionality
|
||||
! is implemented. The model is based on the concept of
|
||||
! the "effective trapped particles fraction".
|
||||
! The different.-integral kinetic equation for the generalized
|
||||
! Spitzer function is produced with help of subroutines
|
||||
! ArbColl_TrappFract_Array and ArbColl_SpitzFunc_Array,
|
||||
! where the subroutines of H. Maassberg are called).
|
||||
!========================================================================
|
||||
! Spitzer function with & w/o trapped particle effects is given by:
|
||||
!
|
||||
! K(x) = x/gamma*(d1*x+d2*x^2+d4*x^3+d4*x^4),
|
||||
!
|
||||
! where x = v/v_th and gamma=1 for non-relativistic version (Ugo),
|
||||
! or x = p/p_th for relativistic version (N.M., February 2008).
|
||||
! Note, that somewhere the function F(x) instead of K(x) is applied,
|
||||
!
|
||||
! F(x) = K(x)/fc.
|
||||
!
|
||||
! Numerical inversion of the 5x5 symmetric matrix obtained from the
|
||||
! generalized Spitzer problem (see paper of Taguchi for the equation
|
||||
! and paper of Hirshman for the variational approach bringing to the
|
||||
! matrix to be inverted).
|
||||
!
|
||||
! The numerical method used is an improved elimination scheme
|
||||
! (Banachiewiczs-Cholesky-Crout method).
|
||||
! This method is particularly simple for symmetric matrix.
|
||||
! As a reference see "Mathematical Handbook" by Korn & Korn, p.635-636.
|
||||
!
|
||||
! Refs.: 1. S.P. Hirshman, Phys. Fluids 23 (1980) 1238
|
||||
! 2. M. Rome' et al., Plasma Phys. Contr. Fus. 40 (1998) 511
|
||||
! 3. N.B. Marushchenko et al., Fusion Sci. Technol. 55 (2009) 180
|
||||
!========================================================================
|
||||
! INPUTS:
|
||||
! u - p/sqrt(2mT)
|
||||
! q - p/mc;
|
||||
! gam - relativistic factor;
|
||||
! Zeff - effective charge;
|
||||
! fc - fraction of circulating particles.
|
||||
!
|
||||
! OUTPUTS:
|
||||
! K - Spitzer's function
|
||||
! dKdu = dK/du, i.e. its derivative over normalized momentum
|
||||
!=======================================================================
|
||||
use const_and_precisions, only : comp_eps
|
||||
IMPLICIT NONE
|
||||
REAL(wp_), INTENT(in) :: Zeff,fc,u,q,gam
|
||||
REAL(wp_), INTENT(out) :: K,dKdu
|
||||
REAL(wp_) :: gam1,gam2,gam3
|
||||
|
||||
K = 0
|
||||
dKdu = 0
|
||||
IF (u < comp_eps) RETURN
|
||||
|
||||
SELECT CASE(adj_appr(2))
|
||||
CASE('m') !--------------- momentum conservation ------------------!
|
||||
gam1 = gam !
|
||||
IF (adj_appr(4) == 'n') gam1 = 1 !
|
||||
gam2 = gam1*gam1 !
|
||||
gam3 = gam1*gam2 !
|
||||
K = u/gam1*u*(sfd(1)+u*(sfd(2)+u*(sfd(3)+u*sfd(4)))) !
|
||||
dKdu = u/gam3* (sfd(1)*(1+ gam2)+u*(sfd(2)*(1+2*gam2)+ & !
|
||||
u*(sfd(3)*(1+3*gam2)+u* sfd(4)*(1+4*gam2)))) !
|
||||
!--------------------- end momentum conservation -------------------!
|
||||
CASE('h') !---------------- high-speed-limit ----------------------!
|
||||
IF (adj_appr(4) == 'n') THEN !- non-relativ. asymptotic form -!
|
||||
K = u**4 *fc/(Zeff+1+4*fc) !- (Taguchi-Fisch model) -!
|
||||
dKdu = 4*u**3 *fc/(Zeff+1+4*fc) !
|
||||
ELSEIF (adj_appr(4) == 'r') THEN !- relativistic, Lin-Liu form. -!
|
||||
CALL SpitzFunc_HighSpeedLimit(Zeff,fc,u,q,gam, K,dKdu) !
|
||||
ENDIF !
|
||||
CASE default !----------------------------------------------------!
|
||||
PRINT*,'GenSpitzFunc: WARNING! Spitzer function is not defined.'
|
||||
RETURN
|
||||
END SELECT
|
||||
END SUBROUTINE GenSpitzFunc
|
||||
|
||||
SUBROUTINE SpitzFuncCoeff(mu,Zeff,fc)
|
||||
!=======================================================================
|
||||
! Calculates the matrix coefficients required for the subroutine
|
||||
! "GenSpitzFunc", where the Spitzer function is defined through the
|
||||
! variational principle.
|
||||
!
|
||||
! Weakly relativistic (upgraded) version (10.09.2008).
|
||||
! Apart of the non-relativistic matrix coefficients, taken from the
|
||||
! old subroutine of Ugo Gasparino, the relativistic correction written
|
||||
! as series in 1/mu^n (mu=mc2/T) powers is added. Two orders are taken
|
||||
! into account, i.e. n=0,1,2.
|
||||
!
|
||||
! In this version, the coefficients "oee", i.e. Omega_ij, are formulated
|
||||
! for arbitrary collisionality.
|
||||
!
|
||||
! INPUT VARIABLES:
|
||||
! rho = sqrt(SS) with SS - flux-surface label (norm. magn. flux)
|
||||
! ne - density, 1/m^3
|
||||
! mu - mc2/Te
|
||||
! Zeff - effective charge
|
||||
! fc - fraction of circulating particles
|
||||
!
|
||||
! OUTPUT VARIABLES (defined as a global ones):
|
||||
! sfd(1),...,sfd(4) - coefficients of the polynomial expansion of the
|
||||
! "Spitzer"-function (the same as in the Hirshman paper)
|
||||
!=======================================================================
|
||||
use const_and_precisions, only : mc2_
|
||||
IMPLICIT NONE
|
||||
REAL(wp_), INTENT(in) :: mu,Zeff,fc
|
||||
INTEGER :: n,i,j
|
||||
REAL(wp_) :: rtc,rtc1,y,tn(1:nre)
|
||||
REAL(wp_) :: m(0:4,0:4),g(0:4)
|
||||
REAL(wp_) :: gam11,gam21,gam31,gam41,gam01, &
|
||||
gam22,gam32,gam42,gam02, &
|
||||
gam33,gam43,gam03, &
|
||||
gam44,gam04,gam00
|
||||
REAL(wp_) :: alp12,alp13,alp14,alp10, &
|
||||
alp23,alp24,alp20, &
|
||||
alp34,alp30,alp40
|
||||
REAL(wp_) :: bet0,bet1,bet2,bet3,bet4,d0
|
||||
LOGICAL :: renew,rel,newmu,newZ,newfc
|
||||
REAL(wp_), SAVE :: sfdx(1:4) = 0
|
||||
REAL(wp_), SAVE :: mu_old =-1, Zeff_old =-1, fc_old =-1
|
||||
|
||||
rel = mu < mc2_
|
||||
newmu = abs(mu -mu_old ) > delta*mu
|
||||
newZ = abs(Zeff-Zeff_old) > delta*Zeff
|
||||
newfc = abs(fc -fc_old ) > delta*fc
|
||||
SELECT CASE(adj_appr(1))
|
||||
CASE ('l','c')
|
||||
renew = (newmu .and. rel) .OR. newZ .OR. newfc
|
||||
END SELECT
|
||||
IF (.not.renew) THEN
|
||||
sfd(:) = sfdx(:)
|
||||
RETURN
|
||||
ENDIF
|
||||
|
||||
tn(:) = 0
|
||||
IF (adj_appr(4) == 'r') THEN
|
||||
IF (nre > 0) THEN
|
||||
!mu = min(mu,1.e3*mc2_)
|
||||
tn(1) = 1/mu
|
||||
DO n=2,min(2,nre)
|
||||
tn(n) = tn(n-1)/mu
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDIF
|
||||
|
||||
SELECT CASE(adj_appr(1))
|
||||
CASE ('l','c') !---- both classical & collisionless limits ----!
|
||||
rtc = (1-fc)/fc; rtc1 = rtc+1 !
|
||||
!--- !
|
||||
DO i=0,4 !
|
||||
g(i) = vp_g(i,0) !
|
||||
DO n=1,min(2,nre) !
|
||||
g(i) = g(i) + tn(n)*vp_g(i,n) !
|
||||
ENDDO !
|
||||
!--- !
|
||||
DO j=0,4 !
|
||||
IF (i == 0 .or. j == 0 .or. j >= i) THEN !
|
||||
y = vp_mee(i,j,0) + rtc *vp_oee(i,j,0) + & !
|
||||
Zeff*rtc1*vp_mei(i,j,0) !
|
||||
DO n=1,min(2,nre) !
|
||||
y = y + (vp_mee(i,j,n) + rtc *vp_oee(i,j,n) + & !
|
||||
Zeff*rtc1*vp_mei(i,j,n))*tn(n) !
|
||||
ENDDO !
|
||||
m(i,j) = y !
|
||||
ENDIF !
|
||||
ENDDO !
|
||||
ENDDO !
|
||||
DO i=2,4 !
|
||||
DO j=1,i-1 !
|
||||
m(i,j) = m(j,i) !
|
||||
ENDDO !
|
||||
ENDDO !
|
||||
m(0,0) = 0 !
|
||||
CASE default !------------------------------------------------!
|
||||
PRINT*,'Green_Func: WARNING! Adjoint approach is not defined.'
|
||||
RETURN
|
||||
END SELECT
|
||||
|
||||
gam11 = m(1,1)
|
||||
gam21 = m(2,1)
|
||||
gam31 = m(3,1)
|
||||
gam41 = m(4,1)
|
||||
gam01 = m(0,1)
|
||||
|
||||
alp12 = m(1,2)/m(1,1)
|
||||
alp13 = m(1,3)/m(1,1)
|
||||
alp14 = m(1,4)/m(1,1)
|
||||
alp10 = m(1,0)/m(1,1)
|
||||
|
||||
gam22 = m(2,2)-gam21*alp12
|
||||
gam32 = m(3,2)-gam31*alp12
|
||||
gam42 = m(4,2)-gam41*alp12
|
||||
gam02 = m(0,2)-gam01*alp12
|
||||
|
||||
alp23 = gam32/gam22
|
||||
alp24 = gam42/gam22
|
||||
alp20 = gam02/gam22
|
||||
|
||||
gam33 = m(3,3)-gam31*alp13-gam32*alp23
|
||||
gam43 = m(4,3)-gam41*alp13-gam42*alp23
|
||||
gam03 = m(0,3)-gam01*alp13-gam02*alp23
|
||||
|
||||
alp34 = gam43/gam33
|
||||
alp30 = gam03/gam33
|
||||
|
||||
gam44 = m(4,4)-gam41*alp14-gam42*alp24-gam43*alp34
|
||||
gam04 = m(0,4)-gam01*alp14-gam02*alp24-gam03*alp34
|
||||
|
||||
alp40 = gam04/gam44
|
||||
|
||||
gam00 = m(0,0)-gam01*alp10-gam02*alp20-gam03*alp30-gam04*alp40
|
||||
|
||||
bet1 = g(1)/m(1,1)
|
||||
bet2 = (g(2)-gam21*bet1)/gam22
|
||||
bet3 = (g(3)-gam31*bet1-gam32*bet2)/gam33
|
||||
bet4 = (g(4)-gam41*bet1-gam42*bet2-gam43*bet3)/gam44
|
||||
bet0 = (g(0)-gam01*bet1-gam02*bet2-gam03*bet3-gam04*bet4)/gam00
|
||||
|
||||
d0 = bet0
|
||||
sfd(4) = bet4-alp40*d0
|
||||
sfd(3) = bet3-alp30*d0-alp34*sfd(4)
|
||||
sfd(2) = bet2-alp20*d0-alp24*sfd(4)-alp23*sfd(3)
|
||||
sfd(1) = bet1-alp10*d0-alp14*sfd(4)-alp13*sfd(3)-alp12*sfd(2)
|
||||
|
||||
fc_old = fc
|
||||
mu_old = mu
|
||||
Zeff_old = Zeff
|
||||
sfdx(1:4) = sfd(1:4)
|
||||
|
||||
END SUBROUTINE SpitzFuncCoeff
|
||||
|
||||
SUBROUTINE SpitzFunc_HighSpeedLimit(Zeff,fc,u,q,gam, K,dKdu)
|
||||
!=======================================================================
|
||||
! Calculates the "Spitzer function" in high velocity limit, relativistic
|
||||
! formulation: Lin-Liu et al., Phys.Pl. (2003),v10, 4064, Eq.(33).
|
||||
!
|
||||
! Inputs:
|
||||
! Zeff - effective charge
|
||||
! fc - fraction of circulating electrons
|
||||
! u - p/(m*vte)
|
||||
! q - p/mc
|
||||
! gam - relativ. factor
|
||||
!
|
||||
! Outputs:
|
||||
! K - Spitzer function
|
||||
! dKdu - its derivative
|
||||
!=======================================================================
|
||||
use const_and_precisions, only : zero,one
|
||||
use numint, only : quanc8
|
||||
IMPLICIT NONE
|
||||
REAL(wp_), INTENT(in) :: Zeff,fc,u,q,gam
|
||||
REAL(wp_), INTENT(out) :: K,dKdu
|
||||
INTEGER :: nfun
|
||||
REAL(wp_) :: gam2,err,flag,Integr
|
||||
REAL(wp_), PARAMETER :: a = zero, b = one, rtol = 1e-4_wp_, atol = 1e-12_wp_
|
||||
|
||||
r2 = (1+Zeff)/fc ! global parameter needed for integrand, HSL_f(t)
|
||||
|
||||
IF (u < 1e-2) THEN
|
||||
K = u**4/(r2+4)
|
||||
dKdu = 4*u**3/(r2+4)
|
||||
RETURN
|
||||
ENDIF
|
||||
|
||||
q2 = q*q ! for the integrand, HSL_f
|
||||
gp1 = gam+1 ! ..
|
||||
CALL quanc8(HSL_f,zero,one,atol,rtol,Integr,err,nfun,flag)
|
||||
|
||||
gam2 = gam*gam
|
||||
K = u**4 * Integr
|
||||
dKdu = (u/gam)**3 * (1-r2*gam2*Integr)
|
||||
END SUBROUTINE SpitzFunc_HighSpeedLimit
|
||||
|
||||
FUNCTION HSL_f(t) RESULT(f)
|
||||
!=======================================================================
|
||||
! Integrand for the high-speed limit approach (Lin-Liu's formulation)
|
||||
!=======================================================================
|
||||
IMPLICIT NONE
|
||||
REAL(wp_), INTENT(in) :: t
|
||||
REAL(wp_) :: f,g
|
||||
g = sqrt(1+t*t*q2)
|
||||
f = t**(3+r2)/g**3 * (gp1/(g+1))**r2
|
||||
END FUNCTION HSL_f
|
||||
|
||||
end module eccd
|
906
src/eierf.f90
Normal file
906
src/eierf.f90
Normal file
@ -0,0 +1,906 @@
|
||||
module eierf
|
||||
|
||||
use const_and_precisions, only : wp_, zero, one
|
||||
implicit none
|
||||
real(wp_), parameter, private :: half=0.5_wp_, two=2.0_wp_, three=3.0_wp_, &
|
||||
four=4.0_wp_, six=6.0_wp_, twelve=12._wp_, sixten=16.0_wp_, &
|
||||
two4=24.0_wp_, fourty=40.0_wp_
|
||||
|
||||
contains
|
||||
|
||||
! ======================================================================
|
||||
! nist guide to available math software.
|
||||
! fullsource for module ei from package specfun.
|
||||
! retrieved from netlib on fri mar 26 05:52:39 1999.
|
||||
! ======================================================================
|
||||
subroutine calcei(arg,result,intt)
|
||||
!----------------------------------------------------------------------
|
||||
!
|
||||
! this fortran 77 packet computes the exponential integrals ei(x),
|
||||
! e1(x), and exp(-x)*ei(x) for real arguments x where
|
||||
!
|
||||
! integral (from t=-infinity to t=x) (exp(t)/t), x > 0,
|
||||
! ei(x) =
|
||||
! -integral (from t=-x to t=infinity) (exp(t)/t), x < 0,
|
||||
!
|
||||
! and where the first integral is a principal value integral.
|
||||
! the packet contains three function type subprograms: ei, eone,
|
||||
! and expei; and one subroutine type subprogram: calcei. the
|
||||
! calling statements for the primary entries are
|
||||
!
|
||||
! y = ei(x), where x /= 0,
|
||||
!
|
||||
! y = eone(x), where x > 0,
|
||||
! and
|
||||
! y = expei(x), where x /= 0,
|
||||
!
|
||||
! and where the entry points correspond to the functions ei(x),
|
||||
! e1(x), and exp(-x)*ei(x), respectively. the routine calcei
|
||||
! is intended for internal packet use only, all computations within
|
||||
! the packet being concentrated in this routine. the function
|
||||
! subprograms invoke calcei with the fortran statement
|
||||
! call calcei(arg,result,intt)
|
||||
! where the parameter usage is as follows
|
||||
!
|
||||
! function parameters for calcei
|
||||
! call arg result intt
|
||||
!
|
||||
! ei(x) x /= 0 ei(x) 1
|
||||
! eone(x) x > 0 -ei(-x) 2
|
||||
! expei(x) x /= 0 exp(-x)*ei(x) 3
|
||||
!----------------------------------------------------------------------
|
||||
implicit none
|
||||
integer, intent(in) :: intt
|
||||
real(wp_), intent(in) :: arg
|
||||
real(wp_), intent(out) :: result
|
||||
integer :: i
|
||||
real(wp_) :: ei,frac,sump,sumq,t,w,x,xmx0,y,ysq
|
||||
real(wp_), dimension(10) :: px,qx
|
||||
!----------------------------------------------------------------------
|
||||
! mathematical constants
|
||||
! exp40 = exp(40)
|
||||
! x0 = zero of ei
|
||||
! x01/x11 + x02 = zero of ei to extra precision
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), parameter :: p037=0.037_wp_, &
|
||||
exp40=2.3538526683701998541e17_wp_, x01=381.5_wp_, x11=1024.0_wp_, &
|
||||
x02=-5.1182968633365538008e-5_wp_, x0=3.7250741078136663466e-1_wp_
|
||||
!----------------------------------------------------------------------
|
||||
! machine-dependent constants
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), parameter :: xinf=1.79e+308_wp_,xmax=716.351_wp_,xbig=701.84_wp_
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for -1.0 <= x < 0.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(7), parameter :: &
|
||||
a=(/1.1669552669734461083368e2_wp_, 2.1500672908092918123209e3_wp_, &
|
||||
1.5924175980637303639884e4_wp_, 8.9904972007457256553251e4_wp_, &
|
||||
1.5026059476436982420737e5_wp_,-1.4815102102575750838086e5_wp_, &
|
||||
5.0196785185439843791020_wp_/)
|
||||
real(wp_), dimension(6), parameter :: &
|
||||
b=(/4.0205465640027706061433e1_wp_, 7.5043163907103936624165e2_wp_, &
|
||||
8.1258035174768735759855e3_wp_, 5.2440529172056355429883e4_wp_, &
|
||||
1.8434070063353677359298e5_wp_, 2.5666493484897117319268e5_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for -4.0 <= x < -1.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(9), parameter :: &
|
||||
c=(/3.828573121022477169108e-1_wp_, 1.107326627786831743809e+1_wp_, &
|
||||
7.246689782858597021199e+1_wp_, 1.700632978311516129328e+2_wp_, &
|
||||
1.698106763764238382705e+2_wp_, 7.633628843705946890896e+1_wp_, &
|
||||
1.487967702840464066613e+1_wp_, 9.999989642347613068437e-1_wp_, &
|
||||
1.737331760720576030932e-8_wp_/), &
|
||||
d=(/8.258160008564488034698e-2_wp_, 4.344836335509282083360e+0_wp_, &
|
||||
4.662179610356861756812e+1_wp_, 1.775728186717289799677e+2_wp_, &
|
||||
2.953136335677908517423e+2_wp_, 2.342573504717625153053e+2_wp_, &
|
||||
9.021658450529372642314e+1_wp_, 1.587964570758947927903e+1_wp_, &
|
||||
1.000000000000000000000e+0_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for x < -4.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
e=(/1.3276881505637444622987e+2_wp_,3.5846198743996904308695e+4_wp_, &
|
||||
1.7283375773777593926828e+5_wp_,2.6181454937205639647381e+5_wp_, &
|
||||
1.7503273087497081314708e+5_wp_,5.9346841538837119172356e+4_wp_, &
|
||||
1.0816852399095915622498e+4_wp_,1.0611777263550331766871e03_wp_, &
|
||||
5.2199632588522572481039e+1_wp_,9.9999999999999999087819e-1_wp_/),&
|
||||
f=(/3.9147856245556345627078e+4_wp_,2.5989762083608489777411e+5_wp_, &
|
||||
5.5903756210022864003380e+5_wp_,5.4616842050691155735758e+5_wp_, &
|
||||
2.7858134710520842139357e+5_wp_,7.9231787945279043698718e+4_wp_, &
|
||||
1.2842808586627297365998e+4_wp_,1.1635769915320848035459e+3_wp_, &
|
||||
5.4199632588522559414924e+1_wp_,1.0_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for rational approximation to ln(x/a), |1-x/a| < .1
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(4), parameter :: &
|
||||
plg=(/-2.4562334077563243311e+01_wp_,2.3642701335621505212e+02_wp_, &
|
||||
-5.4989956895857911039e+02_wp_,3.5687548468071500413e+02_wp_/), &
|
||||
qlg=(/-3.5553900764052419184e+01_wp_,1.9400230218539473193e+02_wp_, &
|
||||
-3.3442903192607538956e+02_wp_,1.7843774234035750207e+02_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for 0.0 < x < 6.0,
|
||||
! ratio of chebyshev polynomials
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
p=(/-1.2963702602474830028590e01_wp_,-1.2831220659262000678155e03_wp_, &
|
||||
-1.4287072500197005777376e04_wp_,-1.4299841572091610380064e06_wp_, &
|
||||
-3.1398660864247265862050e05_wp_,-3.5377809694431133484800e08_wp_, &
|
||||
3.1984354235237738511048e08_wp_,-2.5301823984599019348858e10_wp_, &
|
||||
1.2177698136199594677580e10_wp_,-2.0829040666802497120940e11_wp_/),&
|
||||
q=(/ 7.6886718750000000000000e01_wp_,-5.5648470543369082846819e03_wp_, &
|
||||
1.9418469440759880361415e05_wp_,-4.2648434812177161405483e06_wp_, &
|
||||
6.4698830956576428587653e07_wp_,-7.0108568774215954065376e08_wp_, &
|
||||
5.4229617984472955011862e09_wp_,-2.8986272696554495342658e10_wp_, &
|
||||
9.8900934262481749439886e10_wp_,-8.9673749185755048616855e10_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! j-fraction coefficients for 6.0 <= x < 12.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
r=(/-2.645677793077147237806_wp_,-2.378372882815725244124_wp_, &
|
||||
-2.421106956980653511550e01_wp_, 1.052976392459015155422e01_wp_, &
|
||||
1.945603779539281810439e01_wp_,-3.015761863840593359165e01_wp_, &
|
||||
1.120011024227297451523e01_wp_,-3.988850730390541057912_wp_, &
|
||||
9.565134591978630774217_wp_, 9.981193787537396413219e-1_wp_/)
|
||||
real(wp_), dimension(9), parameter :: &
|
||||
s=(/ 1.598517957704779356479e-4_wp_, 4.644185932583286942650_wp_, &
|
||||
3.697412299772985940785e02_wp_,-8.791401054875438925029_wp_, &
|
||||
7.608194509086645763123e02_wp_, 2.852397548119248700147e01_wp_, &
|
||||
4.731097187816050252967e02_wp_,-2.369210235636181001661e02_wp_, &
|
||||
1.249884822712447891440_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! j-fraction coefficients for 12.0 <= x < 24.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
p1=(/-1.647721172463463140042_wp_,-1.860092121726437582253e01_wp_, &
|
||||
-1.000641913989284829961e01_wp_,-2.105740799548040450394e01_wp_, &
|
||||
-9.134835699998742552432e-1_wp_,-3.323612579343962284333e01_wp_, &
|
||||
2.495487730402059440626e01_wp_, 2.652575818452799819855e01_wp_, &
|
||||
-1.845086232391278674524_wp_, 9.999933106160568739091e-1_wp_/)
|
||||
real(wp_), dimension(9), parameter :: &
|
||||
q1=(/ 9.792403599217290296840e01_wp_, 6.403800405352415551324e01_wp_, &
|
||||
5.994932325667407355255e01_wp_, 2.538819315630708031713e02_wp_, &
|
||||
4.429413178337928401161e01_wp_, 1.192832423968601006985e03_wp_, &
|
||||
1.991004470817742470726e02_wp_,-1.093556195391091143924e01_wp_, &
|
||||
1.001533852045342697818_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! j-fraction coefficients for x >= 24.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
p2=(/ 1.75338801265465972390e02_wp_,-2.23127670777632409550e02_wp_, &
|
||||
-1.81949664929868906455e01_wp_,-2.79798528624305389340e01_wp_, &
|
||||
-7.63147701620253630855_wp_,-1.52856623636929636839e01_wp_, &
|
||||
-7.06810977895029358836_wp_,-5.00006640413131002475_wp_, &
|
||||
-3.00000000320981265753_wp_, 1.00000000000000485503_wp_/)
|
||||
real(wp_), dimension(9), parameter :: &
|
||||
q2=(/ 3.97845977167414720840e04_wp_, 3.97277109100414518365_wp_, &
|
||||
1.37790390235747998793e02_wp_, 1.17179220502086455287e02_wp_, &
|
||||
7.04831847180424675988e01_wp_,-1.20187763547154743238e01_wp_, &
|
||||
-7.99243595776339741065_wp_,-2.99999894040324959612_wp_, &
|
||||
1.99999999999048104167_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
x = arg
|
||||
if (x == zero) then
|
||||
ei = -xinf
|
||||
if (intt == 2) ei = -ei
|
||||
else if ((x < zero) .or. (intt == 2)) then
|
||||
!----------------------------------------------------------------------
|
||||
! calculate ei for negative argument or for e1.
|
||||
!----------------------------------------------------------------------
|
||||
y = abs(x)
|
||||
if (y <= one) then
|
||||
sump = a(7) * y + a(1)
|
||||
sumq = y + b(1)
|
||||
do i = 2, 6
|
||||
sump = sump * y + a(i)
|
||||
sumq = sumq * y + b(i)
|
||||
end do
|
||||
ei = log(y) - sump / sumq
|
||||
if (intt == 3) ei = ei * exp(y)
|
||||
else if (y <= four) then
|
||||
w = one / y
|
||||
sump = c(1)
|
||||
sumq = d(1)
|
||||
do i = 2, 9
|
||||
sump = sump * w + c(i)
|
||||
sumq = sumq * w + d(i)
|
||||
end do
|
||||
ei = - sump / sumq
|
||||
if (intt /= 3) ei = ei * exp(-y)
|
||||
else
|
||||
if ((y > xbig) .and. (intt < 3)) then
|
||||
ei = zero
|
||||
else
|
||||
w = one / y
|
||||
sump = e(1)
|
||||
sumq = f(1)
|
||||
do i = 2, 10
|
||||
sump = sump * w + e(i)
|
||||
sumq = sumq * w + f(i)
|
||||
end do
|
||||
ei = -w * (one - w * sump / sumq )
|
||||
if (intt /= 3) ei = ei * exp(-y)
|
||||
end if
|
||||
end if
|
||||
if (intt == 2) ei = -ei
|
||||
else if (x < six) then
|
||||
!----------------------------------------------------------------------
|
||||
! to improve conditioning, rational approximations are expressed
|
||||
! in terms of chebyshev polynomials for 0 <= x < 6, and in
|
||||
! continued fraction form for larger x.
|
||||
!----------------------------------------------------------------------
|
||||
t = x + x
|
||||
t = t / three - two
|
||||
px(1) = zero
|
||||
qx(1) = zero
|
||||
px(2) = p(1)
|
||||
qx(2) = q(1)
|
||||
do i = 2, 9
|
||||
px(i+1) = t * px(i) - px(i-1) + p(i)
|
||||
qx(i+1) = t * qx(i) - qx(i-1) + q(i)
|
||||
end do
|
||||
sump = half * t * px(10) - px(9) + p(10)
|
||||
sumq = half * t * qx(10) - qx(9) + q(10)
|
||||
frac = sump / sumq
|
||||
xmx0 = (x - x01/x11) - x02
|
||||
if (abs(xmx0) >= p037) then
|
||||
ei = log(x/x0) + xmx0 * frac
|
||||
if (intt == 3) ei = exp(-x) * ei
|
||||
else
|
||||
!----------------------------------------------------------------------
|
||||
! special approximation to ln(x/x0) for x close to x0
|
||||
!----------------------------------------------------------------------
|
||||
y = xmx0 / (x + x0)
|
||||
ysq = y*y
|
||||
sump = plg(1)
|
||||
sumq = ysq + qlg(1)
|
||||
do i = 2, 4
|
||||
sump = sump*ysq + plg(i)
|
||||
sumq = sumq*ysq + qlg(i)
|
||||
end do
|
||||
ei = (sump / (sumq*(x+x0)) + frac) * xmx0
|
||||
if (intt == 3) ei = exp(-x) * ei
|
||||
end if
|
||||
else if (x < twelve) then
|
||||
frac = zero
|
||||
do i = 1, 9
|
||||
frac = s(i) / (r(i) + x + frac)
|
||||
end do
|
||||
ei = (r(10) + frac) / x
|
||||
if (intt /= 3) ei = ei * exp(x)
|
||||
else if (x <= two4) then
|
||||
frac = zero
|
||||
do i = 1, 9
|
||||
frac = q1(i) / (p1(i) + x + frac)
|
||||
end do
|
||||
ei = (p1(10) + frac) / x
|
||||
if (intt /= 3) ei = ei * exp(x)
|
||||
else
|
||||
if ((x >= xmax) .and. (intt < 3)) then
|
||||
ei = xinf
|
||||
else
|
||||
y = one / x
|
||||
frac = zero
|
||||
do i = 1, 9
|
||||
frac = q2(i) / (p2(i) + x + frac)
|
||||
end do
|
||||
frac = p2(10) + frac
|
||||
ei = y + y * y * frac
|
||||
if (intt /= 3) then
|
||||
if (x <= xmax-two4) then
|
||||
ei = ei * exp(x)
|
||||
else
|
||||
!----------------------------------------------------------------------
|
||||
! calculation reformulated to avoid premature overflow
|
||||
!----------------------------------------------------------------------
|
||||
ei = (ei * exp(x-fourty)) * exp40
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
result = ei
|
||||
end subroutine calcei
|
||||
|
||||
function ei(x)
|
||||
!--------------------------------------------------------------------
|
||||
!
|
||||
! this function program computes approximate values for the
|
||||
! exponential integral ei(x), where x is real.
|
||||
!
|
||||
! author: w. j. cody
|
||||
!
|
||||
! latest modification: january 12, 1988
|
||||
!
|
||||
!--------------------------------------------------------------------
|
||||
implicit none
|
||||
integer :: intt
|
||||
real(wp_) :: ei
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: result
|
||||
!--------------------------------------------------------------------
|
||||
intt = 1
|
||||
call calcei(x,result,intt)
|
||||
ei = result
|
||||
end function ei
|
||||
|
||||
function expei(x)
|
||||
!--------------------------------------------------------------------
|
||||
!
|
||||
! this function program computes approximate values for the
|
||||
! function exp(-x) * ei(x), where ei(x) is the exponential
|
||||
! integral, and x is real.
|
||||
!
|
||||
! author: w. j. cody
|
||||
!
|
||||
! latest modification: january 12, 1988
|
||||
!
|
||||
!--------------------------------------------------------------------
|
||||
implicit none
|
||||
integer :: intt
|
||||
real(wp_) :: expei
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: result
|
||||
!--------------------------------------------------------------------
|
||||
intt = 3
|
||||
call calcei(x,result,intt)
|
||||
expei = result
|
||||
end function expei
|
||||
|
||||
function eone(x)
|
||||
!--------------------------------------------------------------------
|
||||
!
|
||||
! this function program computes approximate values for the
|
||||
! exponential integral e1(x), where x is real.
|
||||
!
|
||||
! author: w. j. cody
|
||||
!
|
||||
! latest modification: january 12, 1988
|
||||
!
|
||||
!--------------------------------------------------------------------
|
||||
implicit none
|
||||
integer :: intt
|
||||
real(wp_) :: eone
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: result
|
||||
!--------------------------------------------------------------------
|
||||
intt = 2
|
||||
call calcei(x,result,intt)
|
||||
eone = result
|
||||
end function eone
|
||||
|
||||
! ======================================================================
|
||||
! calcei3 = calcei for int=3
|
||||
! ======================================================================
|
||||
subroutine calcei3(arg,result)
|
||||
!----------------------------------------------------------------------
|
||||
!
|
||||
! this fortran 77 packet computes the exponential integrals ei(x),
|
||||
! e1(x), and exp(-x)*ei(x) for real arguments x where
|
||||
!
|
||||
! integral (from t=-infinity to t=x) (exp(t)/t), x > 0,
|
||||
! ei(x) =
|
||||
! -integral (from t=-x to t=infinity) (exp(t)/t), x < 0,
|
||||
!
|
||||
! and where the first integral is a principal value integral.
|
||||
! the packet contains three function type subprograms: ei, eone,
|
||||
! and expei; and one subroutine type subprogram: calcei. the
|
||||
! calling statements for the primary entries are
|
||||
!
|
||||
! y = ei(x), where x /= 0,
|
||||
!
|
||||
! y = eone(x), where x > 0,
|
||||
! and
|
||||
! y = expei(x), where x /= 0,
|
||||
!
|
||||
! and where the entry points correspond to the functions ei(x),
|
||||
! e1(x), and exp(-x)*ei(x), respectively. the routine calcei
|
||||
! is intended for internal packet use only, all computations within
|
||||
! the packet being concentrated in this routine. the function
|
||||
! subprograms invoke calcei with the fortran statement
|
||||
! call calcei(arg,result,int)
|
||||
! where the parameter usage is as follows
|
||||
!
|
||||
! function parameters for calcei
|
||||
! call arg result int
|
||||
!
|
||||
! ei(x) x /= 0 ei(x) 1
|
||||
! eone(x) x > 0 -ei(-x) 2
|
||||
! expei(x) x /= 0 exp(-x)*ei(x) 3
|
||||
!----------------------------------------------------------------------
|
||||
implicit none
|
||||
real(wp_), intent(in) :: arg
|
||||
real(wp_), intent(out) :: result
|
||||
integer :: i
|
||||
real(wp_) :: ei,frac,sump,sumq,t,w,x,xmx0,y,ysq
|
||||
real(wp_), dimension(10) :: px,qx
|
||||
!----------------------------------------------------------------------
|
||||
! mathematical constants
|
||||
! exp40 = exp(40)
|
||||
! x0 = zero of ei
|
||||
! x01/x11 + x02 = zero of ei to extra precision
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), parameter :: p037=0.037_wp_, &
|
||||
x01=381.5_wp_, x11=1024.0_wp_, x02=-5.1182968633365538008e-5_wp_, &
|
||||
x0=3.7250741078136663466e-1_wp_
|
||||
!----------------------------------------------------------------------
|
||||
! machine-dependent constants
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), parameter :: xinf=1.79e+308_wp_
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for -1.0 <= x < 0.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(7), parameter :: &
|
||||
a=(/1.1669552669734461083368e2_wp_, 2.1500672908092918123209e3_wp_, &
|
||||
1.5924175980637303639884e4_wp_, 8.9904972007457256553251e4_wp_, &
|
||||
1.5026059476436982420737e5_wp_,-1.4815102102575750838086e5_wp_, &
|
||||
5.0196785185439843791020_wp_/)
|
||||
real(wp_), dimension(6), parameter :: &
|
||||
b=(/4.0205465640027706061433e1_wp_, 7.5043163907103936624165e2_wp_, &
|
||||
8.1258035174768735759855e3_wp_, 5.2440529172056355429883e4_wp_, &
|
||||
1.8434070063353677359298e5_wp_, 2.5666493484897117319268e5_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for -4.0 <= x < -1.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(9), parameter :: &
|
||||
c=(/3.828573121022477169108e-1_wp_, 1.107326627786831743809e+1_wp_, &
|
||||
7.246689782858597021199e+1_wp_, 1.700632978311516129328e+2_wp_, &
|
||||
1.698106763764238382705e+2_wp_, 7.633628843705946890896e+1_wp_, &
|
||||
1.487967702840464066613e+1_wp_, 9.999989642347613068437e-1_wp_, &
|
||||
1.737331760720576030932e-8_wp_/), &
|
||||
d=(/8.258160008564488034698e-2_wp_, 4.344836335509282083360e+0_wp_, &
|
||||
4.662179610356861756812e+1_wp_, 1.775728186717289799677e+2_wp_, &
|
||||
2.953136335677908517423e+2_wp_, 2.342573504717625153053e+2_wp_, &
|
||||
9.021658450529372642314e+1_wp_, 1.587964570758947927903e+1_wp_, &
|
||||
1.000000000000000000000e+0_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for x < -4.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
e=(/1.3276881505637444622987e+2_wp_,3.5846198743996904308695e+4_wp_, &
|
||||
1.7283375773777593926828e+5_wp_,2.6181454937205639647381e+5_wp_, &
|
||||
1.7503273087497081314708e+5_wp_,5.9346841538837119172356e+4_wp_, &
|
||||
1.0816852399095915622498e+4_wp_,1.0611777263550331766871e03_wp_, &
|
||||
5.2199632588522572481039e+1_wp_,9.9999999999999999087819e-1_wp_/), &
|
||||
f=(/3.9147856245556345627078e+4_wp_,2.5989762083608489777411e+5_wp_, &
|
||||
5.5903756210022864003380e+5_wp_,5.4616842050691155735758e+5_wp_, &
|
||||
2.7858134710520842139357e+5_wp_,7.9231787945279043698718e+4_wp_, &
|
||||
1.2842808586627297365998e+4_wp_,1.1635769915320848035459e+3_wp_, &
|
||||
5.4199632588522559414924e+1_wp_,1.0_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for rational approximation to ln(x/a), |1-x/a| < .1
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(4), parameter :: &
|
||||
plg=(/-2.4562334077563243311e+01_wp_,2.3642701335621505212e+02_wp_, &
|
||||
-5.4989956895857911039e+02_wp_,3.5687548468071500413e+02_wp_/), &
|
||||
qlg=(/-3.5553900764052419184e+01_wp_,1.9400230218539473193e+02_wp_, &
|
||||
-3.3442903192607538956e+02_wp_,1.7843774234035750207e+02_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! coefficients for 0.0 < x < 6.0,
|
||||
! ratio of chebyshev polynomials
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
p=(/-1.2963702602474830028590e01_wp_,-1.2831220659262000678155e03_wp_, &
|
||||
-1.4287072500197005777376e04_wp_,-1.4299841572091610380064e06_wp_, &
|
||||
-3.1398660864247265862050e05_wp_,-3.5377809694431133484800e08_wp_, &
|
||||
3.1984354235237738511048e08_wp_,-2.5301823984599019348858e10_wp_, &
|
||||
1.2177698136199594677580e10_wp_,-2.0829040666802497120940e11_wp_/),&
|
||||
q=(/ 7.6886718750000000000000e01_wp_,-5.5648470543369082846819e03_wp_, &
|
||||
1.9418469440759880361415e05_wp_,-4.2648434812177161405483e06_wp_, &
|
||||
6.4698830956576428587653e07_wp_,-7.0108568774215954065376e08_wp_, &
|
||||
5.4229617984472955011862e09_wp_,-2.8986272696554495342658e10_wp_, &
|
||||
9.8900934262481749439886e10_wp_,-8.9673749185755048616855e10_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! j-fraction coefficients for 6.0 <= x < 12.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
r=(/-2.645677793077147237806_wp_,-2.378372882815725244124_wp_, &
|
||||
-2.421106956980653511550e01_wp_, 1.052976392459015155422e01_wp_, &
|
||||
1.945603779539281810439e01_wp_,-3.015761863840593359165e01_wp_, &
|
||||
1.120011024227297451523e01_wp_,-3.988850730390541057912_wp_, &
|
||||
9.565134591978630774217_wp_, 9.981193787537396413219e-1_wp_/)
|
||||
real(wp_), dimension(9), parameter :: &
|
||||
s=(/ 1.598517957704779356479e-4_wp_, 4.644185932583286942650_wp_, &
|
||||
3.697412299772985940785e02_wp_,-8.791401054875438925029_wp_, &
|
||||
7.608194509086645763123e02_wp_, 2.852397548119248700147e01_wp_, &
|
||||
4.731097187816050252967e02_wp_,-2.369210235636181001661e02_wp_, &
|
||||
1.249884822712447891440_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! j-fraction coefficients for 12.0 <= x < 24.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
p1=(/-1.647721172463463140042_wp_,-1.860092121726437582253e01_wp_, &
|
||||
-1.000641913989284829961e01_wp_,-2.105740799548040450394e01_wp_, &
|
||||
-9.134835699998742552432e-1_wp_,-3.323612579343962284333e01_wp_, &
|
||||
2.495487730402059440626e01_wp_, 2.652575818452799819855e01_wp_, &
|
||||
-1.845086232391278674524_wp_, 9.999933106160568739091e-1_wp_/)
|
||||
real(wp_), dimension(9), parameter :: &
|
||||
q1=(/ 9.792403599217290296840e01_wp_, 6.403800405352415551324e01_wp_, &
|
||||
5.994932325667407355255e01_wp_, 2.538819315630708031713e02_wp_, &
|
||||
4.429413178337928401161e01_wp_, 1.192832423968601006985e03_wp_, &
|
||||
1.991004470817742470726e02_wp_,-1.093556195391091143924e01_wp_, &
|
||||
1.001533852045342697818_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
! j-fraction coefficients for x >= 24.0
|
||||
!----------------------------------------------------------------------
|
||||
real(wp_), dimension(10), parameter :: &
|
||||
p2=(/ 1.75338801265465972390e02_wp_,-2.23127670777632409550e02_wp_, &
|
||||
-1.81949664929868906455e01_wp_,-2.79798528624305389340e01_wp_, &
|
||||
-7.63147701620253630855_wp_,-1.52856623636929636839e01_wp_, &
|
||||
-7.06810977895029358836_wp_,-5.00006640413131002475_wp_, &
|
||||
-3.00000000320981265753_wp_, 1.00000000000000485503_wp_/)
|
||||
real(wp_), dimension(9), parameter :: &
|
||||
q2=(/ 3.97845977167414720840e04_wp_, 3.97277109100414518365_wp_, &
|
||||
1.37790390235747998793e02_wp_, 1.17179220502086455287e02_wp_, &
|
||||
7.04831847180424675988e01_wp_,-1.20187763547154743238e01_wp_, &
|
||||
-7.99243595776339741065_wp_,-2.99999894040324959612_wp_, &
|
||||
1.99999999999048104167_wp_/)
|
||||
!----------------------------------------------------------------------
|
||||
x = arg
|
||||
if (x == zero) then
|
||||
ei = -xinf
|
||||
else if ((x < zero)) then
|
||||
!----------------------------------------------------------------------
|
||||
! calculate ei for negative argument or for e1.
|
||||
!----------------------------------------------------------------------
|
||||
y = abs(x)
|
||||
if (y <= one) then
|
||||
sump = a(7) * y + a(1)
|
||||
sumq = y + b(1)
|
||||
do i = 2, 6
|
||||
sump = sump * y + a(i)
|
||||
sumq = sumq * y + b(i)
|
||||
end do
|
||||
ei = (log(y) - sump / sumq ) * exp(y)
|
||||
else if (y <= four) then
|
||||
w = one / y
|
||||
sump = c(1)
|
||||
sumq = d(1)
|
||||
do i = 2, 9
|
||||
sump = sump * w + c(i)
|
||||
sumq = sumq * w + d(i)
|
||||
end do
|
||||
ei = - sump / sumq
|
||||
else
|
||||
w = one / y
|
||||
sump = e(1)
|
||||
sumq = f(1)
|
||||
do i = 2, 10
|
||||
sump = sump * w + e(i)
|
||||
sumq = sumq * w + f(i)
|
||||
end do
|
||||
ei = -w * (one - w * sump / sumq )
|
||||
end if
|
||||
else if (x < six) then
|
||||
!----------------------------------------------------------------------
|
||||
! to improve conditioning, rational approximations are expressed
|
||||
! in terms of chebyshev polynomials for 0 <= x < 6, and in
|
||||
! continued fraction form for larger x.
|
||||
!----------------------------------------------------------------------
|
||||
t = x + x
|
||||
t = t / three - two
|
||||
px(1) = zero
|
||||
qx(1) = zero
|
||||
px(2) = p(1)
|
||||
qx(2) = q(1)
|
||||
do i = 2, 9
|
||||
px(i+1) = t * px(i) - px(i-1) + p(i)
|
||||
qx(i+1) = t * qx(i) - qx(i-1) + q(i)
|
||||
end do
|
||||
sump = half * t * px(10) - px(9) + p(10)
|
||||
sumq = half * t * qx(10) - qx(9) + q(10)
|
||||
frac = sump / sumq
|
||||
xmx0 = (x - x01/x11) - x02
|
||||
if (abs(xmx0) >= p037) then
|
||||
ei = exp(-x) * ( log(x/x0) + xmx0 * frac )
|
||||
else
|
||||
!----------------------------------------------------------------------
|
||||
! special approximation to ln(x/x0) for x close to x0
|
||||
!----------------------------------------------------------------------
|
||||
y = xmx0 / (x + x0)
|
||||
ysq = y*y
|
||||
sump = plg(1)
|
||||
sumq = ysq + qlg(1)
|
||||
do i = 2, 4
|
||||
sump = sump*ysq + plg(i)
|
||||
sumq = sumq*ysq + qlg(i)
|
||||
end do
|
||||
ei = exp(-x) * (sump / (sumq*(x+x0)) + frac) * xmx0
|
||||
end if
|
||||
else if (x < twelve) then
|
||||
frac = zero
|
||||
do i = 1, 9
|
||||
frac = s(i) / (r(i) + x + frac)
|
||||
end do
|
||||
ei = (r(10) + frac) / x
|
||||
else if (x <= two4) then
|
||||
frac = zero
|
||||
do i = 1, 9
|
||||
frac = q1(i) / (p1(i) + x + frac)
|
||||
end do
|
||||
ei = (p1(10) + frac) / x
|
||||
else
|
||||
y = one / x
|
||||
frac = zero
|
||||
do i = 1, 9
|
||||
frac = q2(i) / (p2(i) + x + frac)
|
||||
end do
|
||||
frac = p2(10) + frac
|
||||
ei = y + y * y * frac
|
||||
end if
|
||||
result = ei
|
||||
end subroutine calcei3
|
||||
|
||||
! subroutine calerf(arg,result,jintt)
|
||||
!!------------------------------------------------------------------
|
||||
!!
|
||||
!! this packet evaluates erf(x), erfc(x), and exp(x*x)*erfc(x)
|
||||
!! for a real argument x. it contains three function type
|
||||
!! subprograms: erf, erfc, and erfcx (or derf, derfc, and derfcx),
|
||||
!! and one subroutine type subprogram, calerf. the calling
|
||||
!! statements for the primary entries are:
|
||||
!!
|
||||
!! y=erf(x) (or y=derf(x)),
|
||||
!!
|
||||
!! y=erfc(x) (or y=derfc(x)),
|
||||
!! and
|
||||
!! y=erfcx(x) (or y=derfcx(x)).
|
||||
!!
|
||||
!! the routine calerf is intended for internal packet use only,
|
||||
!! all computations within the packet being concentrated in this
|
||||
!! routine. the function subprograms invoke calerf with the
|
||||
!! statement
|
||||
!!
|
||||
!! call calerf(arg,result,jintt)
|
||||
!!
|
||||
!! where the parameter usage is as follows
|
||||
!!
|
||||
!! function parameters for calerf
|
||||
!! call arg result jintt
|
||||
!!
|
||||
!! erf(arg) any real argument erf(arg) 0
|
||||
!! erfc(arg) abs(arg) < xbig erfc(arg) 1
|
||||
!! erfcx(arg) xneg < arg < xmax erfcx(arg) 2
|
||||
!!
|
||||
!!*******************************************************************
|
||||
!!*******************************************************************
|
||||
!!
|
||||
!! Explanation of machine-dependent constants
|
||||
!!
|
||||
!! XMIN = the smallest positive floating-point number.
|
||||
!! XINF = the largest positive finite floating-point number.
|
||||
!! XNEG = the largest negative argument acceptable to ERFCX;
|
||||
!! the negative of the solution to the equation
|
||||
!! 2*exp(x*x) = XINF.
|
||||
!! XSMALL = argument below which erf(x) may be represented by
|
||||
!! 2*x/sqrt(pi) and above which x*x will not underflow.
|
||||
!! A conservative value is the largest machine number X
|
||||
!! such that 1.0 + X = 1.0 to machine precision.
|
||||
!! XBIG = largest argument acceptable to ERFC; solution to
|
||||
!! the equation: W(x) * (1-0.5/x**2) = XMIN, where
|
||||
!! W(x) = exp(-x*x)/[x*sqrt(pi)].
|
||||
!! XHUGE = argument above which 1.0 - 1/(2*x*x) = 1.0 to
|
||||
!! machine precision. A conservative value is
|
||||
!! 1/[2*sqrt(XSMALL)]
|
||||
!! XMAX = largest acceptable argument to ERFCX; the minimum
|
||||
!! of XINF and 1/[sqrt(pi)*XMIN].
|
||||
!!
|
||||
!!*******************************************************************
|
||||
!!*******************************************************************
|
||||
!!
|
||||
!! error returns
|
||||
!!
|
||||
!! the program returns erfc = 0 for arg >= xbig;
|
||||
!!
|
||||
!! erfcx = xinf for arg < xneg;
|
||||
!! and
|
||||
!! erfcx = 0 for arg >= xmax.
|
||||
!!
|
||||
!!
|
||||
!! intrinsic functions required are:
|
||||
!!
|
||||
!! abs, aint, exp
|
||||
!!
|
||||
!!
|
||||
!! author: w. j. cody
|
||||
!! mathematics and computer science division
|
||||
!! argonne national laboratory
|
||||
!! argonne, il 60439
|
||||
!!
|
||||
!! latest modification: march 19, 1990
|
||||
!!
|
||||
!!------------------------------------------------------------------
|
||||
! implicit none
|
||||
! real(wp_), intent(in) :: arg
|
||||
! real(wp_), intent(out) :: result
|
||||
! integer, intent(in) :: jintt
|
||||
! integer :: i
|
||||
! real(wp_) :: del,x,xden,xnum,y,ysq
|
||||
!!------------------------------------------------------------------
|
||||
!! mathematical constants
|
||||
!!------------------------------------------------------------------
|
||||
! real(wp_), parameter :: sqrpi=5.6418958354775628695e-1_wp_, &
|
||||
! thresh=0.46875_wp_
|
||||
!!------------------------------------------------------------------
|
||||
!! machine-dependent constants
|
||||
!!------------------------------------------------------------------
|
||||
! real(wp_), parameter :: xinf=1.79e308_wp_, & ! ~huge
|
||||
! xneg=-26.628_wp_, & ! ?
|
||||
! xsmall=1.11e-16_wp_, & ! ~epsilon/2
|
||||
! xbig=26.543_wp_, & ! ?
|
||||
! xhuge=6.71e7_wp_, & ! ~1/sqrt(epsilon)
|
||||
! xmax=2.53e307_wp_ ! ?
|
||||
!!------------------------------------------------------------------
|
||||
!! coefficients for approximation to erf in first interval
|
||||
!!------------------------------------------------------------------
|
||||
! real(wp_), dimension(5), parameter :: &
|
||||
! a=(/3.16112374387056560_wp_,1.13864154151050156e02_wp_, &
|
||||
! 3.77485237685302021e02_wp_,3.20937758913846947e03_wp_, &
|
||||
! 1.85777706184603153e-1_wp_/)
|
||||
! real(wp_), dimension(4), parameter :: &
|
||||
! b=(/2.36012909523441209e01_wp_,2.44024637934444173e02_wp_, &
|
||||
! 1.28261652607737228e03_wp_,2.84423683343917062e03_wp_/)
|
||||
!!------------------------------------------------------------------
|
||||
!! coefficients for approximation to erfc in second interval
|
||||
!!------------------------------------------------------------------
|
||||
! real(wp_), dimension(9), parameter :: &
|
||||
! c=(/5.64188496988670089e-1_wp_,8.88314979438837594_wp_, &
|
||||
! 6.61191906371416295e01_wp_,2.98635138197400131e02_wp_, &
|
||||
! 8.81952221241769090e02_wp_,1.71204761263407058e03_wp_, &
|
||||
! 2.05107837782607147e03_wp_,1.23033935479799725e03_wp_, &
|
||||
! 2.15311535474403846e-8_wp_/)
|
||||
! real(wp_), dimension(8), parameter :: &
|
||||
! d=(/1.57449261107098347e01_wp_,1.17693950891312499e02_wp_, &
|
||||
! 5.37181101862009858e02_wp_,1.62138957456669019e03_wp_, &
|
||||
! 3.29079923573345963e03_wp_,4.36261909014324716e03_wp_, &
|
||||
! 3.43936767414372164e03_wp_,1.23033935480374942e03_wp_/)
|
||||
!!------------------------------------------------------------------
|
||||
!! coefficients for approximation to erfc in third interval
|
||||
!!------------------------------------------------------------------
|
||||
! real(wp_), dimension(6), parameter :: &
|
||||
! p=(/3.05326634961232344e-1_wp_,3.60344899949804439e-1_wp_, &
|
||||
! 1.25781726111229246e-1_wp_,1.60837851487422766e-2_wp_, &
|
||||
! 6.58749161529837803e-4_wp_,1.63153871373020978e-2_wp_/)
|
||||
! real(wp_), dimension(5), parameter :: &
|
||||
! q=(/2.56852019228982242_wp_,1.87295284992346047_wp_, &
|
||||
! 5.27905102951428412e-1_wp_,6.05183413124413191e-2_wp_, &
|
||||
! 2.33520497626869185e-3_wp_/)
|
||||
!!------------------------------------------------------------------
|
||||
! x = arg
|
||||
! y = abs(x)
|
||||
! if (y <= thresh) then
|
||||
!!------------------------------------------------------------------
|
||||
!! evaluate erf for |x| <= 0.46875
|
||||
!!------------------------------------------------------------------
|
||||
! ysq = zero
|
||||
! if (y > xsmall) ysq = y * y
|
||||
! xnum = a(5)*ysq
|
||||
! xden = ysq
|
||||
! do i = 1, 3
|
||||
! xnum = (xnum + a(i)) * ysq
|
||||
! xden = (xden + b(i)) * ysq
|
||||
! end do
|
||||
! result = x * (xnum + a(4)) / (xden + b(4))
|
||||
! if (jintt /= 0) result = one - result
|
||||
! if (jintt == 2) result = exp(ysq) * result
|
||||
! return
|
||||
!!------------------------------------------------------------------
|
||||
!! evaluate erfc for 0.46875 <= |x| <= 4.0
|
||||
!!------------------------------------------------------------------
|
||||
! else if (y <= four) then
|
||||
! xnum = c(9)*y
|
||||
! xden = y
|
||||
! do i = 1, 7
|
||||
! xnum = (xnum + c(i)) * y
|
||||
! xden = (xden + d(i)) * y
|
||||
! end do
|
||||
! result = (xnum + c(8)) / (xden + d(8))
|
||||
! if (jintt /= 2) then
|
||||
! ysq = aint(y*sixten)/sixten
|
||||
! del = (y-ysq)*(y+ysq)
|
||||
! result = exp(-ysq*ysq) * exp(-del) * result
|
||||
! end if
|
||||
!!------------------------------------------------------------------
|
||||
!! evaluate erfc for |x| > 4.0
|
||||
!!------------------------------------------------------------------
|
||||
! else if (y < xbig .or. (y < xmax .and. jintt == 2)) then
|
||||
! ysq = one / (y * y)
|
||||
! xnum = p(6)*ysq
|
||||
! xden = ysq
|
||||
! do i = 1, 4
|
||||
! xnum = (xnum + p(i)) * ysq
|
||||
! xden = (xden + q(i)) * ysq
|
||||
! end do
|
||||
! result = ysq *(xnum + p(5)) / (xden + q(5))
|
||||
! result = (sqrpi - result) / y
|
||||
! if (jintt /= 2) then
|
||||
! ysq = aint(y*sixten)/sixten
|
||||
! del = (y-ysq)*(y+ysq)
|
||||
! result = exp(-ysq*ysq) * exp(-del) * result
|
||||
! end if
|
||||
! else if (y >= xhuge) then
|
||||
! result = sqrpi / y
|
||||
! else
|
||||
! result = zero
|
||||
! end if
|
||||
!!------------------------------------------------------------------
|
||||
!! fix up for negative argument, erf, etc.
|
||||
!!------------------------------------------------------------------
|
||||
! if (jintt == 0) then
|
||||
! result = (half - result) + half
|
||||
! if (x < zero) result = -result
|
||||
! else if (jintt == 1) then
|
||||
! if (x < zero) result = two - result
|
||||
! else
|
||||
! if (x < zero) then
|
||||
! if (x < xneg) then
|
||||
! result = xinf
|
||||
! else
|
||||
! ysq = aint(x*sixten)/sixten
|
||||
! del = (x-ysq)*(x+ysq)
|
||||
! y = exp(ysq*ysq) * exp(del)
|
||||
! result = (y+y) - result
|
||||
! end if
|
||||
! end if
|
||||
! end if
|
||||
! end subroutine calerf
|
||||
!
|
||||
! function derf(x)
|
||||
!!--------------------------------------------------------------------
|
||||
!!
|
||||
!! this subprogram computes approximate values for erf(x).
|
||||
!! (see comments heading calerf).
|
||||
!!
|
||||
!! author/date: w. j. cody, january 8, 1985
|
||||
!!
|
||||
!!--------------------------------------------------------------------
|
||||
! implicit none
|
||||
! real(wp_) :: derf
|
||||
! real(wp_), intent(in) :: x
|
||||
! integer :: jintt
|
||||
! real(wp_) :: result
|
||||
!!------------------------------------------------------------------
|
||||
! jintt = 0
|
||||
! call calerf(x,result,jintt)
|
||||
! derf = result
|
||||
! end function derf
|
||||
!
|
||||
! function derfc(x)
|
||||
!!--------------------------------------------------------------------
|
||||
!!
|
||||
!! this subprogram computes approximate values for erfc(x).
|
||||
!! (see comments heading calerf).
|
||||
!!
|
||||
!! author/date: w. j. cody, january 8, 1985
|
||||
!!
|
||||
!!--------------------------------------------------------------------
|
||||
! implicit none
|
||||
! real(wp_) :: derfc
|
||||
! real(wp_), intent(in) :: x
|
||||
! integer :: jintt
|
||||
! real(wp_) :: result
|
||||
!!------------------------------------------------------------------
|
||||
! jintt = 1
|
||||
! call calerf(x,result,jintt)
|
||||
! derfc = result
|
||||
! end function derfc
|
||||
!
|
||||
! function derfcx(x)
|
||||
!!------------------------------------------------------------------
|
||||
!!
|
||||
!! this subprogram computes approximate values for exp(x*x) * erfc(x).
|
||||
!! (see comments heading calerf).
|
||||
!!
|
||||
!! author/date: w. j. cody, march 30, 1987
|
||||
!!
|
||||
!!------------------------------------------------------------------
|
||||
! implicit none
|
||||
! real(wp_) :: derfcx
|
||||
! real(wp_), intent(in) :: x
|
||||
! integer :: jintt
|
||||
! real(wp_) :: result
|
||||
!!------------------------------------------------------------------
|
||||
! jintt = 2
|
||||
! call calerf(x,result,jintt)
|
||||
! derfcx = result
|
||||
! end function derfcx
|
||||
|
||||
end module eierf
|
1085
src/equilibrium.f90
Normal file
1085
src/equilibrium.f90
Normal file
File diff suppressed because it is too large
Load Diff
891
src/gray-externals.f90
Normal file
891
src/gray-externals.f90
Normal file
@ -0,0 +1,891 @@
|
||||
! program gray
|
||||
! use gray_params, only : ipass,igrad
|
||||
! implicit none
|
||||
!! local variables
|
||||
! real(wp_) :: p0mw1
|
||||
!! common/external functions/variables
|
||||
! integer :: ierr,index_rt
|
||||
! real(wp_) :: sox,p0mw,powrfl,taumn,taumx,pabstot,currtot,
|
||||
!!
|
||||
! common/ierr/ierr
|
||||
! common/mode/sox
|
||||
! common/p0/p0mw
|
||||
! common/powrfl/powrfl
|
||||
! common/index_rt/index_rt
|
||||
! common/taumnx/taumn,taumx,pabstot,currtot
|
||||
!!
|
||||
! if (ipass.gt.1) then
|
||||
!! second pass into plasma
|
||||
! p0mw1=p0mw
|
||||
! igrad=0
|
||||
!!
|
||||
! index_rt=2
|
||||
! p0mw=p0mw1*powrfl
|
||||
! call prfile
|
||||
! call vectinit2
|
||||
! call paraminit
|
||||
! call ic_rt2
|
||||
! call gray_integration
|
||||
! call after_gray_integration
|
||||
! pabstott=pabstott+pabstot
|
||||
! currtott=currtott+currtot
|
||||
!!
|
||||
! index_rt=3
|
||||
! sox=-sox
|
||||
! p0mw=p0mw1*(1.0_wp_-powrfl)
|
||||
! call prfile
|
||||
! call vectinit2
|
||||
! call paraminit
|
||||
! call ic_rt2
|
||||
! call gray_integration
|
||||
! call after_gray_integration
|
||||
! pabstott=pabstott+pabstot
|
||||
! currtott=currtott+currtot
|
||||
! end if
|
||||
!!
|
||||
! end program gray
|
||||
!
|
||||
!
|
||||
!
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
! ins_pl=inside_plasma(rrm,zzm)
|
||||
! if (mod(iop(j,k),2).eq.0 .and. ins_pl) then
|
||||
! iop(j,k)=iop(j,k)+1
|
||||
! call pol_limit(sox,ext(j,k,iop(j,k)),eyt(j,k,iop(j,k)))
|
||||
!
|
||||
! if (ipass.gt.1 .and. index_rt.eq.1 .and.
|
||||
! . iowmax.gt.1 .and. istore(j,k).eq.0) then
|
||||
! istore(j,k)=istore(j,k)+1
|
||||
! yyrfl(j,k,1:3)=xv
|
||||
! yyrfl(j,k,4:6)=anv
|
||||
! ihcd(j,k)=0
|
||||
! end if
|
||||
! else if (mod(iop(j,k),2).eq.1.and.
|
||||
! . .not.ins_pl) then
|
||||
! iop(j,k)=iop(j,k)+1
|
||||
! call pol_limit(sox,ext(j,k,iop(j,k)),eyt(j,k,iop(j,k)))
|
||||
! end if
|
||||
!
|
||||
! if (ipass.gt.1) then
|
||||
! if (iow(j,k).eq.0 .and. inside(rlim,zlim,nlim,rrm,zzm)) then
|
||||
! iow(j,k)=1
|
||||
! else if (iow(j,k).eq.1 .and.
|
||||
! . .not.inside(rlim,zlim,nlim,rrm,zzm)) then
|
||||
! iow(j,k)=2
|
||||
! if (ins_pl) then
|
||||
! iop(j,k)=iop(j,k)+1
|
||||
! call pol_limit(sox,ext(j,k,iop(j,k)),eyt(j,k,iop(j,k)))
|
||||
! end if
|
||||
! call wall_refl(xv-dst*anv,anv,ext(j,k,iop(j,k)),
|
||||
! . eyt(j,k,iop(j,k)),xvrfl,anvrfl,extr,eytr,anw,irfl)
|
||||
! istore(j,k)=istore(j,k)+1
|
||||
! yyrfl(j,k,1:3)=xvrfl
|
||||
! yyrfl(j,k,4:6)=anvrfl
|
||||
! tau1v(j,k)=tauv(j,k,iiv(j,k))
|
||||
! ext(j,k,iop(j,k))=extr
|
||||
! eyt(j,k,iop(j,k))=eytr
|
||||
! if (j.lt.jclosest) then
|
||||
! jclosest=j
|
||||
! anwcl=anw
|
||||
! xwcl=xvrfl
|
||||
! end if
|
||||
! xv=xvrfl
|
||||
! anv=anvrfl
|
||||
! rrm=1.0e-2_wp_*sqrt(xv(1)**2+xv(2)**2)
|
||||
! zzm=1.0e-2_wp_*xv(3)
|
||||
! ywrk(1:3,j,k)=xv
|
||||
! ywrk(4:6,j,k)=anv
|
||||
! igrad=0
|
||||
! call gwork(sox,xgcn,bres,j,k)
|
||||
! if (ins_pl) then
|
||||
! iop(j,k)=iop(j,k)+1
|
||||
! call pol_limit(sox,ext(j,k,iop(j,k)),eyt(j,k,iop(j,k)))
|
||||
! if (index_rt.eq.1) ihcd(j,k)=0
|
||||
! end if
|
||||
! end if
|
||||
! end if
|
||||
!
|
||||
! if(index_rt.eq.1 .and. j.eq.1) psinv11=psinv
|
||||
! if(iop(j,k).lt.iopmin) iopmin=iop(j,k)
|
||||
! if(iow(j,k).lt.iowmin) iowmin=iow(j,k)
|
||||
! if(iow(j,k).gt.iowmax) iowmax=iow(j,k)
|
||||
!
|
||||
! xvjk(:,j,k)=xv
|
||||
! anvjk(:,j,k)=anv
|
||||
!
|
||||
! end do
|
||||
! end do
|
||||
! if(jclosest.le.nrayr) then
|
||||
! aknmin=1.0_wp_
|
||||
! do j=1,nrayr
|
||||
! kkk=nrayth
|
||||
! if(j.eq.1) kkk=1
|
||||
! do k=1,kkk
|
||||
! print*,i,j,k
|
||||
! print*,anwcl,xwcl,anvjk(1:2,j,k)
|
||||
! anwclr=(anwcl(1)*xwcl(1)+anwcl(2)*xwcl(2))
|
||||
! . /sqrt(xwcl(1)**2+xwcl(2)**2)
|
||||
! anvjkr=(anvjk(1,j,k)*xvjk(1,j,k)+anvjk(2,j,k)*xvjk(2,j,k))
|
||||
! . /sqrt(xvjk(1,j,k)**2+xvjk(2,j,k)**2)
|
||||
! akdotn=anwclr*anvjkr+anwcl(3)*anvjk(3,j,k)
|
||||
! if(akdotn.lt.aknmin) aknmin=akdotn
|
||||
! end do
|
||||
! end do
|
||||
! else
|
||||
! aknmin=-1.0_wp_
|
||||
! end if
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
!
|
||||
!! single pass is stopped when all the rays have crossed the plasma
|
||||
!! or complete absorption has occurred
|
||||
!! same for successive passes of multi-pass simulations (here exit
|
||||
!! from vessel is detected too
|
||||
!! first pass in multi-pass simulation is stopped when at least one
|
||||
!! ray has reflected and all rays are directed away from
|
||||
!! reflection point, or when no reflection has occurred and
|
||||
!! central ray re-enters the plasma
|
||||
!
|
||||
! if((ipass.eq.1 .and. ((iopmin.gt.1) .or.
|
||||
! . (taumn.lt.1.0e+30_wp_.and.taumn.gt.taucr)))
|
||||
! . .or.(index_rt.gt.1 .and. (iopmin.gt.1 .or. iowmin.gt.1 .or.
|
||||
! . (taumn.lt.1.0e+30_wp_.and.taumn.gt.taucr)))) then
|
||||
! istop=1
|
||||
! else if(ipass.gt.1 .and. index_rt.eq.1 .and.
|
||||
! . ((iowmin.gt.1 .and. aknmin.gt.0) .or.
|
||||
! . (iowmax.le.1 .and. iop(1,1).gt.2))) then
|
||||
!! flag second pass mode coupling as unset
|
||||
! powrfl=-1.0_wp_
|
||||
! qqout=0.0_wp_
|
||||
! uuout=0.0_wp_
|
||||
! vvout=0.0_wp_
|
||||
! do j=1,nrayr
|
||||
! kkk=nrayth
|
||||
! if(j.eq.1) kkk=1
|
||||
! do k=1,kkk
|
||||
!! store missing initial conditions for the second pass
|
||||
! if (istore(j,k).eq.0) then
|
||||
! istore(j,k)=istore(j,k)+1
|
||||
! yyrfl(j,k,1:3)=xvjk(:,j,k)
|
||||
! yyrfl(j,k,4:6)=anvjk(:,j,k)
|
||||
! tau1v(j,k)=tauv(j,k,iiv(j,k))
|
||||
! end if
|
||||
!! determine mode coupling at the plasma boundary
|
||||
! if (powrfl.lt.0.0_wp_) then
|
||||
! call vacuum_rt(xvjk(:,j,k),anvjk(:,j,k),xvvac,ivac)
|
||||
!! look for first ray hitting the plasma, starting from the central
|
||||
!! and evaluate polarization
|
||||
! if (ivac.eq.1) then
|
||||
! y(1:3)=xvjk(:,j,k)
|
||||
! y(4:6)=anvjk(:,j,k)
|
||||
! call fwork(sox,xgcn,bres,y,dery)
|
||||
! call pol_limit(sox,exin2,eyin2)
|
||||
! call stokes(exin2,eyin2,qqin2,uuin2,vvin2)
|
||||
! powloop: do j1=1,nrayr
|
||||
! kkkk=nrayth
|
||||
! if(j1.eq.1) kkkk=1
|
||||
! do k1=1,kkkk
|
||||
!! look for first ray which completed the first pass in the plasma
|
||||
! if (iop(j1,k1).gt.1) then
|
||||
!! if found, use its polarization state to compute mode coupling
|
||||
! call stokes(ext(j1,k1,2),eyt(j1,k1,2),
|
||||
! . qqout,uuout,vvout)
|
||||
! exit powloop
|
||||
! end if
|
||||
! end do
|
||||
! end do powloop
|
||||
!! if no ray completed a first pass in the plasma, use central ray
|
||||
!! initial polarization (possibly reflected)
|
||||
! if (qqout.le.0.0_wp_) then
|
||||
! call stokes(ext(1,1,0),eyt(1,1,0),qqout,uuout,vvout)
|
||||
! end if
|
||||
! powrfl=0.5_wp_*(1.0_wp_+vvout*vvin2+
|
||||
! . uuout*uuin2+qqout*qqin2)
|
||||
! end if
|
||||
! end if
|
||||
! end do
|
||||
! end do
|
||||
! strfl11=i*dst
|
||||
! write(6,*) ' '
|
||||
! write(6,*) 'Reflected power fraction =',powrfl
|
||||
! write(66,*) psipol,chipol,powrfl
|
||||
! istop=1
|
||||
! end if
|
||||
!
|
||||
! return
|
||||
! end
|
||||
!
|
||||
!
|
||||
!
|
||||
! subroutine ic_rt(x00,y00,z00,anx0c,any0c,anz0c,ak0,xgcn,bres,
|
||||
! . wcsi,weta,rcicsi,rcieta,phiw,phir,sox,psipol0,chipol0)
|
||||
!! ray tracing initial conditions igrad=0
|
||||
!!
|
||||
! use const_and_precisions, only : wp_,izero,zero,one,pi,
|
||||
! . cvdr=>degree,ui=>im
|
||||
! use gray_params, only : ipol
|
||||
! use beamdata, only : nrayr,nrayth,rwmax,ywrk0=>ywrk,ypwrk0=>ypwrk,
|
||||
! . xc0=>xc,du10=>du1,dffiu,ddffiu,grad2,dgrad2v,gri,ggri,ext,eyt
|
||||
! implicit none
|
||||
!! arguments
|
||||
! real(wp_), intent(in) :: x00,y00,z00,anx0c,any0c,anz0c
|
||||
! real(wp_), intent(in) :: ak0,xgcn,bres
|
||||
! real(wp_), intent(in) :: wcsi,weta,rcicsi,rcieta,phiw,phir
|
||||
! real(wp_), intent(in) :: sox,psipol0,chipol0
|
||||
!! local constants
|
||||
! integer, parameter :: ndim=6,ndimm=3
|
||||
!! local variables
|
||||
! integer :: j,k,iv,jv,iproj,nfilp
|
||||
! real(wp_) :: csth,snth,csps,snps,phiwrad,csphiw,snphiw,dr,da,u,
|
||||
! . alfak,dcsiw,detaw,dx0t,dy0t,x0t,y0t,z0t,dx0,dy0,dz0,x0,y0,z0,
|
||||
! . anzt,anxt,anyt,anx,any,anz,an20,an0,anx0,any0,anz0,vgradi,r0,
|
||||
! . x0m,y0m,r0m,z0m,ancsi,aneta,ppcsi,ppeta,deltapol,qq,uu,vv
|
||||
! real(wp_), dimension(ndim) :: ytmp,yptmp
|
||||
!! common/external functions/variables
|
||||
! real(wp_) :: dd,an2s,an2,fdia,bdotgr,ddi,ddr11,psinv,dens,ddens,
|
||||
! . tekev,anpl,anpr,brr,bphi,bzz,ajphi,psipol,chipol,psinv11
|
||||
!
|
||||
!!
|
||||
! common/ddd/dd,an2s,an2,fdia,bdotgr,ddi,ddr11
|
||||
! common/nplr/anpl,anpr
|
||||
! common/psival/psinv
|
||||
! common/parpl/brr,bphi,bzz,ajphi
|
||||
! common/dens/dens,ddens
|
||||
! common/tete/tekev
|
||||
! common/polcof/psipol,chipol
|
||||
! common/psinv11/psinv11
|
||||
!!
|
||||
! csth=anz0c
|
||||
! snth=sqrt(1.0_wp_-csth**2)
|
||||
! csps=1.0_wp_
|
||||
! snps=0.0_wp_
|
||||
! if(snth.gt.0.0_wp_) then
|
||||
! csps=any0c/snth
|
||||
! snps=anx0c/snth
|
||||
! end if
|
||||
!!
|
||||
! phiwrad=phiw*cvdr
|
||||
! csphiw=cos(phiwrad)
|
||||
! snphiw=sin(phiwrad)
|
||||
!!
|
||||
! dr=1.0_wp_
|
||||
! if(nrayr.gt.1) dr=rwmax/dble(nrayr-1)
|
||||
! da=2.0_wp_*pi/dble(nrayth)
|
||||
! z0t=0.0_wp_
|
||||
!!
|
||||
! do j=1,nrayr
|
||||
! u=dble(j-1)
|
||||
! dffiu(j)=0.0_wp_
|
||||
! ddffiu(j)=0.0_wp_
|
||||
! do k=1,nrayth
|
||||
! alfak=(k-1)*da
|
||||
! dcsiw=dr*cos(alfak)*wcsi
|
||||
! detaw=dr*sin(alfak)*weta
|
||||
! dx0t=dcsiw*csphiw-detaw*snphiw
|
||||
! dy0t=dcsiw*snphiw+detaw*csphiw
|
||||
! x0t=u*dx0t
|
||||
! y0t=u*dy0t
|
||||
!!
|
||||
!! csiw=u*dcsiw
|
||||
!! etaw=u*detaw
|
||||
!! csir=csiw
|
||||
!! etar=etaw
|
||||
!!
|
||||
! dx0= x0t*csps+snps*(y0t*csth+z0t*snth)
|
||||
! dy0=-x0t*snps+csps*(y0t*csth+z0t*snth)
|
||||
! dz0= z0t*csth-y0t*snth
|
||||
!!
|
||||
! x0=x00+dx0
|
||||
! y0=y00+dy0
|
||||
! z0=z00+dz0
|
||||
!!
|
||||
! ppcsi=u*dr*cos(alfak)*rcicsi
|
||||
! ppeta=u*dr*sin(alfak)*rcieta
|
||||
!!
|
||||
! anzt=1.0_wp_/sqrt(1.0_wp_+ppcsi**2+ppeta**2)
|
||||
! ancsi=ppcsi*anzt
|
||||
! aneta=ppeta*anzt
|
||||
!!
|
||||
! anxt=ancsi*csphiw-aneta*snphiw
|
||||
! anyt=ancsi*snphiw+aneta*csphiw
|
||||
!!
|
||||
! anx= anxt*csps+snps*(anyt*csth+anzt*snth)
|
||||
! any=-anxt*snps+csps*(anyt*csth+anzt*snth)
|
||||
! anz= anzt*csth-anyt*snth
|
||||
!!
|
||||
! an20=1.0_wp_
|
||||
! an0=sqrt(an20)
|
||||
! anx0=anx
|
||||
! any0=any
|
||||
! anz0=anz
|
||||
!!
|
||||
! xc0(1,j,k)=x0
|
||||
! xc0(2,j,k)=y0
|
||||
! xc0(3,j,k)=z0
|
||||
!!
|
||||
! ywrk0(1,j,k)=x0
|
||||
! ywrk0(2,j,k)=y0
|
||||
! ywrk0(3,j,k)=z0
|
||||
! ywrk0(4,j,k)=anx0
|
||||
! ywrk0(5,j,k)=any0
|
||||
! ywrk0(6,j,k)=anz0
|
||||
!!
|
||||
! ypwrk0(1,j,k) = anx0/an0
|
||||
! ypwrk0(2,j,k) = any0/an0
|
||||
! ypwrk0(3,j,k) = anz0/an0
|
||||
! ypwrk0(4,j,k) = 0.0_wp_
|
||||
! ypwrk0(5,j,k) = 0.0_wp_
|
||||
! ypwrk0(6,j,k) = 0.0_wp_
|
||||
!!
|
||||
! ytmp=ywrk0(:,j,k)
|
||||
! yptmp=ypwrk0(:,j,k)
|
||||
! call fwork(sox,xgcn,bres,ytmp,yptmp)
|
||||
!
|
||||
! if(ipol.eq.0) then
|
||||
! call pol_limit(sox,ext(j,k,0),eyt(j,k,0))
|
||||
! qq=abs(ext(j,k,0))**2-abs(eyt(j,k,0))**2
|
||||
! uu=2.0_wp_*dble(ext(j,k,0)*dconjg(eyt(j,k,0)))
|
||||
! vv=2.0_wp_*dimag(ext(j,k,0)*dconjg(eyt(j,k,0)))
|
||||
! call polellipse(qq,uu,vv,psipol0,chipol0)
|
||||
! else
|
||||
! qq=cos(2.0_wp_*chipol0*cvdr)*cos(2.0_wp_*psipol0*cvdr)
|
||||
! uu=cos(2.0_wp_*chipol0*cvdr)*sin(2.0_wp_*psipol0*cvdr)
|
||||
! vv=sin(2.0_wp_*chipol0*cvdr)
|
||||
! if(qq**2.lt.1.0_wp_) then
|
||||
!! deltapol=phix-phiy, phix =0
|
||||
! deltapol=atan2(vv,uu)
|
||||
! ext(j,k,0)= sqrt((1.0_wp_+qq)/2)
|
||||
! eyt(j,k,0)= sqrt((1.0_wp_-qq)/2)*exp(-ui*deltapol)
|
||||
! else
|
||||
! if(qq.gt.0.0_wp_) then
|
||||
! ext(j,k,0)= 1.0_wp_
|
||||
! eyt(j,k,0)= 0.0_wp_
|
||||
! else
|
||||
! eyt(j,k,0)= 1.0_wp_
|
||||
! ext(j,k,0)= 0.0_wp_
|
||||
! end if
|
||||
! end if
|
||||
! endif
|
||||
! psipol=psipol0
|
||||
! chipol=chipol0
|
||||
!!
|
||||
! do iv=1,3
|
||||
! gri(iv,j,k)=0.0_wp_
|
||||
! dgrad2v(iv,j,k)=0.0_wp_
|
||||
! du10(iv,j,k)=0.0_wp_
|
||||
! do jv=1,3
|
||||
! ggri(iv,jv,j,k)=0.0_wp_
|
||||
! end do
|
||||
! end do
|
||||
! grad2(j,k)=0.0_wp_
|
||||
!!
|
||||
! dd=anx0**2+any0**2+anz0**2-an20
|
||||
! vgradi=0.0_wp_
|
||||
! ddi=2.0_wp_*vgradi
|
||||
!!
|
||||
! r0=sqrt(x0**2+y0**2)
|
||||
! x0m=x0/1.0e2_wp_
|
||||
! y0m=y0/1.0e2_wp_
|
||||
! r0m=r0/1.0e2_wp_
|
||||
! z0m=z0/1.0e2_wp_
|
||||
! if(j.eq.nrayr) then
|
||||
! write(33,111) izero,j,k,zero,x0m,y0m,r0m,z0m,
|
||||
! . psinv,zero,anpl,zero,one
|
||||
! end if
|
||||
! if(j.eq.1.and.k.eq.1) then
|
||||
! psinv11=psinv
|
||||
! write(17,99) zero,zero,zero,zero
|
||||
! write(4,99) zero,r0m,z0m,atan2(y0m,x0m)*180.0_wp_/pi,
|
||||
! . psinv,one,dens,tekev,brr,bphi,bzz,
|
||||
! . ajphi*1.0e-6_wp_,sqrt(anpl**2+anpr**2),anpl,zero,
|
||||
! . zero,zero,zero,zero,zero,zero,zero,one
|
||||
! end if
|
||||
! end do
|
||||
! end do
|
||||
!
|
||||
! call pweigth
|
||||
!!
|
||||
! if(nrayr.gt.1) then
|
||||
! iproj=0
|
||||
! nfilp=8
|
||||
! call projxyzt(iproj,nfilp)
|
||||
! end if
|
||||
!!
|
||||
! return
|
||||
!99 format(24(1x,e16.8e3))
|
||||
!111 format(3i5,20(1x,e16.8e3))
|
||||
! end
|
||||
|
||||
|
||||
|
||||
subroutine prfile
|
||||
implicit none
|
||||
write(4,*)' #sst R z phi psi rhot ne Te Btot '// &
|
||||
'Nperp Npl ki alpha tau Pt dIds nh iohkw index_rt ddr'
|
||||
write(8,*) ' #istep j k xt yt zt rt psin'
|
||||
write(9,*) ' #istep j k xt yt zt rt psin'
|
||||
write(17,*) ' #sst Dr_Nr1 Di_Nr1'
|
||||
write(33,*) ' #i jk sst x y R z psi tauv Npl alpha index_rt'
|
||||
write(12,*) ' #i sst psi w1 w2'
|
||||
write(7,*)'#Icd Pa Jphip dPdVp rhotj rhotjava rhotp rhotpav '// &
|
||||
'drhotjava drhotpav ratjamx ratjbmx stmx psipol chipol index_rt '// &
|
||||
'Jphimx dPdVmx drhotj drhotp'
|
||||
write(48,*) '#rhop rhot Jphi Jcdb dPdV Icdins Pins'
|
||||
write(66,*) "# psipol0 chipol0 powrfl"
|
||||
end subroutine prfile
|
||||
|
||||
|
||||
|
||||
subroutine print_prof
|
||||
use const_and_precisions, only : wp_
|
||||
use equilibrium, only : psinr,nq,fq,frhotor,tor_curr_psi
|
||||
use coreprofiles, only : density, temp
|
||||
implicit none
|
||||
! local constants
|
||||
real(wp_), parameter :: eps=1.e-4_wp_
|
||||
! local variables
|
||||
integer :: i
|
||||
real(wp_) :: psin,rhop,rhot,ajphi,te,qq
|
||||
real(wp_) :: dens,ddens
|
||||
|
||||
write(55,*) ' #psi rhot ne Te q Jphi'
|
||||
do i=1,nq
|
||||
psin=psinr(i)
|
||||
rhop=sqrt(psin)
|
||||
|
||||
call density(psin,dens,ddens)
|
||||
te=temp(psin)
|
||||
qq=fq(psin)
|
||||
rhot=frhotor(rhop)
|
||||
call tor_curr_psi(max(eps,psin),ajphi)
|
||||
write(55,"(12(1x,e12.5))") psin,rhot,dens,te,qq,ajphi*1.e-6_wp_
|
||||
end do
|
||||
end subroutine print_prof
|
||||
|
||||
subroutine print_prof_an
|
||||
use const_and_precisions, only : wp_
|
||||
use coreprofiles, only : density, temp
|
||||
use equilibrium, only : frhotor
|
||||
implicit none
|
||||
! local constants
|
||||
integer, parameter :: nst=51
|
||||
! local variables
|
||||
integer :: i
|
||||
real(wp_) :: psin,rhop,rhot,te
|
||||
real(wp_) :: dens,ddens
|
||||
|
||||
write(55,*) ' #psi rhot ne Te'
|
||||
do i=1,nst
|
||||
psin=dble(i-1)/dble(nst-1)
|
||||
rhop=sqrt(psin)
|
||||
rhot=frhotor(rhop)
|
||||
call density(psin,dens,ddens)
|
||||
te=temp(psin)
|
||||
write(55,"(12(1x,e12.5))") psin,rhot,dens,te
|
||||
end do
|
||||
end subroutine print_prof_an
|
||||
|
||||
|
||||
|
||||
subroutine surfq(psinq,qpsi,nq,qval)
|
||||
use const_and_precisions, only : wp_
|
||||
use equilibrium, only : rmaxis,zmaxis,zbinf,zbsup,frhotor
|
||||
use magsurf_data, only : npoints,contours_psi
|
||||
use utils, only : locate, intlin
|
||||
implicit none
|
||||
! arguments
|
||||
integer, intent(in) :: nq
|
||||
real(wp_), dimension(nq), intent(in) :: psinq,qpsi
|
||||
real(wp_) :: qval
|
||||
! local variables
|
||||
integer :: ncnt,i1,ipr
|
||||
real(wp_) :: rup,zup,rlw,zlw,rhot,psival
|
||||
real(wp_), dimension(npoints) :: rcn,zcn
|
||||
|
||||
ncnt=(npoints-1)/2
|
||||
|
||||
! locate psi surface for q=qval
|
||||
call locate(abs(qpsi),nq,qval,i1)
|
||||
if (i1>0.and.i1<nq) then
|
||||
call intlin(abs(qpsi(i1)),psinq(i1),abs(qpsi(i1+1)),psinq(i1+1),qval,psival)
|
||||
rup=rmaxis
|
||||
rlw=rmaxis
|
||||
zup=(zbsup+zmaxis)/2.0_wp_
|
||||
zlw=(zmaxis+zbinf)/2.0_wp_
|
||||
ipr=1
|
||||
call contours_psi(psival,rup,zup,rlw,zlw,rcn,zcn,ipr)
|
||||
rhot=frhotor(sqrt(psival))
|
||||
print'(4(a,f8.5))','q = ',qval, ' psi = ',psival, &
|
||||
' rhop = ',sqrt(psival),' rhot = ',rhot
|
||||
end if
|
||||
end
|
||||
|
||||
|
||||
|
||||
subroutine bfield_res(rv,zv,nr,nz,bres)
|
||||
use const_and_precisions, only : wp_
|
||||
use equilibrium, only : bfield
|
||||
implicit none
|
||||
! arguments
|
||||
integer, intent(in) :: nr, nz
|
||||
real(wp_), intent(in) :: rv(nr), zv(nz), bres
|
||||
! local constants
|
||||
integer, parameter :: icmx=2002
|
||||
! local variables
|
||||
integer :: j,k,n,nconts,inc,nctot
|
||||
integer, dimension(10) :: ncpts
|
||||
real(wp_) :: btmx,btmn,zzk,rrj,bbphi,bbr,bbz,bbb
|
||||
real(wp_), dimension(icmx) :: rrcb,zzcb
|
||||
real(wp_), dimension(nr,nz) :: btotal
|
||||
|
||||
! Btotal on psi grid
|
||||
btmx=-1.0e30_wp_
|
||||
btmn=1.0e30_wp_
|
||||
do j=1,nr
|
||||
rrj=rv(j)
|
||||
do k=1,nz
|
||||
zzk=zv(k)
|
||||
call bfield(rrj,zzk,bbphi,bbr,bbz)
|
||||
btotal(j,k)=sqrt(bbr**2+bbz**2+bbphi**2)
|
||||
if(btotal(j,k).ge.btmx) btmx=btotal(j,k)
|
||||
if(btotal(j,k).le.btmn) btmn=btotal(j,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! compute Btot=Bres/n with n=1,5
|
||||
write(70,*)'#i Btot R z'
|
||||
do n=1,5
|
||||
bbb=bres/dble(n)
|
||||
if (bbb.ge.btmn.and.bbb.le.btmx) then
|
||||
nconts=size(ncpts)
|
||||
nctot=size(rrcb)
|
||||
call cniteq(rv,zv,btotal,nr,nz,bbb,nconts,ncpts,nctot,rrcb,zzcb)
|
||||
do inc=1,nctot
|
||||
write(70,'(i6,12(1x,e12.5))') inc,bbb,rrcb(inc),zzcb(inc)
|
||||
end do
|
||||
end if
|
||||
write(70,*)
|
||||
end do
|
||||
end subroutine bfield_res
|
||||
|
||||
subroutine bres_anal(bres)
|
||||
use const_and_precisions, only : wp_,pi
|
||||
use equilibrium, only : aminor,rmaxis,zmaxis
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_) :: bres
|
||||
! local variables
|
||||
integer :: i
|
||||
integer, parameter :: ngrid=51
|
||||
real(wp_) :: dxgrid
|
||||
real(wp_), dimension(ngrid) :: rv,zv
|
||||
|
||||
dxgrid=2.0_wp_*aminor/dble(ngrid-1)
|
||||
do i=1,ngrid
|
||||
rv(i) = rmaxis - aminor + dxgrid*(i-1)
|
||||
zv(i) = zmaxis - aminor + dxgrid*(i-1)
|
||||
end do
|
||||
call bfield_res(rv,zv,ngrid,ngrid,bres)
|
||||
end subroutine bres_anal
|
||||
|
||||
|
||||
|
||||
subroutine cniteq(rqgrid,zqgrid,matr2dgrid,nr,nz,h,ncon,npts,icount,rcon,zcon)
|
||||
use const_and_precisions, only : wp_
|
||||
! v2.01 12/07/95 -- written by d v bartlett, jet joint undertaking.
|
||||
! (based on an older code)
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
! arguments
|
||||
integer, intent(in) :: nr,nz
|
||||
real(wp_), dimension(nr), intent(in) :: rqgrid
|
||||
real(wp_), dimension(nz), intent(in) :: zqgrid
|
||||
real(wp_), dimension(nr,nz), intent(in) :: matr2dgrid
|
||||
real(wp_), intent(in) :: h
|
||||
integer, intent(inout) :: ncon, icount
|
||||
integer, dimension(ncon), intent(out) :: npts
|
||||
real(wp_), dimension(icount), intent(out) :: rcon,zcon
|
||||
! local variables
|
||||
integer :: i,j,k,l,nrqmax,iclast,mpl,ix,jx,mxr,n1,jm,jfor,lda,ldb
|
||||
integer :: jabs,jnb,kx,ikx,itm,inext,in
|
||||
integer, dimension(3,2) :: ja
|
||||
integer, dimension(icount/2-1) :: lx
|
||||
real(wp_) :: drgrd,dzgrd,ah,adn,px,x,y
|
||||
real(wp_), dimension(nr*nz) :: a
|
||||
logical :: flag1
|
||||
|
||||
px = 0.5_wp_
|
||||
|
||||
a = reshape(matr2dgrid,(/nr*nz/))
|
||||
|
||||
rcon = 0.0_wp_
|
||||
zcon = 0.0_wp_
|
||||
|
||||
nrqmax = nr
|
||||
drgrd = rqgrid(2) - rqgrid(1)
|
||||
dzgrd = zqgrid(2) - zqgrid(1)
|
||||
|
||||
ncon = 0
|
||||
|
||||
npts = 0
|
||||
|
||||
iclast = 0
|
||||
icount = 0
|
||||
mpl = 0
|
||||
ix = 0
|
||||
mxr = nrqmax * (nz - 1)
|
||||
n1 = nr - 1
|
||||
|
||||
do jx=2,n1
|
||||
do jm=jx,mxr,nrqmax
|
||||
j = jm + nrqmax
|
||||
ah=a(j)-h
|
||||
if (ah <= 0.0_wp_ .and. a(jm) > h .or. &
|
||||
ah > 0.0_wp_ .and. a(jm) <= h) then
|
||||
ix=ix+1
|
||||
lx(ix)=-j
|
||||
end if
|
||||
if (ah <= 0.0_wp_ .and. a(j-1) > h .or. &
|
||||
ah > 0.0_wp_ .and. a(j-1) <= h) then
|
||||
ix=ix+1
|
||||
lx(ix)=j
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
do jm=nr,mxr,nrqmax
|
||||
j = jm + nrqmax
|
||||
ah=a(j)-h
|
||||
if (ah <= 0.0_wp_ .and. a(j-1) > h .or. &
|
||||
ah > 0.0_wp_ .and. a(j-1) <= h) then
|
||||
ix=ix+1
|
||||
lx(ix)=j
|
||||
end if
|
||||
if (ah <= 0.0_wp_ .and. a(jm) > h .or. &
|
||||
ah > 0.0_wp_ .and. a(jm) <= h) then
|
||||
ix=ix+1
|
||||
lx(ix)=-j
|
||||
end if
|
||||
end do
|
||||
|
||||
do jm=1,mxr,nrqmax
|
||||
j = jm + nrqmax
|
||||
if (a(j) <= h .and. a(jm) > h .or. &
|
||||
a(j) > h .and. a(jm) <= h) then
|
||||
ix=ix+1
|
||||
lx(ix) =-j
|
||||
end if
|
||||
end do
|
||||
|
||||
do j=2,nr
|
||||
if (a(j) <= h .and. a(j-1) > h .or. &
|
||||
a(j) > h .and. a(j-1) <= h) then
|
||||
ix=ix+1
|
||||
lx(ix)=j
|
||||
end if
|
||||
end do
|
||||
|
||||
if(ix<=0) return
|
||||
|
||||
bb: do
|
||||
in=ix
|
||||
jx=lx(in)
|
||||
jfor=0
|
||||
lda=1
|
||||
ldb=2
|
||||
|
||||
do
|
||||
if(jx<0) then
|
||||
jabs=-jx
|
||||
jnb = jabs - nrqmax
|
||||
else
|
||||
jabs=jx
|
||||
jnb=jabs-1
|
||||
end if
|
||||
|
||||
adn=a(jabs)-a(jnb)
|
||||
if(adn/=0) px=(a(jabs)-h)/adn
|
||||
kx = (jabs - 1) / nrqmax
|
||||
ikx = jabs - nrqmax * kx - 1
|
||||
|
||||
if(jx<0) then
|
||||
x = drgrd * ikx
|
||||
y = dzgrd * (kx - px)
|
||||
else
|
||||
x = drgrd * (ikx - px)
|
||||
y = dzgrd * kx
|
||||
end if
|
||||
|
||||
icount = icount + 1
|
||||
rcon(icount) = x + rqgrid(1)
|
||||
zcon(icount) = y + zqgrid(1)
|
||||
mpl= icount
|
||||
itm = 1
|
||||
ja(1,1) = jabs + nrqmax
|
||||
j=1
|
||||
|
||||
if(jx<=0) then
|
||||
ja(1,1) = -jabs-1
|
||||
j=2
|
||||
end if
|
||||
|
||||
ja(2,1) = -ja(1,1)
|
||||
ja(3,1) = -jx + 1 - nrqmax
|
||||
ja(3,2) = -jx
|
||||
ja(j,2) = jabs - nrqmax
|
||||
k= 3-j
|
||||
ja(k,2) = 1-jabs
|
||||
|
||||
if (kx<=0 .or. ikx<=0) then
|
||||
lda=1
|
||||
ldb=lda
|
||||
else if (ikx + 1 - nr >= 0 .and. jx <= 0) then
|
||||
lda=2
|
||||
ldb=lda
|
||||
else if(jfor/=0) then
|
||||
lda=2
|
||||
do i=1,3
|
||||
if(jfor==ja(i,2)) then
|
||||
lda=1
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
ldb=lda
|
||||
end if
|
||||
|
||||
flag1=.false.
|
||||
aa: do k=1,3
|
||||
do l=lda,ldb
|
||||
do i=1,ix
|
||||
if(lx(i)==ja(k,l)) then
|
||||
itm=itm+1
|
||||
inext= i
|
||||
if(jfor/=0) exit aa
|
||||
if(itm .gt. 3) then
|
||||
flag1=.true.
|
||||
exit aa
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end do aa
|
||||
|
||||
if(.not.flag1) then
|
||||
lx(in)=0
|
||||
if(itm .eq. 1) exit
|
||||
end if
|
||||
|
||||
jfor=jx
|
||||
jx=lx(inext)
|
||||
in = inext
|
||||
end do
|
||||
|
||||
do
|
||||
if(lx(ix)/=0) then
|
||||
if(mpl>=4) then
|
||||
ncon = ncon + 1
|
||||
npts(ncon) = icount - iclast
|
||||
iclast = icount
|
||||
end if
|
||||
exit
|
||||
end if
|
||||
ix= ix-1
|
||||
if(ix<=0) exit bb
|
||||
end do
|
||||
|
||||
end do bb
|
||||
|
||||
if(mpl >= 4) then
|
||||
ncon = ncon + 1
|
||||
npts(ncon) = icount - iclast
|
||||
iclast = icount
|
||||
end if
|
||||
end subroutine cniteq
|
||||
|
||||
|
||||
|
||||
logical function inside_plasma(rrm,zzm)
|
||||
use const_and_precisions, only : wp_, zero, one
|
||||
use gray_params, only : iequil
|
||||
use coreprofiles, only : psdbnd
|
||||
use equilibrium, only : zbinf,zbsup,equinum_psi,equian
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: rrm,zzm
|
||||
! local variables
|
||||
real(wp_) :: psinv
|
||||
|
||||
if(iequil.eq.1) then
|
||||
call equian(rrm,zzm,psinv)
|
||||
else
|
||||
call equinum_psi(rrm,zzm,psinv)
|
||||
end if
|
||||
|
||||
inside_plasma = (psinv >= zero .and. psinv < psdbnd) .and. &
|
||||
(psinv >= one .or. (zzm >= zbinf .and. zzm <= zbsup))
|
||||
end function inside_plasma
|
||||
|
||||
|
||||
|
||||
subroutine vacuum_rt(xv0,anv0,xvend,dstvac,ivac)
|
||||
use const_and_precisions, only : wp_
|
||||
use reflections, only : inters_linewall,inside,rlim,zlim,nlim
|
||||
use beamdata, only : dst
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), dimension(3), intent(in) :: xv0,anv0
|
||||
real(wp_), dimension(3), intent(out) :: xvend
|
||||
real(wp_), intent(out) :: dstvac
|
||||
integer, intent(out) :: ivac
|
||||
! local variables
|
||||
integer :: i
|
||||
real(wp_) :: st,rrm,zzm,smax
|
||||
real(wp_), dimension(3) :: walln
|
||||
logical :: plfound
|
||||
! common/external functions/variables
|
||||
logical, external :: inside_plasma
|
||||
|
||||
! ivac=1 plasma hit before wall reflection
|
||||
! ivac=2 wall hit before plasma
|
||||
! ivac=-1 vessel (and thus plasma) never crossed
|
||||
|
||||
call inters_linewall(xv0/1.0e2_wp_,anv0,rlim(1:nlim),zlim(1:nlim), &
|
||||
nlim,smax,walln)
|
||||
smax=smax*1.0e2_wp_
|
||||
rrm=1.0e-2_wp_*sqrt(xv0(1)**2+xv0(2)**2)
|
||||
zzm=1.0e-2_wp_*xv0(3)
|
||||
if (.not.inside(rlim,zlim,nlim,rrm,zzm)) then
|
||||
! first wall interface is outside-inside
|
||||
if (dot_product(walln,walln)<tiny(walln)) then
|
||||
! wall never hit
|
||||
dstvac=0.0_wp_
|
||||
xvend=xv0
|
||||
ivac=-1
|
||||
return
|
||||
end if
|
||||
! search second wall interface (inside-outside)
|
||||
st=smax
|
||||
xvend=xv0+st*anv0
|
||||
call inters_linewall(xvend/1.0e2_wp_,anv0,rlim(1:nlim), &
|
||||
zlim(1:nlim),nlim,smax,walln)
|
||||
smax=smax*1.0e2_wp_+st
|
||||
end if
|
||||
i=0
|
||||
do
|
||||
st=i*dst
|
||||
xvend=xv0+st*anv0
|
||||
rrm=1.0e-2_wp_*sqrt(xvend(1)**2+xvend(2)**2)
|
||||
zzm=1.0e-2_wp_*xvend(3)
|
||||
plfound=inside_plasma(rrm,zzm)
|
||||
if (st.ge.smax.or.plfound) exit
|
||||
i=i+1
|
||||
end do
|
||||
|
||||
if (plfound) then
|
||||
ivac=1
|
||||
dstvac=st
|
||||
else
|
||||
ivac=2
|
||||
dstvac=smax
|
||||
xvend=xv0+smax*anv0
|
||||
end if
|
||||
end subroutine vacuum_rt
|
7700
src/gray.f
7700
src/gray.f
File diff suppressed because it is too large
Load Diff
208
src/gray_params.f90
Normal file
208
src/gray_params.f90
Normal file
@ -0,0 +1,208 @@
|
||||
module gray_params
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
integer, parameter :: lenfnm=256
|
||||
|
||||
type antctrl_type
|
||||
real(wp_) :: alpha, beta, power
|
||||
real(wp_) :: psi, chi
|
||||
integer :: iox
|
||||
integer :: ibeam
|
||||
character(len=lenfnm) :: filenm
|
||||
end type antctrl_type
|
||||
|
||||
type eqparam_type
|
||||
real(wp_) :: ssplps, ssplf, factb
|
||||
integer :: sgnb, sgni, ixp
|
||||
integer :: iequil, icocos, ipsinorm, idesc, ifreefmt
|
||||
character(len=lenfnm) :: filenm
|
||||
end type eqparam_type
|
||||
|
||||
type prfparam_type
|
||||
real(wp_) :: psnbnd, sspld, factne, factte
|
||||
integer :: iscal, irho !, icrho, icte, icne, iczf
|
||||
integer :: iprof
|
||||
character(len=lenfnm) :: filenm
|
||||
end type prfparam_type
|
||||
|
||||
type rtrparam_type
|
||||
real(wp_) :: rwmax, dst
|
||||
integer :: nrayr, nrayth, nstep
|
||||
integer :: igrad, idst, ipass, ipol
|
||||
end type rtrparam_type
|
||||
|
||||
type hcdparam_type
|
||||
integer :: iwarm, ilarm, imx, ieccd
|
||||
end type hcdparam_type
|
||||
|
||||
type outparam_type
|
||||
integer :: ipec, nrho, istpr, istpl
|
||||
end type outparam_type
|
||||
|
||||
|
||||
integer, save :: iequil,iprof,ipol
|
||||
integer, save :: iwarm,ilarm,imx,ieccd
|
||||
integer, save :: igrad,idst,ipass
|
||||
integer, save :: istpr0,istpl0
|
||||
integer, save :: ipec,nnd
|
||||
|
||||
contains
|
||||
|
||||
subroutine read_inputs(filenm,antctrl,eqparam,rwall,prfparam,outparam,unit)
|
||||
use const_and_precisions, only : wp_
|
||||
use utils, only : get_free_unit
|
||||
implicit none
|
||||
! arguments
|
||||
character(len=*), intent(in) :: filenm
|
||||
type(antctrl_type), intent(out) :: antctrl
|
||||
type(eqparam_type), intent(out) :: eqparam
|
||||
real(wp_), intent(out) :: rwall
|
||||
type(prfparam_type), intent(out) :: prfparam
|
||||
type(outparam_type), intent(out) :: outparam
|
||||
integer, intent(in), optional :: unit
|
||||
! local variables
|
||||
integer :: u
|
||||
|
||||
if (present(unit)) then
|
||||
u=unit
|
||||
else
|
||||
u = get_free_unit()
|
||||
end if
|
||||
open(u,file=filenm,status= 'old',action='read')
|
||||
|
||||
! alpha0, beta0 (cartesian) launching angles
|
||||
read(u,*) antctrl%alpha, antctrl%beta
|
||||
! p0mw injected power (MW)
|
||||
read(u,*) antctrl%power
|
||||
! abs(iox)=1/2 OM/XM
|
||||
! psipol0,chipol0 polarization angles at the antenna (if iox<0)
|
||||
read(u,*) antctrl%iox, antctrl%psi, antctrl%chi
|
||||
|
||||
! ibeam=0 :read data for beam as above
|
||||
! ibeam=1 :read data from file simple astigmatic beam
|
||||
! ibeam=2 :read data from file general astigmatic beam
|
||||
read(u,*) antctrl%ibeam
|
||||
read(u,*) antctrl%filenm
|
||||
|
||||
! iequil=0 :vacuum
|
||||
! iequil=1 :analytical equilibrium
|
||||
! iequil=2 :read eqdsk
|
||||
read(u,*) eqparam%iequil
|
||||
read(u,*) eqparam%filenm
|
||||
! icocos :index for equilibrium from COCOS - O. Sauter Feb 2012
|
||||
! ipsinorm :0 standard EQDSK format, 1 format Portone summer 2004
|
||||
read(u,*) eqparam%icocos, eqparam%ipsinorm, eqparam%idesc, eqparam%ifreefmt
|
||||
! ixp=0,-1,+1 : no X point , bottom/up X point
|
||||
! ssplps : spline parameter for psi interpolation
|
||||
read(u,*) eqparam%ixp, eqparam%ssplps !, eqparam%ssplf
|
||||
eqparam%ssplf=0.01_wp_
|
||||
! signum of toroidal B and I
|
||||
! factb factor for magnetic field (only for numerical equil)
|
||||
! scaling adopted: beta=const, qpsi=const, nustar=const
|
||||
read(u,*) eqparam%sgnb, eqparam%sgni, eqparam%factb
|
||||
|
||||
read(u,*) rwall
|
||||
|
||||
! iprof=0 :analytical density and temp. profiles
|
||||
! iprof>0 :numerical density and temp. profiles
|
||||
read(u,*) prfparam%iprof, prfparam%irho ! irho=0,1,2 -> num profiles vs rhot,rhop,psin
|
||||
read(u,*) prfparam%filenm
|
||||
! psbnd value of psi ( > 1 ) of density boundary
|
||||
read(u,*) prfparam%psnbnd !, prfparam%sspld
|
||||
prfparam%sspld=0.001_wp_
|
||||
! iscal ne Te scaling 0: nustar=const, 1: n_greenw=const; 2 no rescaling
|
||||
! factT factn factor for Te&ne scaling
|
||||
read(u,*) prfparam%factte, prfparam%factne, prfparam%iscal
|
||||
|
||||
! ipec=0/1 :pec profiles grid in psi/rhop
|
||||
! nrho :number of grid steps for pec profiles +1
|
||||
read(u,*) outparam%ipec, outparam%nrho
|
||||
! istpr0 projection step = dsdt*istprj
|
||||
! istpl0 plot step = dsdt*istpl
|
||||
read(u,*) outparam%istpr, outparam%istpl
|
||||
close(u)
|
||||
end subroutine read_inputs
|
||||
|
||||
subroutine read_params(filenm,rtrparam,hcdparam,unit)
|
||||
use utils, only : get_free_unit
|
||||
implicit none
|
||||
! arguments
|
||||
character(len=*), intent(in) :: filenm
|
||||
type(rtrparam_type), intent(out) :: rtrparam
|
||||
type(hcdparam_type), intent(out) :: hcdparam
|
||||
integer, intent(in), optional :: unit
|
||||
! local variables
|
||||
integer :: u
|
||||
|
||||
if (present(unit)) then
|
||||
u=unit
|
||||
else
|
||||
u = get_free_unit()
|
||||
end if
|
||||
open(u,file=filenm,status= 'old',action='read')
|
||||
|
||||
! nrayr number of rays in radial direction
|
||||
! nrayth number of rays in angular direction
|
||||
! rwmax normalized maximum radius of beam power
|
||||
! rwmax=1 -> last ray at radius = waist
|
||||
read(u,*) rtrparam%nrayr, rtrparam%nrayth, rtrparam%rwmax
|
||||
! igrad=0 optical ray-tracing, initial conditions as for beam
|
||||
! igrad=1 quasi-optical ray-tracing
|
||||
! igrad=-1 ray-tracing, init. condit.
|
||||
! from center of mirror and with angular spread
|
||||
! ipass=1/2 1 or 2 passes into plasma
|
||||
! ipol=0 compute mode polarization at antenna, ipol=1 use polariz angles
|
||||
read(u,*) rtrparam%igrad, rtrparam%ipass, rtrparam%ipol
|
||||
! dst integration step
|
||||
! nstep maximum number of integration steps
|
||||
! idst=0/1/2 0 integration in s, 1 integr. in ct, 2 integr. in Sr
|
||||
read(u,*) rtrparam%dst, rtrparam%nstep, rtrparam%idst
|
||||
|
||||
! iwarm=0 :no absorption and cd
|
||||
! iwarm=1 :weakly relativistic absorption
|
||||
! iwarm=2 :relativistic absorption, n<1 asymptotic expansion
|
||||
! iwarm=3 :relativistic absorption, numerical integration
|
||||
! ilarm :order of larmor expansion
|
||||
! imx :max n of iterations in dispersion, imx<0 uses 1st
|
||||
! iteration in case of failure after |imx| iterations
|
||||
read(u,*) hcdparam%iwarm,hcdparam%ilarm,hcdparam%imx
|
||||
|
||||
! ieccd 0/1 NO/YES ECCD calculation ieccd>0 different CD models
|
||||
read(u,*) hcdparam%ieccd
|
||||
close(u)
|
||||
end subroutine read_params
|
||||
|
||||
subroutine set_codepar(eqparam,prfparam,outparam,rtrparam,hcdparam)
|
||||
implicit none
|
||||
type(eqparam_type), intent(in) :: eqparam
|
||||
type(prfparam_type), intent(in) :: prfparam
|
||||
type(outparam_type), intent(in) :: outparam
|
||||
type(rtrparam_type), intent(in) :: rtrparam
|
||||
type(hcdparam_type), intent(in) :: hcdparam
|
||||
|
||||
iequil=eqparam%iequil
|
||||
iprof=prfparam%iprof
|
||||
|
||||
ipec=outparam%ipec
|
||||
nnd=outparam%nrho
|
||||
istpr0=outparam%istpr
|
||||
istpl0=outparam%istpl
|
||||
|
||||
ipol=rtrparam%ipol
|
||||
igrad=rtrparam%igrad
|
||||
idst=rtrparam%idst
|
||||
ipass=rtrparam%ipass
|
||||
if (rtrparam%nrayr<5) then
|
||||
igrad=0
|
||||
print*,' nrayr < 5 ! => OPTICAL CASE ONLY'
|
||||
print*,' '
|
||||
end if
|
||||
|
||||
iwarm=hcdparam%iwarm
|
||||
ilarm=hcdparam%ilarm
|
||||
imx=hcdparam%imx
|
||||
ieccd=hcdparam%ieccd
|
||||
|
||||
end subroutine set_codepar
|
||||
|
||||
end module gray_params
|
1389
src/graycore.f90
Normal file
1389
src/graycore.f90
Normal file
File diff suppressed because it is too large
Load Diff
11681
src/grayl.f
11681
src/grayl.f
File diff suppressed because it is too large
Load Diff
@ -1,437 +0,0 @@
|
||||
!########################################################################
|
||||
|
||||
MODULE green_func_p
|
||||
|
||||
!########################################################################
|
||||
!
|
||||
! The module contains few subroutines which are requested to calculate
|
||||
! the current drive value by adjoint approach
|
||||
!
|
||||
!########################################################################
|
||||
USE const_and_precisions
|
||||
!-------
|
||||
IMPLICIT NONE
|
||||
CHARACTER(Len=1), PRIVATE :: adj_appr(6) ! adjoint approach switcher
|
||||
!-------
|
||||
REAL(wp_), PRIVATE :: r2,q2,gp1,Rfactor
|
||||
!-------
|
||||
REAL(wp_), PRIVATE, PARAMETER :: delta = 1e-4 ! border for recalculation
|
||||
!------- for N.M. subroutines (variational principle) -------
|
||||
REAL(wp_), PRIVATE :: sfd(1:4)
|
||||
INTEGER, PRIVATE, PARAMETER :: nre = 2 ! order of rel. correct.
|
||||
REAL(wp_), PRIVATE, PARAMETER :: vp_mee(0:4,0:4,0:2) = &
|
||||
RESHAPE((/0.0, 0.0, 0.0, 0.0, 0.0, &
|
||||
0.0, 0.184875, 0.484304, 1.06069, 2.26175, &
|
||||
0.0, 0.484304, 1.41421, 3.38514, 7.77817, &
|
||||
0.0, 1.06069, 3.38514, 8.73232, 21.4005, &
|
||||
0.0, 2.26175, 7.77817, 21.4005, 55.5079, &
|
||||
! &
|
||||
0.0, -1.33059,-2.57431, -5.07771, -10.3884, &
|
||||
-0.846284,-1.46337, -1.4941, -0.799288, 2.57505, &
|
||||
-1.1601, -1.4941, 2.25114, 14.159, 50.0534, &
|
||||
-1.69257, -0.799288, 14.159, 61.4168, 204.389, &
|
||||
-2.61022, 2.57505, 50.0534, 204.389, 683.756, &
|
||||
! &
|
||||
0.0, 2.62498, 0.985392,-5.57449, -27.683, &
|
||||
0.0, 3.45785, 5.10096, 9.34463, 22.9831, &
|
||||
-0.652555, 5.10096, 20.5135, 75.8022, 268.944, &
|
||||
-2.11571, 9.34463, 75.8022, 330.42, 1248.69, &
|
||||
-5.38358, 22.9831, 268.944, 1248.69, 4876.48/),&
|
||||
(/5,5,3/))
|
||||
REAL(wp_), PRIVATE, PARAMETER :: vp_mei(0:4,0:4,0:2) = &
|
||||
RESHAPE((/0.0, 0.886227, 1.0, 1.32934, 2.0, &
|
||||
0.886227,1.0, 1.32934, 2.0, 3.32335, &
|
||||
1.0, 1.32934, 2.0, 3.32335, 6.0, &
|
||||
1.32934, 2.0, 3.32335, 6.0, 11.6317, &
|
||||
2.0, 3.32335, 6.0, 11.6317, 24.0, &
|
||||
! &
|
||||
0.0, 0.332335, 1.0, 2.49251, 6.0, &
|
||||
1.66168, 1.0, 2.49251, 6.0, 14.5397, &
|
||||
3.0, 2.49251, 6.0, 14.5397, 36.0, &
|
||||
5.81586, 6.0, 14.5397, 36.0, 91.5999, &
|
||||
12.0, 14.5397, 36.0, 91.5999, 240.0, &
|
||||
! &
|
||||
0.0, -0.103855, 0.0, 1.09047, 6.0, &
|
||||
0.726983,0.0, 1.09047, 6.0, 24.5357, &
|
||||
3.0, 1.09047, 6.0, 24.5357, 90.0, &
|
||||
9.81427, 6.0, 24.5357, 90.0, 314.875, &
|
||||
30.0, 24.5357, 90.0, 314.875, 1080.0 /), &
|
||||
(/5,5,3/))
|
||||
REAL(wp_), PRIVATE, PARAMETER :: vp_oee(0:4,0:4,0:2) = &
|
||||
RESHAPE((/0.0, 0.56419, 0.707107, 1.0073, 1.59099, &
|
||||
0.56419, 0.707107, 1.0073, 1.59099, 2.73981, &
|
||||
0.707107,1.0073, 1.59099, 2.73981, 5.08233, &
|
||||
1.0073, 1.59099, 2.73981, 5.08233, 10.0627, &
|
||||
1.59099, 2.73981, 5.08233, 10.0627, 21.1138, &
|
||||
! &
|
||||
0.0, 1.16832, 1.90035, 3.5758, 7.41357, &
|
||||
2.17562, 1.90035, 3.5758, 7.41357, 16.4891, &
|
||||
3.49134, 3.5758, 7.41357, 16.4891, 38.7611, &
|
||||
6.31562, 7.41357, 16.4891, 38.7611, 95.4472, &
|
||||
12.4959, 16.4891, 38.7611, 95.4472, 244.803, &
|
||||
! &
|
||||
0.0, 2.65931, 4.64177, 9.6032, 22.6941, &
|
||||
4.8652, 4.64177, 9.6032, 22.6941, 59.1437, &
|
||||
9.51418, 9.6032, 22.6941, 59.1437, 165.282, &
|
||||
21.061, 22.6941, 59.1437, 165.282, 485.785, &
|
||||
50.8982, 59.1437, 165.282, 485.785, 1483.22/), &
|
||||
(/5,5,3/))
|
||||
REAL(wp_), PRIVATE, PARAMETER :: vp_g(0:4,0:2) = &
|
||||
RESHAPE((/1.32934, 2.0, 3.32335, 6.0, 11.6317, &
|
||||
2.49251, 0.0, 2.90793, 12.0, 39.2571, &
|
||||
1.09047, 6.0, 11.45, 30.0, 98.9606/), &
|
||||
(/5,3/))
|
||||
!########################################################################
|
||||
|
||||
CONTAINS
|
||||
|
||||
!#######################################################################
|
||||
|
||||
SUBROUTINE Setup_SpitzFunc
|
||||
!=======================================================================
|
||||
IMPLICIT NONE
|
||||
!=======================================================================
|
||||
adj_appr(1) = 'l' ! collisionless limit
|
||||
! adj_appr(1) = 'c' ! collisional (classical) limit, w/o trap. part.
|
||||
adj_appr(2) = 'm' ! momentum conservation
|
||||
! adj_appr(2) = 'h' ! high-speed limit
|
||||
!---
|
||||
adj_appr(3) = 'l' ! DO NOT CHANGE!
|
||||
adj_appr(4) = 'r' ! DO NOT CHANGE!
|
||||
adj_appr(5) = 'v' ! DO NOT CHANGE!
|
||||
adj_appr(6) = 'i' ! DO NOT CHANGE!
|
||||
!=======================================================================
|
||||
!.....
|
||||
!=======================================================================
|
||||
RETURN
|
||||
END SUBROUTINE Setup_SpitzFunc
|
||||
|
||||
|
||||
SUBROUTINE GenSpitzFunc(Te,Zeff,fc,u,q,gam, K,dKdu)
|
||||
|
||||
!=======================================================================
|
||||
! Author: N.B.Marushchenko
|
||||
! June 2005: as start point the subroutine of Ugo Gasparino (198?)
|
||||
! SpitzFunc() is taken and modified.
|
||||
! 1. adapted to the Fortran-95
|
||||
! 2. derivative of Spitzer function is added
|
||||
! 3. separation for 2 brunches is done:
|
||||
! 1st is referenced as 'with conservation of the moment',
|
||||
! 2nd - as 'high speed limit'.
|
||||
! The last one is taken from the Lin-Liu formulation
|
||||
! (Phys.Plasmas 10 (2003) 4064) with K = F*fc.
|
||||
! The asymptotical high speed limit (Taguchi-Fisch model)
|
||||
! is also included as the reference case.
|
||||
! Feb. 2008: non-relativ. version is replaced by the relativistic one;
|
||||
! the method is the the same, but the trial-function is
|
||||
! based on the relativistic formulation.
|
||||
! The relativistic corrections for the collisional operator
|
||||
! up to the second order, i.e. (1/mu)**2, are applied.
|
||||
! Sep. 2008: generalized Spitzer function for arbitrary collisionality
|
||||
! is implemented. The model is based on the concept of
|
||||
! the "effective trapped particles fraction".
|
||||
! The different.-integral kinetic equation for the generalized
|
||||
! Spitzer function is produced with help of subroutines
|
||||
! ArbColl_TrappFract_Array and ArbColl_SpitzFunc_Array,
|
||||
! where the subroutines of H. Maassberg are called).
|
||||
!========================================================================
|
||||
! Spitzer function with & w/o trapped particle effects is given by:
|
||||
!
|
||||
! K(x) = x/gamma*(d1*x+d2*x^2+d4*x^3+d4*x^4),
|
||||
!
|
||||
! where x = v/v_th and gamma=1 for non-relativistic version (Ugo),
|
||||
! or x = p/p_th for relativistic version (N.M., February 2008).
|
||||
! Note, that somewhere the function F(x) instead of K(x) is applied,
|
||||
!
|
||||
! F(x) = K(x)/fc.
|
||||
!
|
||||
! Numerical inversion of the 5x5 symmetric matrix obtained from the
|
||||
! generalized Spitzer problem (see paper of Taguchi for the equation
|
||||
! and paper of Hirshman for the variational approach bringing to the
|
||||
! matrix to be inverted).
|
||||
!
|
||||
! The numerical method used is an improved elimination scheme
|
||||
! (Banachiewiczs-Cholesky-Crout method).
|
||||
! This method is particularly simple for symmetric matrix.
|
||||
! As a reference see "Mathematical Handbook" by Korn & Korn, p.635-636.
|
||||
!
|
||||
! Refs.: 1. S.P. Hirshman, Phys. Fluids 23 (1980) 1238
|
||||
! 2. M. Rome' et al., Plasma Phys. Contr. Fus. 40 (1998) 511
|
||||
! 3. N.B. Marushchenko et al., Fusion Sci. Technol. 55 (2009) 180
|
||||
!========================================================================
|
||||
! INPUTS:
|
||||
! u - p/sqrt(2mT)
|
||||
! q - p/mc;
|
||||
! gam - relativistic factor;
|
||||
! mu - mc2/Te
|
||||
! Zeff - effective charge;
|
||||
! fc - fraction of circulating particles.
|
||||
!
|
||||
! OUTPUTS:
|
||||
! K - Spitzer's function
|
||||
! dKdu = dK/du, i.e. its derivative over normalized momentum
|
||||
!=======================================================================
|
||||
IMPLICIT NONE
|
||||
REAL(wp_), INTENT(in) :: Te,Zeff,fc,u,q,gam
|
||||
REAL(wp_), INTENT(out) :: K,dKdu
|
||||
REAL(wp_) :: mu,gam1,gam2,gam3,w,dwdu
|
||||
!=======================================================================
|
||||
K = 0
|
||||
dKdu = 0
|
||||
IF (u < comp_eps) RETURN
|
||||
!---
|
||||
mu = mc2_/max(Te,1d-3)
|
||||
SELECT CASE(adj_appr(2))
|
||||
CASE('m') !--------------- momentum conservation ------------------!
|
||||
gam1 = gam !
|
||||
IF (adj_appr(4) == 'n') gam1 = 1 !
|
||||
gam2 = gam1*gam1 !
|
||||
gam3 = gam1*gam2 !
|
||||
K = u/gam1*u*(sfd(1)+u*(sfd(2)+u*(sfd(3)+u*sfd(4)))) !
|
||||
dKdu = u/gam3* (sfd(1)*(1+ gam2)+u*(sfd(2)*(1+2*gam2)+ & !
|
||||
u*(sfd(3)*(1+3*gam2)+u* sfd(4)*(1+4*gam2)))) !
|
||||
!--------------------- end momentum conservation -------------------!
|
||||
CASE('h') !---------------- high-speed-limit ----------------------!
|
||||
IF (adj_appr(4) == 'n') THEN !- non-relativ. asymptotic form -!
|
||||
K = u**4 *fc/(Zeff+1+4*fc) !- (Taguchi-Fisch model) -!
|
||||
dKdu = 4*u**3 *fc/(Zeff+1+4*fc) !
|
||||
ELSEIF (adj_appr(4) == 'r') THEN !- relativistic, Lin-Liu form. -!
|
||||
CALL SpitzFunc_HighSpeedLimit(Zeff,fc,u,q,gam, K,dKdu) !
|
||||
ENDIF !
|
||||
CASE default !----------------------------------------------------!
|
||||
PRINT*,'GenSpitzFunc: WARNING! Spitzer function is not defined.'
|
||||
RETURN
|
||||
END SELECT
|
||||
!=======================================================================
|
||||
RETURN
|
||||
END SUBROUTINE GenSpitzFunc
|
||||
|
||||
!#######################################################################
|
||||
!#######################################################################
|
||||
!#######################################################################
|
||||
|
||||
SUBROUTINE SpitzFuncCoeff(Te,Zeff,fc)
|
||||
!=======================================================================
|
||||
! Calculates the matrix coefficients required for the subroutine
|
||||
! "GenSpitzFunc", where the Spitzer function is defined through the
|
||||
! variational principle.
|
||||
!
|
||||
! Weakly relativistic (upgraded) version (10.09.2008).
|
||||
! Apart of the non-relativistic matrix coefficients, taken from the
|
||||
! old subroutine of Ugo Gasparino, the relativistic correction written
|
||||
! as series in 1/mu^n (mu=mc2/T) powers is added. Two orders are taken
|
||||
! into account, i.e. n=0,1,2.
|
||||
!
|
||||
! In this version, the coefficients "oee", i.e. Omega_ij, are formulated
|
||||
! for arbitrary collisionality.
|
||||
!
|
||||
! INPUT VARIABLES:
|
||||
! rho = sqrt(SS) with SS - flux-surface label (norm. magn. flux)
|
||||
! ne - density, 1/m^3
|
||||
! Te - temperature, keV
|
||||
! Zeff - effective charge
|
||||
! fc - fraction of circulating particles
|
||||
!
|
||||
! OUTPUT VARIABLES (defined as a global ones):
|
||||
! sfd(1),...,sfd(4) - coefficients of the polynomial expansion of the
|
||||
! "Spitzer"-function (the same as in the Hirshman paper)
|
||||
!=======================================================================
|
||||
IMPLICIT NONE
|
||||
REAL(wp_), INTENT(in) :: Te,Zeff,fc
|
||||
INTEGER :: n,i,j
|
||||
REAL(wp_) :: rtc,rtc1,mu,y,tn(1:nre)
|
||||
REAL(wp_) :: m(0:4,0:4),g(0:4)
|
||||
REAL(wp_) :: om(0:4,0:4)
|
||||
REAL(wp_) :: gam11,gam21,gam31,gam41,gam01, &
|
||||
gam22,gam32,gam42,gam02, &
|
||||
gam33,gam43,gam03, &
|
||||
gam44,gam04,gam00
|
||||
REAL(wp_) :: alp12,alp13,alp14,alp10, &
|
||||
alp23,alp24,alp20, &
|
||||
alp34,alp30,alp40
|
||||
REAL(wp_) :: bet0,bet1,bet2,bet3,bet4,d0
|
||||
LOGICAL :: renew,rel,newTe,newne,newZ,newfc
|
||||
REAL(wp_), SAVE :: sfdx(1:4) = 0
|
||||
REAL(wp_), SAVE :: ne_old =-1, Te_old =-1, Zeff_old =-1, fc_old =-1
|
||||
!=======================================================================
|
||||
rel = Te > 1
|
||||
newTe = abs(Te -Te_old ) > delta*Te
|
||||
newZ = abs(Zeff-Zeff_old) > delta*Zeff
|
||||
newfc = abs(fc -fc_old ) > delta*fc
|
||||
SELECT CASE(adj_appr(1))
|
||||
CASE ('l','c')
|
||||
renew = (newTe .and. rel) .OR. newZ .OR. newfc
|
||||
END SELECT
|
||||
!---
|
||||
IF (.not.renew) THEN
|
||||
sfd(:) = sfdx(:)
|
||||
RETURN
|
||||
ENDIF
|
||||
!=======================================================================
|
||||
tn(:) = 0
|
||||
IF (adj_appr(4) == 'r') THEN
|
||||
IF (nre > 0) THEN
|
||||
mu = mc2_/max(Te,1d-3)
|
||||
tn(1) = 1/mu
|
||||
DO n=2,min(2,nre)
|
||||
tn(n) = tn(n-1)/mu
|
||||
ENDDO
|
||||
ENDIF
|
||||
ENDIF
|
||||
!---
|
||||
SELECT CASE(adj_appr(1))
|
||||
CASE ('l','c') !---- both classical & collisionless limits ----!
|
||||
rtc = (1-fc)/fc; rtc1 = rtc+1 !
|
||||
!--- !
|
||||
DO i=0,4 !
|
||||
g(i) = vp_g(i,0) !
|
||||
DO n=1,min(2,nre) !
|
||||
g(i) = g(i) + tn(n)*vp_g(i,n) !
|
||||
ENDDO !
|
||||
!--- !
|
||||
DO j=0,4 !
|
||||
IF (i == 0 .or. j == 0 .or. j >= i) THEN !
|
||||
y = vp_mee(i,j,0) + rtc *vp_oee(i,j,0) + & !
|
||||
Zeff*rtc1*vp_mei(i,j,0) !
|
||||
DO n=1,min(2,nre) !
|
||||
y = y + (vp_mee(i,j,n) + rtc *vp_oee(i,j,n) + & !
|
||||
Zeff*rtc1*vp_mei(i,j,n))*tn(n) !
|
||||
ENDDO !
|
||||
m(i,j) = y !
|
||||
ENDIF !
|
||||
ENDDO !
|
||||
ENDDO !
|
||||
DO i=2,4 !
|
||||
DO j=1,i-1 !
|
||||
m(i,j) = m(j,i) !
|
||||
ENDDO !
|
||||
ENDDO !
|
||||
m(0,0) = 0 !
|
||||
CASE default !------------------------------------------------!
|
||||
PRINT*,'Green_Func: WARNING! Adjoint approach is not defined.'
|
||||
RETURN
|
||||
END SELECT
|
||||
!=======================================================================
|
||||
gam11 = m(1,1)
|
||||
gam21 = m(2,1)
|
||||
gam31 = m(3,1)
|
||||
gam41 = m(4,1)
|
||||
gam01 = m(0,1)
|
||||
!
|
||||
alp12 = m(1,2)/m(1,1)
|
||||
alp13 = m(1,3)/m(1,1)
|
||||
alp14 = m(1,4)/m(1,1)
|
||||
alp10 = m(1,0)/m(1,1)
|
||||
!
|
||||
gam22 = m(2,2)-gam21*alp12
|
||||
gam32 = m(3,2)-gam31*alp12
|
||||
gam42 = m(4,2)-gam41*alp12
|
||||
gam02 = m(0,2)-gam01*alp12
|
||||
!
|
||||
alp23 = gam32/gam22
|
||||
alp24 = gam42/gam22
|
||||
alp20 = gam02/gam22
|
||||
!
|
||||
gam33 = m(3,3)-gam31*alp13-gam32*alp23
|
||||
gam43 = m(4,3)-gam41*alp13-gam42*alp23
|
||||
gam03 = m(0,3)-gam01*alp13-gam02*alp23
|
||||
!
|
||||
alp34 = gam43/gam33
|
||||
alp30 = gam03/gam33
|
||||
!
|
||||
gam44 = m(4,4)-gam41*alp14-gam42*alp24-gam43*alp34
|
||||
gam04 = m(0,4)-gam01*alp14-gam02*alp24-gam03*alp34
|
||||
!
|
||||
alp40 = gam04/gam44
|
||||
!
|
||||
gam00 = m(0,0)-gam01*alp10-gam02*alp20-gam03*alp30-gam04*alp40
|
||||
!
|
||||
bet1 = g(1)/m(1,1)
|
||||
bet2 = (g(2)-gam21*bet1)/gam22
|
||||
bet3 = (g(3)-gam31*bet1-gam32*bet2)/gam33
|
||||
bet4 = (g(4)-gam41*bet1-gam42*bet2-gam43*bet3)/gam44
|
||||
bet0 = (g(0)-gam01*bet1-gam02*bet2-gam03*bet3-gam04*bet4)/gam00
|
||||
!
|
||||
d0 = bet0
|
||||
sfd(4) = bet4-alp40*d0
|
||||
sfd(3) = bet3-alp30*d0-alp34*sfd(4)
|
||||
sfd(2) = bet2-alp20*d0-alp24*sfd(4)-alp23*sfd(3)
|
||||
sfd(1) = bet1-alp10*d0-alp14*sfd(4)-alp13*sfd(3)-alp12*sfd(2)
|
||||
!=======================================================================
|
||||
fc_old = fc
|
||||
Te_old = Te
|
||||
Zeff_old = Zeff
|
||||
!---
|
||||
sfdx(1:4) = sfd(1:4)
|
||||
!=======================================================================
|
||||
RETURN
|
||||
END SUBROUTINE SpitzFuncCoeff
|
||||
|
||||
!#######################################################################
|
||||
!#######################################################################
|
||||
!#######################################################################
|
||||
|
||||
SUBROUTINE SpitzFunc_HighSpeedLimit(Zeff,fc,u,q,gam, K,dKdu)
|
||||
!=======================================================================
|
||||
! Calculates the "Spitzer function" in high velocity limit, relativistic
|
||||
! formulation: Lin-Liu et al., Phys.Pl. (2003),v10, 4064, Eq.(33).
|
||||
!
|
||||
! Inputs:
|
||||
! Zeff - effective charge
|
||||
! fc - fraction of circulating electrons
|
||||
! u - p/(m*vte)
|
||||
! q - p/mc
|
||||
! gam - relativ. factor
|
||||
!
|
||||
! Outputs:
|
||||
! K - Spitzer function
|
||||
! dKdu - its derivative
|
||||
!=======================================================================
|
||||
IMPLICIT NONE
|
||||
REAL(wp_), INTENT(in) :: Zeff,fc,u,q,gam
|
||||
REAL(wp_), INTENT(out) :: K,dKdu
|
||||
INTEGER :: nfun
|
||||
REAL(8) :: gam2,err,flag,Integr
|
||||
REAL(8), PARAMETER :: a = 0d0, b = 1d0, rtol = 1d-4, atol = 1d-12
|
||||
!=======================================================================
|
||||
r2 = (1+Zeff)/fc ! global parameter needed for integrand, HSL_f(t)
|
||||
!------------------
|
||||
IF (u < 1e-2) THEN
|
||||
K = u**4/(r2+4)
|
||||
dKdu = 4*u**3/(r2+4)
|
||||
RETURN
|
||||
ENDIF
|
||||
!=======================================================================
|
||||
q2 = q*q ! for the integrand, HSL_f
|
||||
gp1 = gam+1 ! ..
|
||||
!---
|
||||
CALL quanc8(HSL_f,zero,unit,atol,rtol,Integr,err,nfun,flag)
|
||||
!=======================================================================
|
||||
gam2 = gam*gam
|
||||
!---
|
||||
K = u**4 * Integr
|
||||
dKdu = (u/gam)**3 * (1-r2*gam2*Integr)
|
||||
!=======================================================================
|
||||
RETURN
|
||||
END SUBROUTINE SpitzFunc_HighSpeedLimit
|
||||
|
||||
!#######################################################################
|
||||
!#######################################################################
|
||||
!#######################################################################
|
||||
|
||||
FUNCTION HSL_f(t) RESULT(f)
|
||||
!=======================================================================
|
||||
! Integrand for the high-speed limit approach (Lin-Liu's formulation)
|
||||
!=======================================================================
|
||||
IMPLICIT NONE
|
||||
REAL(8), INTENT(in) :: t
|
||||
REAL(8) :: f,g
|
||||
g = sqrt(1+t*t*q2)
|
||||
f = t**(3+r2)/g**3 * (gp1/(g+1))**r2
|
||||
END FUNCTION HSL_f
|
||||
|
||||
!#######################################################################
|
||||
|
||||
END MODULE green_func_p
|
||||
|
||||
!#######################################################################
|
@ -1,32 +0,0 @@
|
||||
!> Module implementing the ITM physics constants
|
||||
!>
|
||||
!> Source:
|
||||
!> based on SOLPS b2mod_constants.F
|
||||
!> '09/12/07 xpb : source CODATA 2006 (http://www.nist.gov/)'
|
||||
!> pulled from ets r100
|
||||
!>
|
||||
!> \author David Coster
|
||||
!>
|
||||
!> \version "$Id: itm_constants.f90 37 2009-08-17 17:15:00Z coster $"
|
||||
|
||||
module itm_constants
|
||||
|
||||
use itm_types
|
||||
|
||||
real (kind = R8), parameter :: itm_pi = 3.141592653589793238462643383280_R8
|
||||
real (kind = R8), parameter :: itm_c = 2.99792458e8_R8 ! speed of light, m/s
|
||||
real (kind = R8), parameter :: itm_me = 9.10938215e-31_R8 ! electron mass, kg
|
||||
real (kind = R8), parameter :: itm_mp = 1.672621637e-27_R8 ! proton mass, kg
|
||||
real (kind = R8), parameter :: itm_md = 3.34358320e-27_R8 ! deuteron mass, kg
|
||||
real (kind = R8), parameter :: itm_mt = 5.00735588e-27_R8 ! triton mass, kg
|
||||
real (kind = R8), parameter :: itm_ma = 6.64465620e-27_R8 ! alpha mass, kg
|
||||
real (kind = R8), parameter :: itm_amu = 1.660538782e-27_R8 ! amu, kg
|
||||
real (kind = R8), parameter :: itm_ev = 1.602176487e-19_R8
|
||||
real (kind = R8), parameter :: itm_qe = itm_ev
|
||||
real (kind = R8), parameter :: itm_mu0 = 4.0e-7_R8 * itm_pi
|
||||
real (kind = R8), parameter :: itm_eps0 = 1.0_R8 / (itm_mu0 * itm_c * itm_c)
|
||||
real (kind = R8), parameter :: itm_avogr = 6.02214179e23_R8
|
||||
real (kind = R8), parameter :: itm_KBolt = 1.3806504e-23_R8
|
||||
character (len=64), parameter :: itm_constants_version = '$Id: itm_constants.f90 37 2009-08-17 17:15:00Z coster $'
|
||||
|
||||
end module itm_constants
|
@ -1,50 +0,0 @@
|
||||
!> Module implementing the ITM basic types
|
||||
!>
|
||||
!> Source:
|
||||
!> based on SOLPS b2mod_types.F
|
||||
!> pulled from ets r100 and extended with input from C. Konz, T. Ribeiro & B. Scott
|
||||
!>
|
||||
!> \author David Coster
|
||||
!>
|
||||
!> \version "$Id: itm_types.f90 144 2010-10-07 09:26:24Z konz $"
|
||||
|
||||
module itm_types
|
||||
|
||||
INTEGER, PARAMETER :: ITM_I1 = SELECTED_INT_KIND (2) ! Integer*1
|
||||
INTEGER, PARAMETER :: ITM_I2 = SELECTED_INT_KIND (4) ! Integer*2
|
||||
INTEGER, PARAMETER :: ITM_I4 = SELECTED_INT_KIND (9) ! Integer*4
|
||||
INTEGER, PARAMETER :: ITM_I8 = SELECTED_INT_KIND (18) ! Integer*8
|
||||
INTEGER, PARAMETER :: R4 = SELECTED_REAL_KIND (6, 37) ! Real*4
|
||||
INTEGER, PARAMETER :: R8 = SELECTED_REAL_KIND (15, 300) ! Real*8
|
||||
|
||||
INTEGER, PARAMETER :: itm_int_invalid = -999999999
|
||||
REAL(R8), PARAMETER :: itm_r8_invalid = -9.0D40
|
||||
|
||||
interface itm_is_valid
|
||||
module procedure itm_is_valid_int4, itm_is_valid_int8, itm_is_valid_real8
|
||||
end interface
|
||||
|
||||
contains
|
||||
|
||||
logical function itm_is_valid_int4(in_int)
|
||||
implicit none
|
||||
integer(ITM_I4) in_int
|
||||
itm_is_valid_int4 = in_int .ne. itm_int_invalid
|
||||
return
|
||||
end function itm_is_valid_int4
|
||||
|
||||
logical function itm_is_valid_int8(in_int)
|
||||
implicit none
|
||||
integer(ITM_I8) in_int
|
||||
itm_is_valid_int8 = in_int .ne. itm_int_invalid
|
||||
return
|
||||
end function itm_is_valid_int8
|
||||
|
||||
logical function itm_is_valid_real8(in_real)
|
||||
implicit none
|
||||
real(R8) in_real
|
||||
itm_is_valid_real8 = abs(in_real - itm_r8_invalid) .gt. abs(itm_r8_invalid) * 1.0e-15_R8
|
||||
return
|
||||
end function itm_is_valid_real8
|
||||
|
||||
end module itm_types
|
572
src/magsurf_data.f90
Normal file
572
src/magsurf_data.f90
Normal file
@ -0,0 +1,572 @@
|
||||
module magsurf_data
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
|
||||
integer, save :: npsi, npoints !# sup mag, # punti per sup
|
||||
integer, save :: njpt, nlmt
|
||||
|
||||
real(wp_), save :: rarea
|
||||
|
||||
real(wp_), dimension(:), allocatable, save :: psicon,pstab,rhot_eq, &
|
||||
rhotqv,bav,varea,vcurrp,vajphiav,qqv,ffc,vratja,vratjb
|
||||
real(wp_), dimension(:), allocatable, save :: rpstab
|
||||
real(wp_), dimension(:), allocatable, save :: vvol,rri,rbav,bmxpsi,bmnpsi
|
||||
real(wp_), dimension(:), allocatable, save :: tjp,tlm,ch,ch01
|
||||
|
||||
real(wp_), dimension(:,:), allocatable, save :: rcon,zcon
|
||||
real(wp_), dimension(:,:), allocatable, save :: cdadrhot,cdvdrhot
|
||||
|
||||
real(wp_), dimension(:,:), allocatable, save :: cvol,crri,crbav,cbmx,cbmn,carea,cfc
|
||||
real(wp_), dimension(:,:), allocatable, save :: crhotq
|
||||
real(wp_), dimension(:,:), allocatable, save :: cratja,cratjb,cratjpl
|
||||
|
||||
|
||||
contains
|
||||
|
||||
subroutine alloc_surf_anal(ierr)
|
||||
implicit none
|
||||
integer, intent(out) :: ierr
|
||||
|
||||
if(npsi.le.0.or.npoints.le.0) then
|
||||
ierr = -1
|
||||
return
|
||||
end if
|
||||
|
||||
call dealloc_surf_anal
|
||||
allocate(psicon(npsi),rcon(npsi,npoints), &
|
||||
zcon(npsi,npoints),stat=ierr)
|
||||
if (ierr/=0) call dealloc_surf_anal
|
||||
end subroutine alloc_surf_anal
|
||||
|
||||
subroutine dealloc_surf_anal
|
||||
implicit none
|
||||
if(allocated(psicon)) deallocate(psicon)
|
||||
if(allocated(rcon)) deallocate(rcon)
|
||||
if(allocated(zcon)) deallocate(zcon)
|
||||
end subroutine dealloc_surf_anal
|
||||
|
||||
|
||||
subroutine alloc_surfvec(ierr)
|
||||
implicit none
|
||||
integer, intent(out) :: ierr
|
||||
|
||||
if(npsi.le.0.or.npoints.le.0) then
|
||||
ierr = -1
|
||||
return
|
||||
end if
|
||||
|
||||
call dealloc_surfvec
|
||||
allocate(psicon(npsi),rcon(npsi,npoints),zcon(npsi,npoints),pstab(npsi), &
|
||||
rhot_eq(npsi),rhotqv(npsi),bav(npsi),bmxpsi(npsi),bmnpsi(npsi),varea(npsi), &
|
||||
vvol(npsi),vcurrp(npsi),vajphiav(npsi),qqv(npsi),ffc(npsi),vratja(npsi), &
|
||||
vratjb(npsi),rpstab(npsi),rri(npsi),rbav(npsi),cdadrhot(npsi,4), &
|
||||
cdvdrhot(npsi,4),cbmx(npsi,4),cbmn(npsi,4),crbav(npsi,4),cvol(npsi,4), &
|
||||
crri(npsi,4),carea(npsi,4),cfc(npsi,4),crhotq(npsi,4),cratjpl(npsi,4), &
|
||||
cratja(npsi,4),cratjb(npsi,4),stat=ierr)
|
||||
if (ierr/=0) call dealloc_surf_anal
|
||||
end subroutine alloc_surfvec
|
||||
|
||||
subroutine dealloc_surfvec
|
||||
implicit none
|
||||
if(allocated(psicon)) deallocate(psicon)
|
||||
if(allocated(rcon)) deallocate(rcon)
|
||||
if(allocated(zcon)) deallocate(zcon)
|
||||
if(allocated(pstab)) deallocate(pstab)
|
||||
if(allocated(rhot_eq)) deallocate(rhot_eq)
|
||||
if(allocated(rhotqv)) deallocate(rhotqv)
|
||||
if(allocated(bav)) deallocate(bav)
|
||||
if(allocated(bmxpsi)) deallocate(bmxpsi)
|
||||
if(allocated(bmnpsi)) deallocate(bmnpsi)
|
||||
if(allocated(varea)) deallocate(varea)
|
||||
if(allocated(vvol)) deallocate(vvol)
|
||||
if(allocated(vcurrp)) deallocate(vcurrp)
|
||||
if(allocated(vajphiav)) deallocate(vajphiav)
|
||||
if(allocated(qqv)) deallocate(qqv)
|
||||
if(allocated(ffc)) deallocate(ffc)
|
||||
if(allocated(vratja)) deallocate(vratja)
|
||||
if(allocated(vratjb)) deallocate(vratjb)
|
||||
if(allocated(rpstab)) deallocate(rpstab)
|
||||
if(allocated(rri)) deallocate(rri)
|
||||
if(allocated(rbav)) deallocate(rbav)
|
||||
if(allocated(cdadrhot)) deallocate(cdadrhot)
|
||||
if(allocated(cdvdrhot)) deallocate(cdvdrhot)
|
||||
if(allocated(cbmx)) deallocate(cbmx)
|
||||
if(allocated(cbmn)) deallocate(cbmn)
|
||||
if(allocated(crbav)) deallocate(crbav)
|
||||
if(allocated(cvol)) deallocate(cvol)
|
||||
if(allocated(crri)) deallocate(crri)
|
||||
if(allocated(carea)) deallocate(carea)
|
||||
if(allocated(cfc)) deallocate(cfc)
|
||||
if(allocated(crhotq)) deallocate(crhotq)
|
||||
if(allocated(cratjpl)) deallocate(cratjpl)
|
||||
if(allocated(cratja)) deallocate(cratja)
|
||||
if(allocated(cratjb)) deallocate(cratjb)
|
||||
end subroutine dealloc_surfvec
|
||||
|
||||
|
||||
|
||||
subroutine contours_psi(h,rup,zup,rlw,zlw,rcn,zcn,ipr)
|
||||
use const_and_precisions, only : wp_,pi
|
||||
use equilibrium, only : psiant,psinop,nsr,nsz,cc=>cceq,tr,tz,kspl, &
|
||||
points_tgo
|
||||
use dierckx, only : profil,sproota
|
||||
use reflections, only : rwallm
|
||||
implicit none
|
||||
! local constants
|
||||
integer, parameter :: mest=4
|
||||
! arguments
|
||||
integer, intent(in) :: ipr
|
||||
real(wp_), intent(in) :: h
|
||||
real(wp_), intent(inout) :: rup,zup,rlw,zlw
|
||||
real(wp_), dimension(npoints), intent(out) :: rcn,zcn
|
||||
! local variables
|
||||
integer :: np,info,ic,ier,ii,iopt,m
|
||||
real(wp_) :: ra,rb,za,zb,th,zc,val
|
||||
real(wp_), dimension(mest) :: zeroc
|
||||
real(wp_), dimension(nsr) :: czc
|
||||
|
||||
np=(npoints-1)/2
|
||||
|
||||
ra=rup
|
||||
rb=rlw
|
||||
za=zup
|
||||
zb=zlw
|
||||
call points_tgo(ra,za,rup,zup,h,info)
|
||||
call points_tgo(rb,zb,rlw,zlw,h,info)
|
||||
|
||||
th=pi/dble(np)
|
||||
rcn(1)=rlw
|
||||
zcn(1)=zlw
|
||||
rcn(npoints)=rlw
|
||||
zcn(npoints)=zlw
|
||||
rcn(np+1)=rup
|
||||
zcn(np+1)=zup
|
||||
do ic=2,np
|
||||
zc=zlw+(zup-zlw)*(1.0_wp_-cos(th*(ic-1)))/2.0_wp_
|
||||
iopt=1
|
||||
call profil(iopt,tr,nsr,tz,nsz,cc,kspl,kspl,zc,nsr,czc,ier)
|
||||
if(ier.gt.0) print*,' profil =',ier
|
||||
val=h*psiant+psinop
|
||||
call sproota(val,tr,nsr,czc,zeroc,mest,m,ier)
|
||||
if (zeroc(1).gt.rwallm) then
|
||||
rcn(ic)=zeroc(1)
|
||||
rcn(npoints+1-ic)=zeroc(2)
|
||||
else
|
||||
rcn(ic)=zeroc(2)
|
||||
rcn(npoints+1-ic)=zeroc(3)
|
||||
end if
|
||||
zcn(ic)=zc
|
||||
zcn(npoints+1-ic)=zc
|
||||
end do
|
||||
|
||||
if (ipr.gt.0) then
|
||||
do ii=1,npoints
|
||||
write(71,'(i6,12(1x,e12.5))') ii,h,rcn(ii),zcn(ii)
|
||||
end do
|
||||
write(71,*)
|
||||
write(71,*)
|
||||
end if
|
||||
end subroutine contours_psi
|
||||
|
||||
|
||||
|
||||
subroutine contours_psi_an(h,rcn,zcn,ipr)
|
||||
use const_and_precisions, only : wp_,pi
|
||||
use equilibrium, only : frhotor,aminor,rmaxis,zmaxis
|
||||
implicit none
|
||||
! arguments
|
||||
integer :: ipr
|
||||
real(wp_) :: h
|
||||
real(wp_), dimension(npoints) :: rcn,zcn
|
||||
! local variables
|
||||
integer :: np,ic
|
||||
real(wp_) :: rn,th
|
||||
|
||||
np=(npoints-1)/2
|
||||
th=pi/dble(np)
|
||||
rn=frhotor(sqrt(h))
|
||||
|
||||
do ic=1,npoints
|
||||
zcn(ic)=zmaxis+aminor*rn*sin(th*(ic-1))
|
||||
rcn(ic)=rmaxis+aminor*rn*cos(th*(ic-1))
|
||||
|
||||
if (ipr.gt.0) write(71,'(i6,12(1x,e12.5))') ic,h,rcn(ic),zcn(ic)
|
||||
end do
|
||||
if (ipr.gt.0) write(71,*)
|
||||
end subroutine contours_psi_an
|
||||
|
||||
|
||||
|
||||
subroutine flux_average
|
||||
use const_and_precisions, only : wp_,zero,one,pi,ccj=>mu0inv
|
||||
use gray_params, only : iequil
|
||||
use equilibrium, only : btrcen,btaxis,rmaxis,zmaxis,phitedge,zbsup,zbinf, &
|
||||
equian,equinum_psi,bfield,frhotor,fq,tor_curr
|
||||
use simplespline, only : difcs
|
||||
use dierckx, only : regrid,coeff_parder
|
||||
use utils, only : get_free_unit
|
||||
implicit none
|
||||
! local constants
|
||||
integer, parameter :: nnintp=101,ncnt=100,nlam=101,ksp=3, &
|
||||
njest=nnintp+ksp+1,nlest=nlam+ksp+1, &
|
||||
lwrk=4*(nnintp+nlam)+11*(njest+nlest)+njest*nnintp+nlest+54, &
|
||||
kwrk=nnintp+nlam+njest+nlest+3,lw01=nnintp*4+nlam*3+nnintp*nlam
|
||||
! local variables
|
||||
integer :: ier,ierr,l,jp,ipr,jpr,inc,inc1,iopt,njp,nlm,ninpr
|
||||
integer, dimension(kwrk) :: iwrk
|
||||
real(wp_) :: lam,dlam,anorm,b2av,dvdpsi,dadpsi,ratio_cdator, &
|
||||
ratio_cdbtor,ratio_pltor,fc,height,r2iav,currp, &
|
||||
area,volume,ajphiav,bbav,bmmx,bmmn,btot0,bpoloid0,rpsim0,dla,dlb, &
|
||||
dlp,drc,ph,area2,rzp,rz,rpsim,zpsim,btot,bpoloid,dlph,ajphi0, &
|
||||
shlam,srl,rl2,rl0,rl,dhlam,dhlam0,ccfh,s,ajphi, &
|
||||
bphi,brr,bzz,riav,fp,psinjp,rhopjp,rhotjp,qq,rup,rlw,zup,zlw
|
||||
real(wp_), dimension(nnintp) :: dadrhotv,dvdrhotv,vratjpl
|
||||
real(wp_), dimension(2*ncnt) :: dlpv
|
||||
real(wp_), dimension(2*ncnt+1) :: bv,bpv
|
||||
real(wp_), dimension(nlam) :: alam,weights
|
||||
real(wp_), dimension(nnintp,nlam) :: fhlam
|
||||
real(wp_), dimension(nnintp*nlam) :: ffhlam,dffhlam
|
||||
real(wp_), dimension(lwrk) :: wrk
|
||||
real(wp_), dimension(:), allocatable :: rctemp,zctemp
|
||||
! common/external functions/variables
|
||||
real(wp_) :: fpolv,ddpsidrr,ddpsidzz
|
||||
|
||||
npsi=nnintp
|
||||
ninpr=(npsi-1)/10
|
||||
npoints = 2*ncnt+1
|
||||
|
||||
call alloc_surfvec(ierr)
|
||||
if(allocated(tjp)) deallocate(tjp)
|
||||
if(allocated(tlm)) deallocate(tlm)
|
||||
if(allocated(ch)) deallocate(ch)
|
||||
allocate(tjp(njest),tlm(nlest),ch((njest-4)*(nlest-4)), &
|
||||
rctemp(npoints),zctemp(npoints),stat=ierr)
|
||||
if (ierr.ne.0) return
|
||||
|
||||
! computation of flux surface averaged quantities
|
||||
|
||||
write(71,*)' #i psin R z'
|
||||
|
||||
dlam=1.0_wp_/dble(nlam-1)
|
||||
do l=1,nlam-1
|
||||
alam(l)=dble(l-1)*dlam
|
||||
fhlam(1,l)=sqrt(1.0_wp_-alam(l))
|
||||
ffhlam(l)=fhlam(1,l)
|
||||
dffhlam(l)=-0.5_wp_/sqrt(1.0_wp_-alam(l))
|
||||
weights(l)=1.0_wp_
|
||||
end do
|
||||
weights(1)=0.5_wp_
|
||||
weights(nlam)=0.5_wp_
|
||||
alam(nlam)=1.0_wp_
|
||||
fhlam(1,nlam)=0.0_wp_
|
||||
ffhlam(nlam)=0.0_wp_
|
||||
dffhlam(nlam)=-99999.0_wp_
|
||||
|
||||
jp=1
|
||||
anorm=2.0_wp_*pi*rmaxis/abs(btaxis)
|
||||
dvdpsi=2.0_wp_*pi*anorm
|
||||
dadpsi=2.0_wp_*pi/abs(btaxis)
|
||||
b2av=btaxis**2
|
||||
ratio_cdator=abs(btaxis/btrcen)
|
||||
ratio_cdbtor=1.0_wp_
|
||||
ratio_pltor=1.0_wp_
|
||||
fc=1.0_wp_
|
||||
if(iequil < 2) then
|
||||
call equian(rmaxis,zmaxis,ddpsidrr=ddpsidrr,ddpsidzz=ddpsidzz)
|
||||
else
|
||||
call equinum_psi(rmaxis,zmaxis,ddpsidrr=ddpsidrr,ddpsidzz=ddpsidzz)
|
||||
end if
|
||||
qq=btaxis/sqrt(ddpsidrr*ddpsidzz)
|
||||
ajphiav=-ccj*(ddpsidrr+ddpsidzz)/rmaxis
|
||||
|
||||
psicon(1)=0.0_wp_
|
||||
rcon(1,:)=rmaxis
|
||||
zcon(1,:)=zmaxis
|
||||
pstab(1)=0.0_wp_
|
||||
rpstab(1)=0.0_wp_
|
||||
vcurrp(1)=0.0_wp_
|
||||
vajphiav(1)=ajphiav
|
||||
bmxpsi(1)=abs(btaxis)
|
||||
bmnpsi(1)=abs(btaxis)
|
||||
bav(1)=abs(btaxis)
|
||||
rbav(1)=1.0_wp_
|
||||
rri(1)=rmaxis
|
||||
varea(1)=0.0_wp_
|
||||
vvol(1)=0.0_wp_
|
||||
vratjpl(1)=ratio_pltor
|
||||
vratja(1)=ratio_cdator
|
||||
vratjb(1)=ratio_cdbtor
|
||||
ffc(1)=fc
|
||||
qqv(1)=qq
|
||||
dadrhotv(1)=0.0_wp_
|
||||
dvdrhotv(1)=0.0_wp_
|
||||
|
||||
rup=rmaxis
|
||||
rlw=rmaxis
|
||||
zup=zmaxis+(zbsup-zmaxis)/10.0_wp_
|
||||
zlw=zmaxis-(zmaxis-zbinf)/10.0_wp_
|
||||
|
||||
do jp=2,npsi
|
||||
height=dble(jp-1)/dble(npsi-1)
|
||||
if(jp.eq.npsi) height=0.9999_wp_
|
||||
ipr=0
|
||||
jpr=mod(jp,ninpr)
|
||||
if(jpr.eq.1) ipr=1
|
||||
rhopjp=height
|
||||
psinjp=height*height
|
||||
rhotjp=frhotor(rhopjp)
|
||||
psicon(jp)=height
|
||||
|
||||
if(iequil<2) then
|
||||
call contours_psi_an(psinjp,rctemp,zctemp,ipr)
|
||||
else
|
||||
call contours_psi(psinjp,rup,zup,rlw,zlw,rctemp,zctemp,ipr)
|
||||
end if
|
||||
rcon(jp,:) = rctemp
|
||||
zcon(jp,:) = zctemp
|
||||
|
||||
r2iav=0.0_wp_
|
||||
anorm=0.0_wp_
|
||||
dadpsi=0.0_wp_
|
||||
currp=0.0_wp_
|
||||
b2av=0.0_wp_
|
||||
area=0.0_wp_
|
||||
volume=0.0_wp_
|
||||
ajphiav=0.0_wp_
|
||||
bbav=0.0_wp_
|
||||
bmmx=-1.0e+30_wp_
|
||||
bmmn=1.0e+30_wp_
|
||||
|
||||
call tor_curr(rctemp(1),zctemp(1),ajphi0)
|
||||
call bfield(rctemp(1),zctemp(1),bphi,br=brr,bz=bzz)
|
||||
fpolv=bphi*rctemp(1)
|
||||
btot0=sqrt(bphi**2+brr**2+bzz**2)
|
||||
bpoloid0=sqrt(brr**2+bzz**2)
|
||||
bv(1)=btot0
|
||||
bpv(1)=bpoloid0
|
||||
rpsim0=rctemp(1)
|
||||
|
||||
do inc=1,npoints-1
|
||||
inc1=inc+1
|
||||
dla=sqrt((rctemp(inc)-rmaxis)**2+(zctemp(inc)-zmaxis)**2)
|
||||
dlb=sqrt((rctemp(inc1)-rmaxis)**2+(zctemp(inc1)-zmaxis)**2)
|
||||
dlp=sqrt((rctemp(inc1)-rctemp(inc))**2+(zctemp(inc1)-zctemp(inc))**2)
|
||||
drc=(rctemp(inc1)-rctemp(inc))
|
||||
|
||||
! compute length, area and volume defined by psi=psinjp=height^2
|
||||
ph=0.5_wp_*(dla+dlb+dlp)
|
||||
area2=ph*(ph-dla)*(ph-dlb)*(ph-dlp)
|
||||
area=area+sqrt(area2)
|
||||
rzp=rctemp(inc1)*zctemp(inc1)
|
||||
rz=rctemp(inc)*zctemp(inc)
|
||||
volume=pi*(rzp+rz)*drc+volume
|
||||
|
||||
! compute line integrals on the contour psi=psinjp=height^2
|
||||
rpsim=rctemp(inc1)
|
||||
zpsim=zctemp(inc1)
|
||||
call bfield(rpsim,zpsim,br=brr,bz=bzz)
|
||||
call tor_curr(rpsim,zpsim,ajphi)
|
||||
bphi=fpolv/rpsim
|
||||
btot=sqrt(bphi**2+brr**2+bzz**2)
|
||||
bpoloid=sqrt(brr**2+bzz**2)
|
||||
dlpv(inc)=dlp
|
||||
bv(inc1)=btot
|
||||
bpv(inc1)=bpoloid
|
||||
|
||||
dlph=0.5_wp_*dlp
|
||||
anorm=anorm+dlph*(1.0_wp_/bpoloid+1.0_wp_/bpoloid0)
|
||||
dadpsi=dadpsi+dlph*(1.0_wp_/(bpoloid*rpsim)+1.0_wp_/(bpoloid0*rpsim0))
|
||||
currp=currp+dlph*(bpoloid+bpoloid0)
|
||||
b2av=b2av+dlph*(btot0**2/bpoloid0+btot**2/bpoloid)
|
||||
bbav=bbav+dlph*(btot/bpoloid+btot0/bpoloid0)
|
||||
r2iav=r2iav+dlph*(1.0_wp_/(bpoloid*rpsim**2)+1.0_wp_/(bpoloid0*rpsim0**2))
|
||||
ajphiav=ajphiav+dlph*(ajphi0/(bpoloid0*rpsim0)+ajphi/(bpoloid*rpsim))
|
||||
|
||||
ajphi0=ajphi
|
||||
rpsim0=rpsim
|
||||
bpoloid0=bpoloid
|
||||
btot0=btot
|
||||
|
||||
! computation maximum/minimum B values on given flux surface
|
||||
if(btot.le.bmmn) bmmn=btot
|
||||
if(btot.ge.bmmx) bmmx=btot
|
||||
end do
|
||||
|
||||
! bav=<B> [T] , b2av=<B^2> [T^2] , rbav=<B>/b_min
|
||||
! anorm = int d l_p/B_p = dV/dpsi/(2pi)
|
||||
! r2iav=<1/R^2> [m^-2] ,
|
||||
! riav=<1/R> [m^-1] = dA/dpsi/(dV/dpsi/(2pi)),
|
||||
! rri = <B>/(|R B_tor|<1/R^2>) , used to compute I_tor [m^-1]
|
||||
! currp = plasma current within psi=const
|
||||
|
||||
bbav=bbav/anorm
|
||||
r2iav=r2iav/anorm
|
||||
dvdpsi=2.0_wp_*pi*anorm
|
||||
riav=dadpsi/anorm
|
||||
b2av=b2av/anorm
|
||||
vcurrp(jp)=ccj*currp
|
||||
vajphiav(jp)=ajphiav/dadpsi
|
||||
|
||||
! area == varea, volume == vvol
|
||||
! flux surface minor radius == (area/pi)^1/2
|
||||
! ratio_cdator = Jcd_astra/J_phi Jcd_astra = <Jcd.B>/B0
|
||||
! ratio_cdbtor = Jcd_jintrac/J_phi Jcd_jintrac = <Jcd.B>/<B>
|
||||
! ratio_pltor = Jcd_||/J_phi Jcd_|| = <Jcd.b>
|
||||
pstab(jp)=psinjp
|
||||
rpstab(jp)=rhopjp
|
||||
vvol(jp)=abs(volume)
|
||||
varea(jp)=area
|
||||
bav(jp)=bbav
|
||||
rbav(jp)=bbav/bmmn
|
||||
bmxpsi(jp)=bmmx
|
||||
bmnpsi(jp)=bmmn
|
||||
rri(jp)=bav(jp)/abs(fpolv*r2iav)
|
||||
ratio_cdator=abs(b2av*riav/(fpolv*r2iav*btrcen))
|
||||
ratio_cdbtor=abs(b2av*riav/(fpolv*r2iav*bbav))
|
||||
ratio_pltor=abs(bbav*riav/(fpolv*r2iav))
|
||||
vratjpl(jp)=ratio_pltor
|
||||
vratja(jp)=ratio_cdator
|
||||
vratjb(jp)=ratio_cdbtor
|
||||
qq=abs(dvdpsi*fpolv*r2iav/(4.0_wp_*pi*pi))
|
||||
qqv(jp)=qq
|
||||
dadrhotv(jp)=phitedge*frhotor(rhopjp)/fq(psinjp)*dadpsi/pi
|
||||
dvdrhotv(jp)=phitedge*frhotor(rhopjp)/fq(psinjp)*dvdpsi/pi
|
||||
|
||||
! computation of fraction of circulating/trapped fraction fc, ft
|
||||
! and of function H(lambda,rhop)
|
||||
! ffhlam = Bmn/Bmx/fc integral_lambda^1 dlam/<sqrt(1-lam*B(rhop)/Bmx)>
|
||||
fc=0.0_wp_
|
||||
shlam=0.0_wp_
|
||||
do l=nlam,1,-1
|
||||
lam=alam(l)
|
||||
srl=0.0_wp_
|
||||
rl2=1.0_wp_-lam*bv(1)/bmmx
|
||||
rl0=0.0_wp_
|
||||
if(rl2.gt.0) rl0=sqrt(rl2)
|
||||
do inc=1,npoints-1
|
||||
rl2=1.0_wp_-lam*bv(inc+1)/bmmx
|
||||
rl=0.0_wp_
|
||||
if(rl2.gt.0) rl=sqrt(rl2)
|
||||
srl=srl+0.5_wp_*dlpv(inc)*(rl/bpv(inc+1)+rl0/bpv(inc))
|
||||
rl0=rl
|
||||
end do
|
||||
srl=srl/anorm
|
||||
dhlam=0.5_wp_/srl
|
||||
fc=fc+lam/srl*weights(l)
|
||||
if(l.eq.nlam) then
|
||||
fhlam(jp,l)=0.0_wp_
|
||||
ffhlam(nlam*(jp-1)+l)=0.0_wp_
|
||||
dffhlam(nlam*(jp-1)+l)=-dhlam
|
||||
dhlam0=dhlam
|
||||
else
|
||||
shlam=shlam+0.5_wp_*(dhlam+dhlam0)*dlam
|
||||
fhlam(jp,l)=shlam
|
||||
dffhlam(nlam*(jp-1)+l)=-dhlam
|
||||
dhlam0=dhlam
|
||||
end if
|
||||
end do
|
||||
fc=0.75_wp_*b2av/bmmx**2*fc*dlam
|
||||
ffc(jp)=fc
|
||||
|
||||
ccfh=bmmn/bmmx/fc
|
||||
do l=1,nlam
|
||||
ffhlam(nlam*(jp-1)+l)=ccfh*fhlam(jp,l)
|
||||
dffhlam(nlam*(jp-1)+l)=ccfh*dffhlam(nlam*(jp-1)+l)
|
||||
end do
|
||||
end do
|
||||
|
||||
write(56,*)' #rhop rhot |<B>| |Bmx| |Bmn| Area Vol |I_pl| <J_phi> fc ratJa ratJb'
|
||||
|
||||
do jp=1,npsi
|
||||
if(jp.eq.npsi) then
|
||||
rpstab(jp)=1.0_wp_
|
||||
pstab(jp)=1.0_wp_
|
||||
end if
|
||||
rhotjp=frhotor(rpstab(jp))
|
||||
write(56,99) rpstab(jp),rhotjp,bav(jp),bmxpsi(jp),bmnpsi(jp), &
|
||||
varea(jp),vvol(jp),vcurrp(jp),vajphiav(jp),ffc(jp), &
|
||||
vratja(jp),vratjb(jp)
|
||||
end do
|
||||
|
||||
! spline coefficients of area,vol,rbav,rri,bmxpsi,bmnpsi,fc,dadrhot,dvdrhot,ratioJs
|
||||
! used for computations of dP/dV and J_cd
|
||||
iopt=0
|
||||
call difcs(rpstab,vvol,npsi,iopt,cvol,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,rbav,npsi,iopt,crbav,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,rri,npsi,iopt,crri,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,bmxpsi,npsi,iopt,cbmx,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,bmnpsi,npsi,iopt,cbmn,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,vratja,npsi,iopt,cratja,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,vratjb,npsi,iopt,cratjb,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,vratjpl,npsi,iopt,cratjpl,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,varea,npsi,iopt,carea,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,ffc,npsi,iopt,cfc,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,dadrhotv,npsi,iopt,cdadrhot,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,dvdrhotv,npsi,iopt,cdvdrhot,ier)
|
||||
! iopt=0
|
||||
! call difcs(rpstab,qqv,npsi,iopt,cqq,ier)
|
||||
|
||||
! spline interpolation of H(lambda,rhop) and dH/dlambda
|
||||
iopt=0
|
||||
s=0.0_wp_
|
||||
call regrid(iopt,npsi,rpstab,nlam,alam,ffhlam,zero,one,zero,one, &
|
||||
ksp,ksp,s,njest,nlest,njp,tjp,nlm,tlm,ch,fp, &
|
||||
wrk,lwrk,iwrk,kwrk,ier)
|
||||
njpt=njp
|
||||
nlmt=nlm
|
||||
|
||||
99 format(20(1x,e12.5))
|
||||
|
||||
end subroutine flux_average
|
||||
|
||||
|
||||
|
||||
subroutine fluxval(rhop,area,vol,dervol,dadrhot,dvdrhot, &
|
||||
rri,rbav,bmn,bmx,fc,ratja,ratjb,ratjpl)
|
||||
use const_and_precisions, only : wp_
|
||||
use utils, only : locate
|
||||
use simplespline, only :spli,splid
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: rhop
|
||||
real(wp_), intent(out), optional :: vol,area,rri,rbav,dervol,bmn,bmx,fc, &
|
||||
ratja,ratjb,ratjpl,dadrhot,dvdrhot
|
||||
! local variables
|
||||
integer :: ip
|
||||
real(wp_) :: drh
|
||||
|
||||
call locate(rpstab,npsi,rhop,ip)
|
||||
ip=min(max(1,ip),npsi-1)
|
||||
drh=rhop-rpstab(ip)
|
||||
|
||||
if (present(area)) area=spli(carea,npsi,ip,drh)
|
||||
if (present(vol)) vol=spli(cvol,npsi,ip,drh)
|
||||
|
||||
if (present(dervol)) dervol=splid(cvol,npsi,ip,drh)
|
||||
if (present(dadrhot)) dadrhot=spli(cdadrhot,npsi,ip,drh)
|
||||
if (present(dvdrhot)) dvdrhot=spli(cdvdrhot,npsi,ip,drh)
|
||||
|
||||
if (present(rri)) rri=spli(crri,npsi,ip,drh)
|
||||
if (present(rbav)) rbav=spli(crbav,npsi,ip,drh)
|
||||
if (present(bmn)) bmn=spli(cbmn,npsi,ip,drh)
|
||||
if (present(bmx)) bmx=spli(cbmx,npsi,ip,drh)
|
||||
if (present(fc)) fc=spli(cfc,npsi,ip,drh)
|
||||
|
||||
if (present(ratja)) ratja=spli(cratja,npsi,ip,drh)
|
||||
if (present(ratjb)) ratjb=spli(cratjb,npsi,ip,drh)
|
||||
if (present(ratjpl)) ratjpl=spli(cratjpl,npsi,ip,drh)
|
||||
|
||||
end subroutine fluxval
|
||||
|
||||
end module magsurf_data
|
133
src/main.f90
Normal file
133
src/main.f90
Normal file
@ -0,0 +1,133 @@
|
||||
program gray_main
|
||||
use const_and_precisions, only : wp_,one
|
||||
use graycore, only : gray
|
||||
use gray_params, only : read_inputs,read_params, antctrl_type,eqparam_type, &
|
||||
prfparam_type,outparam_type,rtrparam_type,hcdparam_type
|
||||
use beams, only : read_beam0, read_beam1, read_beam2
|
||||
use equilibrium, only : read_equil_an,read_eqdsk,change_cocos,eq_scal, &
|
||||
set_rhospl,setqphi_num,frhopolv
|
||||
use coreprofiles, only : read_profiles_an,read_profiles,tene_scal
|
||||
use reflections, only : range2rect
|
||||
implicit none
|
||||
type(antctrl_type) :: antp
|
||||
type(eqparam_type) :: eqp
|
||||
type(prfparam_type) :: prfp
|
||||
type(outparam_type) :: outp
|
||||
type(rtrparam_type) :: rtrp
|
||||
type(hcdparam_type) :: hcdp
|
||||
|
||||
real(wp_), dimension(:), allocatable :: psrad, terad, derad, zfc
|
||||
real(wp_), dimension(:), allocatable :: rv, zv, psinr, fpol, qpsi
|
||||
real(wp_), dimension(:), allocatable :: rbnd, zbnd, rlim, zlim
|
||||
real(wp_), dimension(:,:), allocatable :: psin
|
||||
real(wp_) :: psia, rvac, rax, zax
|
||||
integer :: iox0
|
||||
real(wp_) :: p0mw, fghz, psipol0, chipol0
|
||||
real(wp_) :: alpha0, beta0, x0, y0, z0, w1, w2, ri1, ri2, phiw, phir
|
||||
|
||||
real(wp_) :: pec,icd
|
||||
|
||||
integer :: ierr
|
||||
real(wp_), dimension(:), allocatable :: xrad, rhot, dpdv, jcd
|
||||
real(wp_) :: rwallm, rmxm, r0m, z0m, dzmx
|
||||
|
||||
! ======= read parameters BEGIN =======
|
||||
call read_inputs('graynew.data',antp,eqp,rwallm,prfp,outp)
|
||||
call read_params('gray_params.data',rtrp,hcdp)
|
||||
! ======= read parameters END =======
|
||||
|
||||
! ======= read input data BEGIN =======
|
||||
!------------ equilibrium ------------
|
||||
if(eqp%iequil<2) then
|
||||
call read_equil_an(eqp%filenm, rv, zv, fpol, qpsi)
|
||||
! psia sign set to give the correct sign to Iphi (COCOS=3: psia<0 for Iphi>0)
|
||||
psia = sign(one,qpsi(2)*fpol(1))
|
||||
else
|
||||
call read_eqdsk(eqp%filenm, rv,zv,psin, psia, psinr,fpol,qpsi, rvac, &
|
||||
rax,zax, rbnd,zbnd, rlim,zlim, eqp%ipsinorm,eqp%idesc,eqp%ifreefmt)
|
||||
call change_cocos(psia, fpol, qpsi, eqp%icocos, 3)
|
||||
end if
|
||||
! re-scale B/I and/or force signs. If sgn=0 on input, set to fpol/-psia signs on output
|
||||
call eq_scal(psia, fpol, eqp%sgni, eqp%sgnb, eqp%factb)
|
||||
qpsi(1) = sign(qpsi(1),qpsi(1)*qpsi(2)*psia*fpol(1))
|
||||
qpsi(2) = sign(qpsi(2),psia*fpol(1))
|
||||
!------------- profiles -------------
|
||||
if(prfp%iprof==0) then
|
||||
call read_profiles_an(prfp%filenm, terad, derad, zfc)
|
||||
else
|
||||
call read_profiles(prfp%filenm, xrad, terad, derad, zfc)
|
||||
allocate(psrad(size(xrad)))
|
||||
if(prfp%irho==0) then
|
||||
call setqphi_num(psinr,qpsi,psia,rhot)
|
||||
call set_rhospl(sqrt(psinr),rhot)
|
||||
psrad=frhopolv(xrad)
|
||||
else if(prfp%irho == 1) then
|
||||
psrad=xrad**2
|
||||
else
|
||||
psrad=xrad
|
||||
end if
|
||||
deallocate(xrad)
|
||||
end if
|
||||
! re-scale input data
|
||||
call tene_scal(terad,derad,prfp%factte,prfp%factne,eqp%factb,prfp%iscal, &
|
||||
prfp%iprof)
|
||||
!------------- antenna --------------
|
||||
! interpolate beam table if antctrl%ibeam>0
|
||||
select case (antp%ibeam)
|
||||
case (2)
|
||||
! to be completed: now 1st beamd always selected, iox read from table
|
||||
call read_beam2(antp%filenm,1,antp%alpha,antp%beta,fghz,antp%iox,x0,y0,z0, &
|
||||
w1,w2,ri1,ri2,phiw,phir)
|
||||
case (1)
|
||||
call read_beam1(antp%filenm,antp%alpha,antp%beta,fghz,x0,y0,z0, &
|
||||
w1,w2,ri1,ri2,phiw,phir)
|
||||
case default
|
||||
call read_beam0(antp%filenm,fghz,x0,y0,z0,w1,w2,ri1,ri2,phiw,phir)
|
||||
end select
|
||||
alpha0=antp%alpha
|
||||
beta0=antp%beta
|
||||
p0mw=antp%power
|
||||
psipol0=antp%psi
|
||||
chipol0=antp%chi
|
||||
iox0=antp%iox
|
||||
!--------------- wall ---------------
|
||||
! set simple limiter if not read from EQDSK
|
||||
! need to clean up...
|
||||
r0m=sqrt(x0**2+y0**2)*0.01_wp_
|
||||
dzmx=rtrp%dst*rtrp%nstep*0.01_wp_
|
||||
z0m=z0*0.01_wp_
|
||||
if (.not.allocated(rlim).or.rtrp%ipass<0) then
|
||||
rtrp%ipass=abs(rtrp%ipass)
|
||||
if(eqp%iequil<2) then
|
||||
rmxm=(rv(1)+rv(2))*0.01_wp_
|
||||
else
|
||||
rmxm=rv(size(rv))
|
||||
end if
|
||||
call range2rect(rwallm,max(r0m,rmxm),z0m-dzmx,z0m+dzmx,rlim,zlim)
|
||||
end if
|
||||
! ======= read input data END =======
|
||||
|
||||
! ========================= MAIN SUBROUTINE CALL =========================
|
||||
allocate(dpdv(outp%nrho),jcd(outp%nrho))
|
||||
call gray(rv,zv,psin,psia,psinr,fpol,qpsi,rvac,rax,zax,rbnd,zbnd,eqp, &
|
||||
psrad,terad,derad,zfc,prfp, rlim,zlim, &
|
||||
p0mw,fghz,alpha0,beta0,(/x0,y0,z0/),w1,w2,ri1,ri2,phiw,phir,iox0, &
|
||||
psipol0,chipol0, dpdv,jcd,pec,icd, outp,rtrp,hcdp,ierr)
|
||||
! ========================================================================
|
||||
|
||||
! ======= control prints BEGIN =======
|
||||
if(ierr/=0) print*,' IERR = ', ierr
|
||||
print*,' '
|
||||
print*,'Pabs (MW), Icd (kA) = ', pec,icd*1.0e3_wp_
|
||||
! ======= control prints END =======
|
||||
|
||||
! ======= free memory BEGIN =======
|
||||
if(allocated(psrad)) deallocate(psrad)
|
||||
if(allocated(terad)) deallocate(terad, derad, zfc)
|
||||
if(allocated(rv)) deallocate(rv, zv, fpol, qpsi)
|
||||
if(allocated(psin)) deallocate(psin, psinr)
|
||||
if(allocated(rbnd)) deallocate(rbnd,zbnd)
|
||||
if(allocated(rlim)) deallocate(rlim,zlim)
|
||||
if(allocated(dpdv)) deallocate(dpdv, jcd)
|
||||
! ======= free memory END ======
|
||||
end program gray_main
|
125
src/math.f90
Normal file
125
src/math.f90
Normal file
@ -0,0 +1,125 @@
|
||||
module math
|
||||
|
||||
use const_and_precisions, only : wp_, zero, one
|
||||
implicit none
|
||||
|
||||
contains
|
||||
|
||||
function catand(z)
|
||||
!***begin prologue catan
|
||||
!***purpose compute the complex arc tangent.
|
||||
!***library slatec (fnlib)
|
||||
!***category c4a
|
||||
!***type complex (catan-c)
|
||||
!***keywords arc tangent, elementary functions, fnlib, trigonometric
|
||||
!***author fullerton, w., (lanl)
|
||||
!***description
|
||||
!
|
||||
! catan(z) calculates the complex trigonometric arc tangent of z.
|
||||
! the result is in units of radians, and the real part is in the first
|
||||
! or fourth quadrant.
|
||||
!
|
||||
!***references (none)
|
||||
!***routines called (none)
|
||||
!***revision history (yymmdd)
|
||||
! 770801 date written
|
||||
! 890531 changed all specific intrinsics to generic. (wrb)
|
||||
! 890531 revision date from version 3.2
|
||||
! 891214 prologue converted to version 4.0 format. (bab)
|
||||
! 900315 calls to xerror changed to calls to xermsg. (thj)
|
||||
! 900326 removed duplicate information from description section.
|
||||
! (wrb)
|
||||
!***end prologue catan
|
||||
use const_and_precisions, only : comp_eps, pi2=>pihalf, czero, cunit
|
||||
implicit none
|
||||
complex(wp_) :: catand
|
||||
complex(wp_), intent(in) :: z
|
||||
complex(wp_) :: z2
|
||||
real(wp_) :: r,x,y,r2,xans,yans,twoi
|
||||
integer :: i
|
||||
logical, save :: first=.true.
|
||||
integer, save :: nterms
|
||||
real(wp_), save :: rmin, rmax, sqeps
|
||||
!***first executable statement catan
|
||||
if (first) then
|
||||
! nterms = log(eps)/log(rbnd) where rbnd = 0.1
|
||||
nterms = int(-0.4343_wp_*log(0.5_wp_*comp_eps) + 1.0_wp_)
|
||||
sqeps = sqrt(comp_eps)
|
||||
rmin = sqrt (1.5_wp_*comp_eps)
|
||||
rmax = 2.0_wp_/comp_eps
|
||||
endif
|
||||
first = .false.
|
||||
!
|
||||
r = abs(z)
|
||||
if (r<=0.1_wp_) then
|
||||
!
|
||||
catand = z
|
||||
if (r<rmin) return
|
||||
!
|
||||
catand = czero
|
||||
z2 = z*z
|
||||
do i=1,nterms
|
||||
twoi = 2*(nterms-i) + 1
|
||||
catand = 1.0_wp_/twoi - z2*catand
|
||||
end do
|
||||
catand = z*catand
|
||||
!
|
||||
else if (r<=rmax) then
|
||||
x = real(z)
|
||||
y = aimag(z)
|
||||
r2 = r*r
|
||||
if (r2==one.and.x==zero) print*,'catand, z is +i or -i'
|
||||
if (abs(r2-one)<=sqeps) then
|
||||
if (abs(cunit+z*z) < sqeps) &
|
||||
print*,'catand, answer lt half precision, z**2 close to -1'
|
||||
!
|
||||
end if
|
||||
xans = 0.5_wp_*atan2(2.0_wp_*x, one)
|
||||
yans = 0.25_wp_*log((r2+2.0_wp_*y+one)/(r2-2.0_wp_*y+one))
|
||||
catand = cmplx(xans, yans, wp_)
|
||||
!
|
||||
else
|
||||
catand = cmplx(pi2, zero, wp_)
|
||||
if (real(z)<zero) catand = cmplx(-pi2, zero, wp_)
|
||||
end if
|
||||
end function catand
|
||||
|
||||
function fact(k)
|
||||
implicit none
|
||||
integer, intent(in) :: k
|
||||
real(wp_) :: fact
|
||||
integer :: i
|
||||
! Factorial function
|
||||
fact=zero
|
||||
if(k<0) return
|
||||
fact=one
|
||||
if(k==0) return
|
||||
do i=1,k
|
||||
fact=fact*i
|
||||
end do
|
||||
end function fact
|
||||
|
||||
function gamm(xx)
|
||||
implicit none
|
||||
real(wp_) :: gamm
|
||||
real(wp_), intent(in) :: xx
|
||||
! Returns the value Gamma(xx) for xx > 0.
|
||||
INTEGER :: j
|
||||
real(wp_) :: ser,tmp,x,y
|
||||
real(wp_), parameter :: stp=2.5066282746310005_wp_
|
||||
real(wp_), dimension(6), parameter :: cof=(/76.18009172947146_wp_, &
|
||||
-86.50532032941677_wp_,24.01409824083091_wp_,-1.231739572450155_wp_, &
|
||||
.1208650973866179e-2_wp_,-.5395239384953e-5_wp_/)
|
||||
x=xx
|
||||
y=x
|
||||
tmp=x+5.5_wp_
|
||||
tmp=(x+0.5_wp_)*log(tmp)-tmp
|
||||
ser=1.000000000190015_wp_
|
||||
do j=1,6
|
||||
y=y+1._wp_
|
||||
ser=ser+cof(j)/y
|
||||
end do
|
||||
gamm=exp(tmp)*(stp*ser/x)
|
||||
end function gamm
|
||||
|
||||
end module math
|
1985
src/minpack.f90
Normal file
1985
src/minpack.f90
Normal file
File diff suppressed because it is too large
Load Diff
257
src/numint.f90
Normal file
257
src/numint.f90
Normal file
@ -0,0 +1,257 @@
|
||||
module numint
|
||||
|
||||
use const_and_precisions, only : wp_, zero, one
|
||||
implicit none
|
||||
|
||||
contains
|
||||
|
||||
subroutine simpson (n,h,fi,s)
|
||||
! subroutine for integration over f(x) with the simpson rule. fi:
|
||||
! integrand f(x); h: interval; s: integral. copyright (c) tao pang 1997.
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: h
|
||||
real(wp_), dimension(n), intent(in) :: fi
|
||||
real(wp_), intent(out) :: s
|
||||
integer :: i
|
||||
real(wp_) :: s0,s1,s2
|
||||
|
||||
s = zero
|
||||
s0 = zero
|
||||
s1 = zero
|
||||
s2 = zero
|
||||
do i = 2, n-1, 2
|
||||
s1 = s1+fi(i-1)
|
||||
s0 = s0+fi(i)
|
||||
s2 = s2+fi(i+1)
|
||||
end do
|
||||
s = h*(s1+4.0_wp_*s0+s2)/3.0_wp_
|
||||
! if n is even, add the last slice separately
|
||||
if (mod(n,2).eq.0) s = s+h*(5.0_wp_*fi(n)+8.0_wp_*fi(n-1)-fi(n-2))/12.0_wp_
|
||||
end subroutine simpson
|
||||
|
||||
subroutine trapezoid(n,xi,fi,s)
|
||||
! subroutine for integration with the trapezoidal rule.
|
||||
! fi: integrand f(x); xi: abscissa x;
|
||||
! s: integral Int_{xi(1)}^{xi(n)} f(x)dx
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), dimension(n), intent(in) :: xi,fi
|
||||
real(wp_), intent(out) :: s
|
||||
integer :: i
|
||||
|
||||
s = zero
|
||||
do i = 1, n-1
|
||||
s = s+(xi(i+1)-xi(i))*(fi(i+1)-fi(i))
|
||||
end do
|
||||
s = 0.5_wp_*s
|
||||
end subroutine trapezoid
|
||||
|
||||
subroutine quanc8(fun,a,b,abserr,relerr,result,errest,nofun,flag)
|
||||
implicit none
|
||||
real(wp_), intent(in) :: a, b, abserr, relerr
|
||||
real(wp_), intent(out) :: result, errest, flag
|
||||
integer, intent(out) :: nofun
|
||||
!
|
||||
! estimate the integral of fun(x) from a to b
|
||||
! to a user provided tolerance.
|
||||
! an automatic adaptive routine based on
|
||||
! the 8-panel newton-cotes rule.
|
||||
!
|
||||
! input ..
|
||||
!
|
||||
! fun the name of the integrand function subprogram fun(x).
|
||||
! a the lower limit of integration.
|
||||
! b the upper limit of integration.(b may be less than a.)
|
||||
! relerr a relative error tolerance. (should be non-negative)
|
||||
! abserr an absolute error tolerance. (should be non-negative)
|
||||
!
|
||||
! output ..
|
||||
!
|
||||
! result an approximation to the integral hopefully satisfying the
|
||||
! least stringent of the two error tolerances.
|
||||
! errest an estimate of the magnitude of the actual error.
|
||||
! nofun the number of function values used in calculation of result.
|
||||
! flag a reliability indicator. if flag is zero, then result
|
||||
! probably satisfies the error tolerance. if flag is
|
||||
! xxx.yyy , then xxx = the number of intervals which have
|
||||
! not converged and 0.yyy = the fraction of the interval
|
||||
! left to do when the limit on nofun was approached.
|
||||
!
|
||||
real(wp_) :: w0,w1,w2,w3,w4,area,x0,f0,stone,step,cor11,temp
|
||||
real(wp_) :: qprev,qnow,qdiff,qleft,esterr,tolerr
|
||||
real(wp_), dimension(31) :: qright
|
||||
real(wp_), dimension(16) :: f,x
|
||||
real(wp_), dimension(8,30) :: fsave,xsave
|
||||
integer :: levmin,levmax,levout,nomax,nofin,lev,nim,i,j
|
||||
|
||||
interface
|
||||
function fun(x)
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: fun
|
||||
end function fun
|
||||
end interface
|
||||
!
|
||||
! *** stage 1 *** general initialization
|
||||
! set constants.
|
||||
!
|
||||
levmin = 1
|
||||
levmax = 30
|
||||
levout = 6
|
||||
nomax = 5000
|
||||
nofin = nomax - 8*(levmax-levout+2**(levout+1))
|
||||
!
|
||||
! trouble when nofun reaches nofin
|
||||
!
|
||||
w0 = 3956.0_wp_ / 14175.0_wp_
|
||||
w1 = 23552.0_wp_ / 14175.0_wp_
|
||||
w2 = -3712.0_wp_ / 14175.0_wp_
|
||||
w3 = 41984.0_wp_ / 14175.0_wp_
|
||||
w4 = -18160.0_wp_ / 14175.0_wp_
|
||||
!
|
||||
! initialize running sums to zero.
|
||||
!
|
||||
flag = zero
|
||||
result = zero
|
||||
cor11 = zero
|
||||
errest = zero
|
||||
area = zero
|
||||
nofun = 0
|
||||
if (a .eq. b) return
|
||||
!
|
||||
! *** stage 2 *** initialization for first interval
|
||||
!
|
||||
lev = 0
|
||||
nim = 1
|
||||
x0 = a
|
||||
x(16) = b
|
||||
qprev = zero
|
||||
f0 = fun(x0)
|
||||
stone = (b - a) / 16.0_wp_
|
||||
x(8) = (x0 + x(16)) / 2.0_wp_
|
||||
x(4) = (x0 + x(8)) / 2.0_wp_
|
||||
x(12) = (x(8) + x(16)) / 2.0_wp_
|
||||
x(2) = (x0 + x(4)) / 2.0_wp_
|
||||
x(6) = (x(4) + x(8)) / 2.0_wp_
|
||||
x(10) = (x(8) + x(12)) / 2.0_wp_
|
||||
x(14) = (x(12) + x(16)) / 2.0_wp_
|
||||
do j = 2, 16, 2
|
||||
f(j) = fun(x(j))
|
||||
end do
|
||||
nofun = 9
|
||||
!
|
||||
! *** stage 3 *** central calculation
|
||||
! requires qprev,x0,x2,x4,...,x16,f0,f2,f4,...,f16.
|
||||
! calculates x1,x3,...x15, f1,f3,...f15,qleft,qright,qnow,qdiff,area.
|
||||
!
|
||||
do
|
||||
do
|
||||
x(1) = (x0 + x(2)) / 2.0_wp_
|
||||
f(1) = fun(x(1))
|
||||
do j = 3, 15, 2
|
||||
x(j) = (x(j-1) + x(j+1)) / 2.0_wp_
|
||||
f(j) = fun(x(j))
|
||||
end do
|
||||
nofun = nofun + 8
|
||||
step = (x(16) - x0) / 16.0_wp_
|
||||
qleft = (w0*(f0 + f(8)) + w1*(f(1)+f(7)) + w2*(f(2)+f(6)) &
|
||||
+ w3*(f(3)+f(5)) + w4*f(4)) * step
|
||||
qright(lev+1)=(w0*(f(8)+f(16))+w1*(f(9)+f(15))+w2*(f(10)+f(14)) &
|
||||
+ w3*(f(11)+f(13)) + w4*f(12)) * step
|
||||
qnow = qleft + qright(lev+1)
|
||||
qdiff = qnow - qprev
|
||||
area = area + qdiff
|
||||
!
|
||||
! *** stage 4 *** interval convergence test
|
||||
!
|
||||
esterr = abs(qdiff) / 1023.0_wp_
|
||||
tolerr = max(abserr,relerr*abs(area)) * (step/stone)
|
||||
if (lev .ge. levmin) then
|
||||
!
|
||||
! *** stage 6 *** trouble section
|
||||
! number of function values is about to exceed limit.
|
||||
!
|
||||
if (lev .ge. levmax) then
|
||||
!
|
||||
! current level is levmax.
|
||||
!
|
||||
flag = flag + one
|
||||
exit
|
||||
end if
|
||||
if (nofun .gt. nofin) then
|
||||
nofin = 2*nofin
|
||||
levmax = levout
|
||||
flag = flag + (b - x0) / (b - a)
|
||||
exit
|
||||
end if
|
||||
if (esterr .le. tolerr) exit
|
||||
end if
|
||||
!
|
||||
! *** stage 5 *** no convergence
|
||||
! locate next interval.
|
||||
!
|
||||
nim = 2*nim
|
||||
lev = lev+1
|
||||
!
|
||||
! store right hand elements for future use.
|
||||
!
|
||||
do i = 1, 8
|
||||
fsave(i,lev) = f(i+8)
|
||||
xsave(i,lev) = x(i+8)
|
||||
end do
|
||||
!
|
||||
! assemble left hand elements for immediate use.
|
||||
!
|
||||
qprev = qleft
|
||||
do i = 1, 8
|
||||
j = -i
|
||||
f(2*j+18) = f(j+9)
|
||||
x(2*j+18) = x(j+9)
|
||||
end do
|
||||
end do
|
||||
!
|
||||
! *** stage 7 *** interval converged
|
||||
! add contributions into running sums.
|
||||
!
|
||||
result = result + qnow
|
||||
errest = errest + esterr
|
||||
cor11 = cor11 + qdiff / 1023.0_wp_
|
||||
!
|
||||
! locate next interval.
|
||||
!
|
||||
do
|
||||
if (nim .eq. 2*(nim/2)) exit
|
||||
nim = nim/2
|
||||
lev = lev-1
|
||||
end do
|
||||
nim = nim + 1
|
||||
if (lev .le. 0) exit
|
||||
!
|
||||
! assemble elements required for the next interval.
|
||||
!
|
||||
qprev = qright(lev)
|
||||
x0 = x(16)
|
||||
f0 = f(16)
|
||||
do i = 1, 8
|
||||
f(2*i) = fsave(i,lev)
|
||||
x(2*i) = xsave(i,lev)
|
||||
end do
|
||||
end do
|
||||
!
|
||||
! *** stage 8 *** finalize and return
|
||||
!
|
||||
result = result + cor11
|
||||
!
|
||||
! make sure errest not less than roundoff level.
|
||||
!
|
||||
if (errest .eq. zero) return
|
||||
do
|
||||
temp = abs(result) + errest
|
||||
if (temp .ne. abs(result)) return
|
||||
errest = 2.0_wp_*errest
|
||||
end do
|
||||
end subroutine quanc8
|
||||
|
||||
end module numint
|
387
src/pec.f90
Normal file
387
src/pec.f90
Normal file
@ -0,0 +1,387 @@
|
||||
module pec
|
||||
use const_and_precisions, only : wp_,zero,one
|
||||
implicit none
|
||||
real(wp_), dimension(:), allocatable, save :: rhop_tab,rhot_tab
|
||||
real(wp_), dimension(:), allocatable, save :: rtabpsi1
|
||||
real(wp_), dimension(:), allocatable, save :: dvol,darea
|
||||
real(wp_), dimension(:), allocatable, save :: ratjav,ratjbv,ratjplv
|
||||
|
||||
contains
|
||||
|
||||
subroutine pec_init(ipec,rt_in)
|
||||
use equilibrium, only : frhotor,frhopol
|
||||
use gray_params, only : nnd
|
||||
use magsurf_data, only : fluxval
|
||||
implicit none
|
||||
! arguments
|
||||
integer, intent(in) :: ipec
|
||||
real(wp_), dimension(nnd), intent(in), optional :: rt_in
|
||||
! local variables
|
||||
integer :: it
|
||||
real(wp_) :: drt,rt,rt1,rhop1
|
||||
real(wp_) :: ratjai,ratjbi,ratjpli
|
||||
real(wp_) :: voli0,voli1,areai0,areai1
|
||||
|
||||
! rt_in present: read input grid
|
||||
! else: build equidistant grid dimension nnd
|
||||
|
||||
! ipec=1 rho_pol grid
|
||||
! ipec=2 rho_tor grid
|
||||
call dealloc_pec
|
||||
allocate(rhop_tab(nnd),rhot_tab(nnd),rtabpsi1(0:nnd),dvol(nnd),darea(nnd), &
|
||||
ratjav(nnd),ratjbv(nnd),ratjplv(nnd))
|
||||
|
||||
voli0 = zero
|
||||
areai0 = zero
|
||||
rtabpsi1(0) = zero
|
||||
|
||||
do it=1,nnd
|
||||
if(present(rt_in)) then
|
||||
! read radial grid from input
|
||||
rt = rt_in(it)
|
||||
if(it<nnd) then
|
||||
drt = rt_in(it+1)-rt
|
||||
end if
|
||||
else
|
||||
! build equidistant radial grid
|
||||
drt = one/dble(nnd-1)
|
||||
rt = dble(it-1)*drt
|
||||
end if
|
||||
! radial coordinate of i-(i+1) interval mid point
|
||||
if(it < nnd) then
|
||||
rt1 = rt + drt/2.0_wp_
|
||||
else
|
||||
rt1 = one
|
||||
end if
|
||||
if (ipec == 1) then
|
||||
rhop_tab(it) = rt
|
||||
rhot_tab(it) = frhotor(rt)
|
||||
rhop1 = rt1
|
||||
else
|
||||
rhot_tab(it) = rt
|
||||
rhop_tab(it) = frhopol(rt)
|
||||
rhop1 = frhopol(rt1)
|
||||
end if
|
||||
! psi grid at mid points, dimension nnd+1, for use in pec_tab
|
||||
rtabpsi1(it) = rhop1**2
|
||||
|
||||
call fluxval(rhop1,area=areai1,vol=voli1)
|
||||
dvol(it) = abs(voli1 - voli0)
|
||||
darea(it) = abs(areai1 - areai0)
|
||||
voli0 = voli1
|
||||
areai0 = areai1
|
||||
|
||||
call fluxval(rhop_tab(it),ratja=ratjai,ratjb=ratjbi,ratjpl=ratjpli)
|
||||
ratjav(it) = ratjai
|
||||
ratjbv(it) = ratjbi
|
||||
ratjplv(it) = ratjpli
|
||||
end do
|
||||
end subroutine pec_init
|
||||
|
||||
|
||||
subroutine spec(psjki,ppabs,ccci,iiv,pabs,currt,dpdv,ajphiv,ajcd,pins,currins)
|
||||
use gray_params, only : nnd
|
||||
use beamdata, only : nray,nstep
|
||||
implicit none
|
||||
! local constants
|
||||
real(wp_), parameter :: rtbc=one
|
||||
! arguments
|
||||
real(wp_), dimension(nray,nstep), intent(in) :: psjki,ppabs,ccci
|
||||
integer, dimension(nray), intent(in) :: iiv
|
||||
real(wp_), intent(in) :: pabs,currt
|
||||
real(wp_), dimension(nnd), intent(out) :: dpdv,ajphiv,ajcd,pins,currins
|
||||
! local variables
|
||||
integer :: i,ii,jk
|
||||
real(wp_) :: spds,sccs,facpds,facjs
|
||||
real(wp_), dimension(nstep):: xxi,ypt,yamp
|
||||
real(wp_), dimension(nnd) :: wdpdv,wajphiv
|
||||
|
||||
! calculation of dP and dI over radial grid
|
||||
dpdv=zero
|
||||
ajphiv=zero
|
||||
do jk=1,nray
|
||||
ii=iiv(jk)
|
||||
if (ii < nstep ) then
|
||||
if(psjki(jk,ii+1) /= zero) ii=ii+1
|
||||
end if
|
||||
xxi=zero
|
||||
ypt=zero
|
||||
yamp=zero
|
||||
do i=1,ii
|
||||
xxi(i)=abs(psjki(jk,i))
|
||||
if(xxi(i) <= one) then
|
||||
ypt(i)=ppabs(jk,i)
|
||||
yamp(i)=ccci(jk,i)
|
||||
end if
|
||||
end do
|
||||
call pec_tab(xxi,ypt,yamp,ii,rtabpsi1,wdpdv,wajphiv)
|
||||
dpdv = dpdv + wdpdv
|
||||
ajphiv = ajphiv + wajphiv
|
||||
end do
|
||||
|
||||
! here dpdv is still dP (not divided yet by dV)
|
||||
! here ajphiv is still dI (not divided yet by dA)
|
||||
spds=zero
|
||||
sccs=zero
|
||||
do i=1,nnd
|
||||
spds=spds+dpdv(i)
|
||||
sccs=sccs+ajphiv(i)
|
||||
pins(i)=spds
|
||||
currins(i)=sccs
|
||||
end do
|
||||
|
||||
facpds=one
|
||||
facjs=one
|
||||
if(spds > zero) facpds=pabs/spds
|
||||
if(sccs /= zero) facjs=currt/sccs
|
||||
|
||||
dpdv=facpds*(dpdv/dvol)
|
||||
ajphiv=facjs*(ajphiv/darea)
|
||||
ajcd=ajphiv*ratjbv
|
||||
|
||||
! now dpdv is dP/dV [MW/m^3]
|
||||
! now ajphiv is J_phi=dI/dA [MA/m^2]
|
||||
end subroutine spec
|
||||
|
||||
|
||||
|
||||
subroutine pec_tab(xxi,ypt,yamp,ii,xtab1,wdpdv,wajphiv)
|
||||
! Power and current projected on psi grid - mid points
|
||||
use const_and_precisions, only : wp_,one,zero
|
||||
use gray_params, only : nnd
|
||||
use utils, only : locatex,intlin
|
||||
! arguments
|
||||
integer, intent(in) :: ii
|
||||
real(wp_), dimension(ii), intent(in) :: xxi,ypt,yamp
|
||||
real(wp_), dimension(0:nnd), intent(in) :: xtab1
|
||||
real(wp_), dimension(nnd), intent(out) :: wdpdv,wajphiv
|
||||
! local variables
|
||||
integer, parameter :: llmx = 21
|
||||
integer, dimension(llmx) ::isev
|
||||
real(wp_) :: ppa1,ppa2,cci1,cci2,dppa,didst,rt1
|
||||
integer :: i,is,ise0,idecr,iise0,iise,iis,iis1
|
||||
integer :: ind1,ind2,iind,ind,indi,itb1
|
||||
|
||||
isev = 0
|
||||
ise0 = 0
|
||||
idecr = -1
|
||||
is = 1
|
||||
wdpdv = zero
|
||||
wajphiv = zero
|
||||
do i=1,ii
|
||||
if(ise0 == 0) then
|
||||
if(xxi(i) < one) then
|
||||
ise0 = i
|
||||
isev(is) = i - 1
|
||||
is = is + 1
|
||||
end if
|
||||
else
|
||||
if (idecr == -1) then
|
||||
if(xxi(i) > xxi(i-1)) then
|
||||
isev(is) = i - 1
|
||||
is = is + 1
|
||||
idecr = 1
|
||||
end if
|
||||
else
|
||||
if(xxi(i) > one) exit
|
||||
if(xxi(i) < xxi(i-1)) then
|
||||
isev(is) = i - 1
|
||||
is = is + 1
|
||||
idecr = -1
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
|
||||
isev(is) = i-1
|
||||
ppa1 = zero
|
||||
cci1 = zero
|
||||
|
||||
do iis=1,is-1
|
||||
iis1 = iis + 1
|
||||
iise0 = isev(iis)
|
||||
iise = isev(iis1)
|
||||
if (mod(iis,2) /= 0) then
|
||||
idecr = -1
|
||||
ind1 = nnd
|
||||
ind2 = 2
|
||||
iind = -1
|
||||
else
|
||||
idecr = 1
|
||||
ind1 = 1
|
||||
ind2 = nnd
|
||||
iind = 1
|
||||
end if
|
||||
do ind=ind1,ind2,iind
|
||||
indi = ind
|
||||
if (idecr == -1) indi = ind - 1
|
||||
rt1 = xtab1(indi)
|
||||
call locatex(xxi,iise,iise0,iise,rt1,itb1)
|
||||
if(itb1 >= iise0 .and. itb1 < iise) then
|
||||
call intlin(xxi(itb1), ypt(itb1),xxi(itb1+1), ypt(itb1+1),rt1,ppa2)
|
||||
call intlin(xxi(itb1),yamp(itb1),xxi(itb1+1),yamp(itb1+1),rt1,cci2)
|
||||
dppa = ppa2 - ppa1
|
||||
didst = cci2 - cci1
|
||||
wdpdv(ind) = wdpdv(ind) + dppa
|
||||
wajphiv(ind) = wajphiv(ind) + didst
|
||||
ppa1 = ppa2
|
||||
cci1 = cci2
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end subroutine pec_tab
|
||||
|
||||
|
||||
subroutine postproc_profiles(pabs,currt,rhot_tab,dpdv,ajphiv, &
|
||||
rhotpav,drhotpav,rhotjava,drhotjava)
|
||||
! radial average values over power and current density profile
|
||||
use const_and_precisions, only : pi
|
||||
use gray_params, only : nnd
|
||||
use equilibrium, only : frhopol
|
||||
use magsurf_data, only : fluxval
|
||||
implicit none
|
||||
real(wp_), intent(in) :: pabs,currt
|
||||
real(wp_), dimension(nnd), intent(in) :: rhot_tab
|
||||
real(wp_), dimension(nnd), intent(in) :: dpdv,ajphiv
|
||||
real(wp_), intent(out) :: rhotpav,rhotjava
|
||||
real(wp_), intent(out) :: drhotpav,drhotjava
|
||||
real(wp_) :: rhopjava,rhoppav
|
||||
real(wp_) :: dpdvp,dpdvmx,rhotp,drhotp
|
||||
real(wp_) :: ajphip,ajmxfi,rhotjfi,drhotjfi
|
||||
real(wp_) :: ratjamx,ratjbmx,ratjplmx
|
||||
|
||||
real(wp_) :: sccsa
|
||||
real(wp_) :: rhotjav,rhot2pav,rhot2java,dvdrhotav,dadrhotava
|
||||
|
||||
rhotpav=zero
|
||||
rhot2pav=zero
|
||||
rhotjav=zero
|
||||
rhotjava=zero
|
||||
rhot2java=zero
|
||||
|
||||
if (pabs > zero) then
|
||||
rhotpav = sum(rhot_tab *dpdv*dvol)/pabs
|
||||
rhot2pav = sum(rhot_tab**2*dpdv*dvol)/pabs
|
||||
end if
|
||||
|
||||
if (abs(currt) > zero) then
|
||||
rhotjav = sum(rhot_tab*ajphiv*darea)/currt
|
||||
end if
|
||||
sccsa = sum(abs(ajphiv)*darea)
|
||||
if (sccsa > zero) then
|
||||
rhotjava = sum(rhot_tab *abs(ajphiv)*darea)/sccsa
|
||||
rhot2java = sum(rhot_tab**2*abs(ajphiv)*darea)/sccsa
|
||||
end if
|
||||
|
||||
! factor sqrt(8) = 2sqrt(2) to match full width of gaussian profile
|
||||
drhotpav = sqrt(8._wp_*(rhot2pav -rhotpav**2))
|
||||
drhotjava = sqrt(8._wp_*(rhot2java-rhotjava**2))
|
||||
|
||||
rhoppav = frhopol(rhotpav)
|
||||
rhopjava = frhopol(rhotjava)
|
||||
|
||||
if (pabs > zero) then
|
||||
call fluxval(rhoppav,dvdrhot=dvdrhotav)
|
||||
dpdvp = pabs*2.0_wp_/(sqrt(pi)*drhotpav*dvdrhotav)
|
||||
call profwidth(nnd,rhot_tab,dpdv,rhotp,dpdvmx,drhotp)
|
||||
else
|
||||
dpdvp = zero
|
||||
rhotp = zero
|
||||
dpdvmx = zero
|
||||
drhotp = zero
|
||||
end if
|
||||
|
||||
if (sccsa > zero) then
|
||||
call fluxval(rhopjava,dadrhot=dadrhotava,ratja=ratjamx,ratjb=ratjbmx, &
|
||||
ratjpl=ratjplmx)
|
||||
ajphip = currt*2.0_wp_/(sqrt(pi)*drhotjava*dadrhotava)
|
||||
call profwidth(nnd,rhot_tab,ajphiv,rhotjfi,ajmxfi,drhotjfi)
|
||||
else
|
||||
ajphip = zero
|
||||
rhotjfi = zero
|
||||
ajmxfi = zero
|
||||
drhotjfi = zero
|
||||
end if
|
||||
end subroutine postproc_profiles
|
||||
|
||||
|
||||
|
||||
subroutine profwidth(nd,xx,yy,xpk,ypk,dxxe)
|
||||
use const_and_precisions, only : wp_,emn1
|
||||
use utils, only : locatex, locate, intlin, vmaxmini
|
||||
implicit none
|
||||
! arguments
|
||||
integer :: nd
|
||||
real(wp_), dimension(nd) :: xx,yy
|
||||
real(wp_), intent(out) :: xpk,ypk,dxxe
|
||||
! local variables
|
||||
integer :: imn,imx,ipk,ie
|
||||
real(wp_) :: xmn,xmx,ymn,ymx,xpkp,xpkm,yye,rte1,rte2
|
||||
real(wp_) :: ypkp,ypkm
|
||||
|
||||
call vmaxmini(yy,nd,ymn,ymx,imn,imx)
|
||||
ypk = zero
|
||||
xmx = xx(imx)
|
||||
xmn = xx(imn)
|
||||
if (abs(ymx) > abs(ymn)) then
|
||||
ipk = imx
|
||||
ypkp = ymx
|
||||
xpkp = xmx
|
||||
if(abs(ymn/ymx) < 1.0e-2_wp_) ymn = 0.0_wp_
|
||||
ypkm = ymn
|
||||
xpkm = xmn
|
||||
else
|
||||
ipk = imn
|
||||
ypkp = ymn
|
||||
xpkp = xmn
|
||||
if(abs(ymx/ymn) < 1.0e-2_wp_) ymx = 0.0_wp_
|
||||
ypkm = ymx
|
||||
xpkm = xmx
|
||||
end if
|
||||
if(xpkp > zero) then
|
||||
xpk = xpkp
|
||||
ypk = ypkp
|
||||
yye = ypk*emn1
|
||||
call locatex(yy,nd,1,ipk,yye,ie)
|
||||
if(ie > 0 .and. ie < nd) then
|
||||
call intlin(yy(ie),xx(ie),yy(ie+1),xx(ie+1),yye,rte1)
|
||||
else
|
||||
rte1 = zero
|
||||
end if
|
||||
call locatex(yy,nd,ipk,nd,yye,ie)
|
||||
if(ie > 0 .and. ie < nd) then
|
||||
call intlin(yy(ie),xx(ie),yy(ie+1),xx(ie+1),yye,rte2)
|
||||
else
|
||||
rte2 = zero
|
||||
end if
|
||||
else
|
||||
ipk=2
|
||||
xpk=xx(2)
|
||||
ypk=yy(2)
|
||||
rte1=0.0_wp_
|
||||
yye=ypk*emn1
|
||||
call locate(yy,nd,yye,ie)
|
||||
if(ie > 0 .and. ie < nd) then
|
||||
call intlin(yy(ie),xx(ie),yy(ie+1),xx(ie+1),yye,rte2)
|
||||
else
|
||||
rte2 = zero
|
||||
end if
|
||||
end if
|
||||
dxxe = rte2 - rte1
|
||||
if(ymx /= zero .and. ymn /= zero) dxxe = -dxxe
|
||||
end subroutine profwidth
|
||||
|
||||
subroutine dealloc_pec
|
||||
implicit none
|
||||
|
||||
if (allocated(rhop_tab)) deallocate(rhop_tab)
|
||||
if (allocated(rhot_tab)) deallocate(rhot_tab)
|
||||
if (allocated(rtabpsi1)) deallocate(rtabpsi1)
|
||||
if (allocated(dvol)) deallocate(dvol)
|
||||
if (allocated(darea)) deallocate(darea)
|
||||
if (allocated(ratjav)) deallocate(ratjav)
|
||||
if (allocated(ratjbv)) deallocate(ratjbv)
|
||||
if (allocated(ratjplv)) deallocate(ratjplv)
|
||||
end subroutine dealloc_pec
|
||||
|
||||
end module pec
|
152
src/polarization.f90
Normal file
152
src/polarization.f90
Normal file
@ -0,0 +1,152 @@
|
||||
module polarization
|
||||
interface stokes
|
||||
module procedure stokes_ce,stokes_ell
|
||||
end interface
|
||||
|
||||
contains
|
||||
subroutine stokes_ce(ext,eyt,qq,uu,vv)
|
||||
use const_and_precisions, only : wp_,two
|
||||
implicit none
|
||||
! arguments
|
||||
complex(wp_), intent(in) :: ext,eyt
|
||||
real(wp_), intent(out) :: qq,uu,vv
|
||||
|
||||
qq = abs(ext)**2 - abs(eyt)**2
|
||||
uu = two* dble(ext*dconjg(eyt))
|
||||
vv = two*dimag(ext*dconjg(eyt))
|
||||
end subroutine stokes_ce
|
||||
|
||||
|
||||
subroutine stokes_ell(chi,psi,qq,uu,vv)
|
||||
use const_and_precisions, only : wp_,two
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: chi,psi
|
||||
real(wp_), intent(out) :: qq,uu,vv
|
||||
|
||||
qq=cos(two*chi)*cos(two*psi)
|
||||
uu=cos(two*chi)*sin(two*psi)
|
||||
vv=sin(two*chi)
|
||||
end subroutine stokes_ell
|
||||
|
||||
|
||||
subroutine polellipse(qq,uu,vv,psi,chi)
|
||||
use const_and_precisions, only : wp_,half
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: qq,uu,vv
|
||||
real(wp_), intent(out) :: psi,chi
|
||||
! real(wp_) :: ll,aa,bb,ell
|
||||
|
||||
! ll = sqrt(qq**2 + uu**2)
|
||||
! aa = sqrt(half*(1 + ll))
|
||||
! bb = sqrt(half*(1 - ll))
|
||||
! ell = bb/aa
|
||||
psi = half*atan2(uu,qq)
|
||||
chi = half*asin(vv)
|
||||
end subroutine polellipse
|
||||
|
||||
subroutine pol_limit(anv,bv,bres,sox,ext,eyt) !,gam)
|
||||
use const_and_precisions, only : wp_,ui=>im,pi,zero,one
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), dimension(3), intent(in) :: anv,bv
|
||||
real(wp_), intent(in) :: bres,sox
|
||||
complex(wp_), intent(out) :: ext,eyt
|
||||
! real(wp_), optional, intent(out) :: gam
|
||||
! local variables
|
||||
real(wp_), dimension(3) :: bnv
|
||||
real(wp_) :: anx,any,anz,an2,an,anpl2,anpl,anpr,anxy, &
|
||||
btot,yg,den,dnl,del0,ff,ff2,sngam,csgam
|
||||
!
|
||||
btot = sqrt(bv(1)**2+bv(2)**2+bv(3)**2)
|
||||
bnv = bv/btot
|
||||
yg = btot/bres
|
||||
|
||||
anx = anv(1)
|
||||
any = anv(2)
|
||||
anz = anv(3)
|
||||
an2 = anx**2 + any**2 + anz**2
|
||||
an = sqrt(an2)
|
||||
anxy = sqrt(anx**2 + any**2)
|
||||
|
||||
anpl = (anv(1)*bnv(1) + anv(2)*bnv(2) + anv(3)*bnv(3))
|
||||
anpl2= anpl**2
|
||||
anpr = sqrt(an2 - anpl2)
|
||||
|
||||
dnl = one - anpl2
|
||||
del0 = sqrt(dnl**2 + 4.0_wp_*anpl2/yg**2)
|
||||
|
||||
sngam = (anz*anpl - an2*bnv(3))/(an*anxy*anpr)
|
||||
csgam = -(any*bnv(1) - anx*bnv(2))/ (anxy*anpr)
|
||||
|
||||
ff = 0.5_wp_*yg*(dnl - sox*del0)
|
||||
ff2 = ff**2
|
||||
den = ff2 + anpl2
|
||||
if (den>zero) then
|
||||
ext = (ff*csgam - ui*anpl*sngam)/sqrt(den)
|
||||
eyt = (-ff*sngam - ui*anpl*csgam)/sqrt(den)
|
||||
else ! only for XM (sox=+1) when N//=0
|
||||
ext = -ui*sngam
|
||||
eyt = -ui*csgam
|
||||
end if
|
||||
|
||||
! gam = atan2(sngam,csgam)/degree
|
||||
end subroutine pol_limit
|
||||
|
||||
subroutine polarcold(anpl,anpr,xg,yg,sox,exf,eyif,ezf,elf,etf)
|
||||
use const_and_precisions, only : wp_,zero,one
|
||||
implicit none
|
||||
! arguments
|
||||
real(wp_), intent(in) :: anpl,anpr,xg,yg,sox
|
||||
real(wp_), intent(out) :: exf,eyif,ezf,elf,etf
|
||||
! local variables
|
||||
real(wp_) :: anpl2,anpr2,an2,yg2,dy2,aa,e3,qq,p
|
||||
|
||||
if(xg <= zero) then
|
||||
exf = zero
|
||||
if(sox < zero) then
|
||||
ezf = one
|
||||
eyif = zero
|
||||
else
|
||||
ezf = zero
|
||||
eyif = one
|
||||
end if
|
||||
elf = zero
|
||||
etf = one
|
||||
else
|
||||
anpl2 = anpl**2
|
||||
anpr2 = anpr**2
|
||||
an2 = anpl2 + anpr2
|
||||
|
||||
yg2=yg**2
|
||||
aa=1.0_wp_-xg-yg2
|
||||
|
||||
dy2 = one - yg2
|
||||
qq = xg*yg/(an2*dy2 - aa)
|
||||
|
||||
if (anpl == zero) then
|
||||
if(sox < zero) then
|
||||
exf = zero
|
||||
eyif = zero
|
||||
ezf = one
|
||||
else
|
||||
qq = -aa/(xg*yg)
|
||||
exf = one/sqrt(one + qq**2)
|
||||
eyif = qq*exf
|
||||
ezf = zero
|
||||
end if
|
||||
else
|
||||
e3 = one - xg
|
||||
p = (anpr2 - e3)/(anpl*anpr) ! undef for anpr==0
|
||||
exf = p*ezf
|
||||
eyif = qq*exf
|
||||
ezf = one/sqrt(one + p**2*(one + qq**2))
|
||||
end if
|
||||
|
||||
elf = (anpl*ezf + anpr*exf)/sqrt(an2)
|
||||
etf = sqrt(one - elf**2)
|
||||
end if
|
||||
end subroutine polarcold
|
||||
|
||||
end module polarization
|
4541
src/quadpack.f90
Normal file
4541
src/quadpack.f90
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,21 +1,28 @@
|
||||
module reflections
|
||||
use const_and_precisions, only : wp_, comp_tiny, comp_eps, comp_huge, zero, one
|
||||
implicit none
|
||||
|
||||
! === 1D array limiter Rlim_i, Zlim_i
|
||||
integer, public, save :: nlim
|
||||
real(wp_), public, save :: rwallm
|
||||
real(wp_), public, dimension(:), allocatable, save :: rlim,zlim
|
||||
|
||||
private
|
||||
integer, parameter :: r8=selected_real_kind(15,300)
|
||||
real(r8), parameter :: tinyr8=tiny(1._r8)
|
||||
public :: reflect,inters_linewall,inside
|
||||
public :: linecone_coord,interssegm_coord,interssegm
|
||||
public :: alloc_lim,wall_refl,range2rect,set_lim
|
||||
|
||||
contains
|
||||
|
||||
subroutine reflect(ki,nsurf,ko)
|
||||
implicit none
|
||||
real(r8), intent(in), dimension(3) :: ki
|
||||
real(r8), intent(in), dimension(3) :: nsurf
|
||||
real(r8), intent(out), dimension(3) :: ko
|
||||
real(r8) :: twokn,norm2
|
||||
real(wp_), intent(in), dimension(3) :: ki
|
||||
real(wp_), intent(in), dimension(3) :: nsurf
|
||||
real(wp_), intent(out), dimension(3) :: ko
|
||||
real(wp_) :: twokn,norm2
|
||||
norm2 = dot_product(nsurf,nsurf)
|
||||
if (norm2>0.0_r8) then
|
||||
twokn = 2.0_r8*dot_product(ki,nsurf)/norm2
|
||||
if (norm2>zero) then
|
||||
twokn = 2.0_wp_*dot_product(ki,nsurf)/norm2
|
||||
ko=ki-twokn*nsurf
|
||||
else
|
||||
ko=ki
|
||||
@ -24,30 +31,38 @@ end subroutine reflect
|
||||
|
||||
subroutine inters_linewall(xv,kv,rw,zw,nw,sint,normw)
|
||||
implicit none
|
||||
real(r8), intent(in), dimension(3) :: xv,kv
|
||||
real(wp_), intent(in), dimension(3) :: xv,kv
|
||||
integer, intent(in) :: nw
|
||||
real(r8), dimension(nw), intent(in) :: rw,zw
|
||||
real(r8), intent(out) :: sint
|
||||
real(r8), dimension(3), intent(out) :: normw
|
||||
integer :: i,j,ni,iint
|
||||
real(r8), dimension(2) :: si,ti
|
||||
real(r8) :: drw,dzw,xint,yint,rint,l,kxy
|
||||
real(r8) :: tol
|
||||
tol=sqrt(epsilon(1.0_r8))
|
||||
sint=huge(sint)
|
||||
real(wp_), dimension(nw), intent(in) :: rw,zw
|
||||
real(wp_), intent(out) :: sint
|
||||
real(wp_), dimension(3), intent(out) :: normw
|
||||
integer :: i,j,ni,iint,nneg
|
||||
real(wp_), dimension(2) :: si,ti
|
||||
real(wp_) :: drw,dzw,xint,yint,rint,l,kxy
|
||||
real(wp_) :: tol
|
||||
tol=sqrt(comp_eps)
|
||||
sint=comp_huge
|
||||
iint=0
|
||||
normw=0.0_r8
|
||||
normw=zero
|
||||
do i=1,nw-1
|
||||
!search intersections with i-th wall segment
|
||||
call linecone_coord(xv,kv,rw(i:i+1),zw(i:i+1),si,ti,ni)
|
||||
do while (ni>0 .and. si(1)<=tol)
|
||||
!remove solutions with s<=0
|
||||
ni = ni-1
|
||||
si(1) = si(2)
|
||||
ti(1) = ti(2)
|
||||
end do
|
||||
!discard solutions with s<=0
|
||||
nneg=0
|
||||
do j=1,ni
|
||||
if ((si(j)<sint .or. iint==0) .and. ti(j)>=0._r8 .and. ti(j)<=1._r8) then
|
||||
if (si(j)<=tol) then
|
||||
nneg=j
|
||||
else
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
! do while (ni>0 .and. si(1)<=tol)
|
||||
! ni = ni-1
|
||||
! si(1) = si(2) ???
|
||||
! ti(1) = ti(2) ???
|
||||
! end do
|
||||
do j=nneg+1,ni
|
||||
if ((si(j)<sint .or. iint==0) .and. ti(j)>=zero .and. ti(j)<=one) then
|
||||
!check intersection is in r,z range and keep the closest
|
||||
sint = si(j)
|
||||
iint = i
|
||||
@ -64,7 +79,7 @@ subroutine inters_linewall(xv,kv,rw,zw,nw,sint,normw)
|
||||
l = sqrt(drw**2+dzw**2)
|
||||
kxy = sqrt(kv(1)**2+kv(2)**2)
|
||||
normw(3) = -drw/l
|
||||
if (rint>0.0_r8) then
|
||||
if (rint>zero) then
|
||||
normw(1) = xint/rint*dzw/l
|
||||
normw(2) = yint/rint*dzw/l
|
||||
else
|
||||
@ -72,17 +87,18 @@ subroutine inters_linewall(xv,kv,rw,zw,nw,sint,normw)
|
||||
normw(2) = kv(2)/kxy*dzw/l
|
||||
end if
|
||||
!reverse normal if k.n>0
|
||||
if (dot_product(normw,kv)>0.0_r8) normw=-normw
|
||||
if (dot_product(normw,kv)>zero) normw=-normw
|
||||
end subroutine inters_linewall
|
||||
|
||||
subroutine linecone_coord(xv,kv,rs,zs,s,t,n)
|
||||
use utils, only : bubble
|
||||
implicit none
|
||||
real(r8), intent(in), dimension(3) :: xv,kv
|
||||
real(r8), intent(in), dimension(2) :: rs,zs
|
||||
real(r8), dimension(2), intent(out) :: s,t
|
||||
real(wp_), intent(in), dimension(3) :: xv,kv
|
||||
real(wp_), intent(in), dimension(2) :: rs,zs
|
||||
real(wp_), dimension(2), intent(out) :: s,t
|
||||
integer, intent(out) :: n
|
||||
real(r8) :: x0,y0,z0,kx,ky,kz
|
||||
real(r8) :: dr,dz,r,a,bhalf,c,delta,tvertex,zvertex,srmin,rmin,zrmin
|
||||
real(wp_) :: x0,y0,z0,kx,ky,kz
|
||||
real(wp_) :: dr,dz,r,a,bhalf,c,delta,tvertex,zvertex,srmin,rmin,zrmin
|
||||
x0=xv(1)
|
||||
y0=xv(2)
|
||||
z0=xv(3)
|
||||
@ -93,9 +109,9 @@ subroutine linecone_coord(xv,kv,rs,zs,s,t,n)
|
||||
dz = zs(2)-zs(1)
|
||||
s = 0
|
||||
t = 0
|
||||
if (abs(dz)<tinyr8) then
|
||||
if (abs(dz)<comp_tiny) then
|
||||
!surface in horizontal plane
|
||||
if (abs(kz)<tinyr8 .or. abs(dr)<tinyr8) then
|
||||
if (abs(kz)<comp_tiny .or. abs(dr)<comp_tiny) then
|
||||
n = 0
|
||||
else
|
||||
s(1) = (zs(1)-z0)/kz
|
||||
@ -107,9 +123,9 @@ subroutine linecone_coord(xv,kv,rs,zs,s,t,n)
|
||||
a = (kx**2+ky**2) - (dr/dz*kz)**2
|
||||
bhalf = -dr/dz*kz*rs(1) + (kx*x0 + ky*y0) - (dr/dz)**2*kz*(z0-zs(1))
|
||||
c = (x0**2+y0**2) - (rs(1) + dr/dz*(z0-zs(1)))**2
|
||||
if (abs(a)<tinyr8) then
|
||||
if (abs(a)<comp_tiny) then
|
||||
!line parallel to cone generator
|
||||
if (abs(dr)<tinyr8) then
|
||||
if (abs(dr)<comp_tiny) then
|
||||
!cylinder and vertical line
|
||||
n = 0
|
||||
else
|
||||
@ -118,14 +134,14 @@ subroutine linecone_coord(xv,kv,rs,zs,s,t,n)
|
||||
srmin = -(kx*x0 + ky*y0)/(kx**2+ky**2)
|
||||
rmin = sqrt((x0+srmin*kx)**2+(y0+srmin*ky)**2)
|
||||
zrmin = z0 + srmin*kz
|
||||
if (rmin<tinyr8 .and. abs(zrmin-zvertex)<tinyr8) then
|
||||
if (rmin<comp_tiny .and. abs(zrmin-zvertex)<comp_tiny) then
|
||||
!line passing by cone vertex
|
||||
!s(1) = srmin
|
||||
!t(1) = tvertex
|
||||
!n = 1
|
||||
n = 0
|
||||
else
|
||||
s(1) = -0.5_r8*c/bhalf
|
||||
s(1) = -0.5_wp_*c/bhalf
|
||||
t(1) = (kz*s(1)+(z0-zs(1)))/dz
|
||||
n = 1
|
||||
end if
|
||||
@ -147,18 +163,18 @@ end subroutine linecone_coord
|
||||
|
||||
subroutine interssegm_coord(xa,ya,xb,yb,s,t,ierr)
|
||||
implicit none
|
||||
real(r8), dimension(2), intent(in) :: xa,ya,xb,yb
|
||||
real(r8), intent(out) :: s,t
|
||||
real(wp_), dimension(2), intent(in) :: xa,ya,xb,yb
|
||||
real(wp_), intent(out) :: s,t
|
||||
integer, intent(out) :: ierr
|
||||
real(r8) :: crossprod,dxa,dya,dxb,dyb
|
||||
real(wp_) :: crossprod,dxa,dya,dxb,dyb
|
||||
dxa = xa(2)-xa(1)
|
||||
dya = ya(2)-ya(1)
|
||||
dxb = xb(2)-xb(1)
|
||||
dyb = yb(2)-yb(1)
|
||||
crossprod = dxb*dya - dxa*dyb
|
||||
if (abs(crossprod)<tiny(crossprod)) then
|
||||
s = 0.0_r8
|
||||
t = 0.0_r8
|
||||
if (abs(crossprod)<comp_tiny) then
|
||||
s = zero
|
||||
t = zero
|
||||
ierr = 1
|
||||
else
|
||||
s = (dyb*(xa(1)-xb(1)) - dxb*(ya(1)-yb(1)))/crossprod
|
||||
@ -169,25 +185,26 @@ end subroutine interssegm_coord
|
||||
|
||||
function interssegm(xa,ya,xb,yb)
|
||||
implicit none
|
||||
real(r8), dimension(2), intent(in) :: xa,ya,xb,yb
|
||||
real(wp_), dimension(2), intent(in) :: xa,ya,xb,yb
|
||||
logical :: interssegm
|
||||
real(r8) :: s,t
|
||||
real(wp_) :: s,t
|
||||
integer :: ierr
|
||||
interssegm = .false.
|
||||
call interssegm_coord(xa,ya,xb,yb,s,t,ierr)
|
||||
if (ierr==0 .and. s>=0._r8 .and. s<=1._r8 .and. &
|
||||
t>=0._r8 .and. t<=1._r8) interssegm = .true.
|
||||
if (ierr==0 .and. s>=zero .and. s<=one .and. &
|
||||
t>=zero .and. t<=one) interssegm = .true.
|
||||
end function interssegm
|
||||
|
||||
function inside(xc,yc,n,x,y)
|
||||
use utils, only : locatef, locate_unord, intlinf, bubble
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(r8), dimension(n), intent(in) :: xc,yc
|
||||
real(r8), intent(in) :: x,y
|
||||
real(wp_), dimension(n), intent(in) :: xc,yc
|
||||
real(wp_), intent(in) :: x,y
|
||||
logical :: inside
|
||||
integer, dimension(n) :: jint
|
||||
real(r8), dimension(n) :: xint
|
||||
real(r8), dimension(n+1) :: xclosed,yclosed
|
||||
real(wp_), dimension(n) :: xint
|
||||
real(wp_), dimension(n+1) :: xclosed,yclosed
|
||||
integer :: i,nj
|
||||
xclosed(1:n)=xc(1:n)
|
||||
yclosed(1:n)=yc(1:n)
|
||||
@ -197,92 +214,130 @@ function inside(xc,yc,n,x,y)
|
||||
inside=.false.
|
||||
if (nj==0) return
|
||||
do i=1,nj
|
||||
xint(i)=intlin(yclosed(jint(i)),xclosed(jint(i)), &
|
||||
xint(i)=intlinf(yclosed(jint(i)),xclosed(jint(i)), &
|
||||
yclosed(jint(i)+1),xclosed(jint(i)+1),y)
|
||||
end do
|
||||
call bubble(xint,nj)
|
||||
inside=(mod(locate(xint,nj,x),2)==1)
|
||||
inside=(mod(locatef(xint,nj,x),2)==1)
|
||||
end function inside
|
||||
|
||||
function intlin(x1,y1,x2,y2,x) result(y)
|
||||
!linear interpolation
|
||||
!must be x1 != x2
|
||||
subroutine alloc_lim(ier)
|
||||
implicit none
|
||||
real(r8),intent(in) :: x1,y1,x2,y2,x
|
||||
real(r8) :: y
|
||||
real(r8) :: a
|
||||
a=(x2-x)/(x2-x1)
|
||||
y=a*y1+(1._r8-a)*y2
|
||||
end function intlin
|
||||
integer, intent(out) :: ier
|
||||
|
||||
subroutine locate_unord(a,n,x,j,m,nj)
|
||||
implicit none
|
||||
integer, intent(in) :: n,m
|
||||
integer, intent(out) :: nj
|
||||
real(r8), dimension(n), intent(in) :: a
|
||||
real(r8), intent(in) :: x
|
||||
integer, dimension(m), intent(inout) :: j
|
||||
integer :: i
|
||||
nj=0
|
||||
do i=1,n-1
|
||||
if (x>a(i).neqv.x>a(i+1)) then
|
||||
nj=nj+1
|
||||
if (nj<=m) j(nj)=i
|
||||
if(nlim.lt.0) then
|
||||
ier = -1
|
||||
return
|
||||
end if
|
||||
end do
|
||||
end subroutine locate_unord
|
||||
|
||||
function locate(a,n,x) result(j)
|
||||
!Given an array a(n), and a value x, with a(n) monotonic, either
|
||||
!increasing or decreasing, returns a value j such that
|
||||
!a(j) < x <= a(j+1) for a increasing, and such that
|
||||
!a(j+1) < x <= a(j) for a decreasing.
|
||||
!j=0 or j=n indicate that x is out of range (Numerical Recipes)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(r8), dimension(n), intent(in) :: a
|
||||
real(r8), intent(in) :: x
|
||||
integer :: j
|
||||
integer :: jl,ju,jm
|
||||
logical :: incr
|
||||
jl=0
|
||||
ju=n+1
|
||||
incr=a(n)>a(1)
|
||||
do while ((ju-jl)>1)
|
||||
jm=(ju+jl)/2
|
||||
if(incr.eqv.(x>a(jm))) then
|
||||
jl=jm
|
||||
else
|
||||
ju=jm
|
||||
endif
|
||||
end do
|
||||
j=jl
|
||||
end function locate
|
||||
call dealloc_lim
|
||||
allocate(rlim(nlim),zlim(nlim), &
|
||||
stat=ier)
|
||||
if (ier/=0) call dealloc_lim
|
||||
end subroutine alloc_lim
|
||||
|
||||
subroutine order(p,q)
|
||||
!returns p,q in ascending order
|
||||
subroutine dealloc_lim
|
||||
implicit none
|
||||
real(r8), intent(inout) :: p,q
|
||||
real(r8) :: temp
|
||||
if (p>q) then
|
||||
temp=p
|
||||
p=q
|
||||
q=temp
|
||||
if(allocated(rlim)) deallocate(rlim)
|
||||
if(allocated(zlim)) deallocate(zlim)
|
||||
end subroutine dealloc_lim
|
||||
|
||||
subroutine wall_refl(xv,anv,ext,eyt,xvrfl,anvrfl,extr,eytr,walln,irfl)
|
||||
implicit none
|
||||
! arguments
|
||||
integer :: irfl
|
||||
real(wp_), dimension(3) :: xv,anv,xvrfl,anvrfl,walln
|
||||
complex(wp_) :: ext,eyt,extr,eytr
|
||||
! local variables
|
||||
real(wp_) :: smax,rrm,zzm
|
||||
real(wp_), dimension(3) :: anv0,vv1,vv2,vv3
|
||||
complex(wp_) :: eztr
|
||||
complex(wp_), dimension(3) :: evin,evrfl
|
||||
!
|
||||
anv0=anv/sqrt(anv(1)**2+anv(2)**2+anv(3)**2)
|
||||
rrm=1.0e-2_wp_*sqrt(xv(1)**2+xv(2)**2)
|
||||
zzm=1.0e-2_wp_*xv(3)
|
||||
!
|
||||
! computation of reflection coordinates and normal to the wall
|
||||
call inters_linewall(xv/1.0e2_wp_,anv0,rlim(1:nlim),zlim(1:nlim), &
|
||||
nlim,smax,walln)
|
||||
smax=smax*1.0e2_wp_
|
||||
xvrfl=xv+smax*anv0
|
||||
irfl=1
|
||||
if (.not.inside(rlim,zlim,nlim,rrm,zzm)) then
|
||||
! first wall interface is outside-inside
|
||||
if (dot_product(walln,walln)<tiny(walln)) then
|
||||
! wall never hit
|
||||
xvrfl=xv
|
||||
anvrfl=anv0
|
||||
extr=ext
|
||||
eytr=eyt
|
||||
irfl=0
|
||||
return
|
||||
end if
|
||||
end subroutine order
|
||||
! search second wall interface (inside-outside)
|
||||
call inters_linewall(xvrfl/1.0e2_wp_,anv0,rlim(1:nlim), &
|
||||
zlim(1:nlim),nlim,smax,walln)
|
||||
smax=smax*1.0e2_wp_
|
||||
xvrfl=xvrfl+smax*anv0
|
||||
irfl=2
|
||||
end if
|
||||
!
|
||||
! rotation matrix from local to lab frame
|
||||
vv1(1)=anv0(2)
|
||||
vv1(2)=-anv0(1)
|
||||
vv1(3)=0.0_wp_
|
||||
vv2(1)=anv0(1)*anv0(3)
|
||||
vv2(2)=anv0(2)*anv0(3)
|
||||
vv2(3)=-anv0(1)*anv0(1)-anv0(2)*anv0(2)
|
||||
vv1=vv1/sqrt(vv1(1)**2+vv1(2)**2+vv1(3)**2)
|
||||
vv2=vv2/sqrt(vv2(1)**2+vv2(2)**2+vv2(3)**2)
|
||||
vv3=anv0
|
||||
!
|
||||
evin=ext*vv1+eyt*vv2
|
||||
! wave vector and electric field after reflection in lab frame
|
||||
anvrfl=anv0-2.0_wp_* &
|
||||
(anv0(1)*walln(1)+anv0(2)*walln(2)+anv0(3)*walln(3))*walln
|
||||
evrfl=-evin+2.0_wp_* &
|
||||
(evin(1)*walln(1)+evin(2)*walln(2)+evin(3)*walln(3))*walln
|
||||
!
|
||||
vv1(1)=anvrfl(2)
|
||||
vv1(2)=-anvrfl(1)
|
||||
vv1(3)=0.0_wp_
|
||||
vv2(1)=anvrfl(1)*anvrfl(3)
|
||||
vv2(2)=anvrfl(2)*anvrfl(3)
|
||||
vv2(3)=-anvrfl(1)*anvrfl(1)-anvrfl(2)*anvrfl(2)
|
||||
vv1=vv1/sqrt(vv1(1)**2+vv1(2)**2+vv1(3)**2)
|
||||
vv2=vv2/sqrt(vv2(1)**2+vv2(2)**2+vv2(3)**2)
|
||||
vv3=anvrfl/sqrt(anvrfl(1)**2+anvrfl(2)**2+anvrfl(3)**2)
|
||||
!
|
||||
extr=dot_product(vv1,evrfl)
|
||||
eytr=dot_product(vv2,evrfl)
|
||||
eztr=dot_product(vv3,evrfl)
|
||||
end subroutine wall_refl
|
||||
|
||||
subroutine bubble(a,n)
|
||||
!bubble sorting of array a
|
||||
subroutine range2rect(xmin,xmax,ymin,ymax,xv,yv)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(r8), dimension(n), intent(inout) :: a
|
||||
integer :: i, j
|
||||
do i=1,n
|
||||
do j=n,i+1,-1
|
||||
call order(a(j-1), a(j))
|
||||
end do
|
||||
end do
|
||||
end subroutine bubble
|
||||
real(wp_), intent(in) :: xmin,xmax,ymin,ymax
|
||||
real(wp_), intent(out), dimension(:), allocatable :: xv,yv
|
||||
if (allocated(xv)) deallocate(xv)
|
||||
if (allocated(yv)) deallocate(yv)
|
||||
allocate(xv(5),yv(5))
|
||||
xv=(/xmin,xmax,xmax,xmin,xmin/)
|
||||
yv=(/ymin,ymin,ymax,ymax,ymin/)
|
||||
end subroutine range2rect
|
||||
|
||||
subroutine set_lim(rv,zv)
|
||||
implicit none
|
||||
real(wp_), intent(in), dimension(:) :: rv,zv
|
||||
if (allocated(rlim)) deallocate(rlim)
|
||||
if (allocated(zlim)) deallocate(zlim)
|
||||
nlim=size(rv)
|
||||
allocate(rlim(nlim),zlim(nlim))
|
||||
rlim=rv
|
||||
zlim=zv
|
||||
rwallm=minval(rlim)
|
||||
end subroutine set_lim
|
||||
|
||||
end module reflections
|
||||
|
||||
|
273
src/simplespline.f90
Normal file
273
src/simplespline.f90
Normal file
@ -0,0 +1,273 @@
|
||||
module simplespline
|
||||
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
|
||||
contains
|
||||
|
||||
function spli(cspli,n,k,dx)
|
||||
implicit none
|
||||
integer, intent(in) :: n, k
|
||||
real(wp_), intent(in) :: cspli(n,4), dx
|
||||
real(wp_) :: spli
|
||||
spli=cspli(k,1)+dx*(cspli(k,2)+dx*(cspli(k,3)+dx*cspli(k,4)))
|
||||
end function spli
|
||||
|
||||
function splid(cspli,n,k,dx)
|
||||
implicit none
|
||||
integer, intent(in) :: n, k
|
||||
real(wp_), intent(in) :: cspli(n,4), dx
|
||||
real(wp_) :: splid
|
||||
splid=cspli(k,2)+dx*(2.0_wp_*cspli(k,3)+3.0_wp_*dx*cspli(k,4))
|
||||
end function splid
|
||||
|
||||
subroutine difcs(x,y,n,iopt,c,ier)
|
||||
implicit none
|
||||
integer, intent(in) :: n, iopt
|
||||
real(wp_), intent(in) :: x(n), y(n)
|
||||
real(wp_), intent(inout) :: c(n*4)
|
||||
integer :: ier
|
||||
integer :: jmp,iol,ioh,i,ii,j,j1,j2,j3
|
||||
real(wp_) :: xb,xc,ya,yb,h,a,r,dya,dyb,dy2
|
||||
jmp =1
|
||||
if (n <= 1) return
|
||||
!
|
||||
! initialization
|
||||
!
|
||||
xc =x(1)
|
||||
yb =y(1)
|
||||
h =0.0_wp_
|
||||
a =0.0_wp_
|
||||
r =0.0_wp_
|
||||
dyb =0.0_wp_
|
||||
!
|
||||
! iol=0 - given derivative at first point
|
||||
! ioh=0 - given derivative at last point
|
||||
!
|
||||
iol =iopt-1
|
||||
ioh =iopt-2
|
||||
if (ioh == 1) then
|
||||
iol =0
|
||||
ioh =0
|
||||
end if
|
||||
dy2 =c(2)
|
||||
!
|
||||
! form the system of linear equations
|
||||
! and eliminate subsequentially
|
||||
!
|
||||
j =1
|
||||
do i=1,n
|
||||
j2 =n+i
|
||||
j3 =j2+n
|
||||
a =h*(2.0_wp_-a)
|
||||
dya =dyb+h*r
|
||||
if (i>=n) then
|
||||
!
|
||||
! set derivative dy2 at last point
|
||||
!
|
||||
dyb =dy2
|
||||
h =0.0_wp_
|
||||
if (ioh/=0) then
|
||||
dyb =dya
|
||||
goto 13
|
||||
end if
|
||||
else
|
||||
j =j+jmp
|
||||
xb =xc
|
||||
xc =x(j)
|
||||
h =xc-xb
|
||||
!
|
||||
! ii=0 - increasing abscissae
|
||||
! ii=1 - decreasing abscissae
|
||||
!
|
||||
ii =0
|
||||
if (h==0) return
|
||||
if (h<0) ii =1
|
||||
ya =yb
|
||||
yb =y(j)
|
||||
dyb =(yb-ya)/h
|
||||
if (i<=1) then
|
||||
j1 =ii
|
||||
if (iol/=0) goto 13
|
||||
dya =c(1)
|
||||
end if
|
||||
end if
|
||||
if (j1-ii /= 0) return
|
||||
a =1.0_wp_/(h+h+a)
|
||||
13 continue
|
||||
r =a*(dyb-dya)
|
||||
c(j3)=r
|
||||
a =h*a
|
||||
c(j2)=a
|
||||
c(i) =dyb
|
||||
end do
|
||||
!
|
||||
! back substitution of the system of linear equations
|
||||
! and computation of the other coefficients
|
||||
!
|
||||
a =1.0_wp_
|
||||
j1 =j3+n+ii-ii*n
|
||||
i =n
|
||||
do iol=1,n
|
||||
xb =x(j)
|
||||
h =xc-xb
|
||||
xc =xb
|
||||
a =a+h
|
||||
yb =r
|
||||
r =c(j3)-r*c(j2)
|
||||
ya =r+r
|
||||
c(j3)=ya+r
|
||||
c(j2)=c(i)-h*(ya+yb)
|
||||
c(j1)=(yb-r)/a
|
||||
c(i) =y(j)
|
||||
a =0.0_wp_
|
||||
j =j-jmp
|
||||
i =i-1
|
||||
j2 =j2-1
|
||||
j3 =j3-1
|
||||
j1 =j3+n+ii
|
||||
end do
|
||||
ier =0
|
||||
end subroutine difcs
|
||||
|
||||
subroutine difcsn(xx,yy,nmx,n,iopt,cc,ier)
|
||||
!
|
||||
! same as difcs but with dimension(xx,yy) = nmx > n
|
||||
!
|
||||
implicit none
|
||||
integer, intent(in) :: nmx, n, iopt
|
||||
real(wp_), intent(in) :: xx(nmx), yy(nmx)
|
||||
real(wp_), intent(inout) :: cc(nmx,4)
|
||||
integer :: ier
|
||||
integer :: jmp,iol,ioh,i,ii,j,j1,j2,j3
|
||||
real(wp_) :: x(n),y(n),c(n*4),xb,xc,ya,yb,h,a,r,dya,dyb,dy2
|
||||
!
|
||||
do i=1,n
|
||||
x(i)=xx(i)
|
||||
y(i)=yy(i)
|
||||
end do
|
||||
ii=0
|
||||
do j=1,4
|
||||
do i=1,n
|
||||
ii=ii+1
|
||||
c(ii)=cc(i,j)
|
||||
end do
|
||||
end do
|
||||
!
|
||||
jmp =1
|
||||
if (n>1) then
|
||||
!
|
||||
! initialization
|
||||
!
|
||||
xc =x(1)
|
||||
yb =y(1)
|
||||
h =0.0_wp_
|
||||
a =0.0_wp_
|
||||
r =0.0_wp_
|
||||
dyb =0.0_wp_
|
||||
!
|
||||
! iol=0 - given derivative at first point
|
||||
! ioh=0 - given derivative at last point
|
||||
!
|
||||
iol =iopt-1
|
||||
ioh =iopt-2
|
||||
if (ioh==1) then
|
||||
iol =0
|
||||
ioh =0
|
||||
end if
|
||||
dy2 =c(2)
|
||||
!
|
||||
! form the system of linear equations
|
||||
! and eliminate subsequentially
|
||||
!
|
||||
j =1
|
||||
do i=1,n
|
||||
j2 =n+i
|
||||
j3 =j2+n
|
||||
a =h*(2.0_wp_-a)
|
||||
dya =dyb+h*r
|
||||
if (i>=n) then
|
||||
!
|
||||
! set derivative dy2 at last point
|
||||
!
|
||||
dyb =dy2
|
||||
h =0.0_wp_
|
||||
if (ioh/=0) then
|
||||
dyb =dya
|
||||
goto 13
|
||||
end if
|
||||
else
|
||||
j =j+jmp
|
||||
xb =xc
|
||||
xc =x(j)
|
||||
h =xc-xb
|
||||
!
|
||||
! ii=0 - increasing abscissae
|
||||
! ii=1 - decreasing abscissae
|
||||
!
|
||||
ii =0
|
||||
if (h==0) goto 16
|
||||
if (h<0) ii =1
|
||||
ya =yb
|
||||
yb =y(j)
|
||||
dyb =(yb-ya)/h
|
||||
if (i<=1) then
|
||||
j1 =ii
|
||||
if (iol/=0) goto 13
|
||||
dya =c(1)
|
||||
end if
|
||||
end if
|
||||
if (j1/=ii) goto 16
|
||||
a =1.0_wp_/(h+h+a)
|
||||
13 continue
|
||||
r =a*(dyb-dya)
|
||||
c(j3)=r
|
||||
a =h*a
|
||||
c(j2)=a
|
||||
c(i) =dyb
|
||||
end do
|
||||
!
|
||||
! back substitution of the system of linear equations
|
||||
! and computation of the other coefficients
|
||||
!
|
||||
a =1.0_wp_
|
||||
j1 =j3+n+ii-ii*n
|
||||
i =n
|
||||
do iol=1,n
|
||||
xb =x(j)
|
||||
h =xc-xb
|
||||
xc =xb
|
||||
a =a+h
|
||||
yb =r
|
||||
r =c(j3)-r*c(j2)
|
||||
ya =r+r
|
||||
c(j3)=ya+r
|
||||
c(j2)=c(i)-h*(ya+yb)
|
||||
c(j1)=(yb-r)/a
|
||||
c(i) =y(j)
|
||||
a =0.0_wp_
|
||||
j =j-jmp
|
||||
i =i-1
|
||||
j2 =j2-1
|
||||
j3 =j3-1
|
||||
j1 =j3+n+ii
|
||||
end do
|
||||
ier =0
|
||||
end if
|
||||
!
|
||||
16 continue
|
||||
ii=0
|
||||
do j=1,4
|
||||
do i=1,nmx
|
||||
if(i<=n) then
|
||||
ii=ii+1
|
||||
cc(i,j)=c(ii)
|
||||
else
|
||||
cc(i,j)=0.0_wp_
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
!
|
||||
end subroutine difcsn
|
||||
|
||||
end module simplespline
|
278
src/utils.f90
Normal file
278
src/utils.f90
Normal file
@ -0,0 +1,278 @@
|
||||
module utils
|
||||
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
|
||||
contains
|
||||
|
||||
function locatef(a,n,x) result(j)
|
||||
! Given an array a(n), and a value x, with a(n) monotonic, either
|
||||
! increasing or decreasing, returns a value j such that
|
||||
! a(j) < x <= a(j+1) for a increasing, and such that
|
||||
! a(j+1) < x <= a(j) for a decreasing.
|
||||
! j=0 or j=n indicate that x is out of range (Numerical Recipes)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), dimension(n), intent(in) :: a
|
||||
real(wp_), intent(in) :: x
|
||||
integer :: j
|
||||
integer :: jl,ju,jm
|
||||
logical :: incr
|
||||
jl=0
|
||||
ju=n+1
|
||||
incr=a(n)>a(1)
|
||||
do while ((ju-jl)>1)
|
||||
jm=(ju+jl)/2
|
||||
if(incr.eqv.(x>a(jm))) then
|
||||
jl=jm
|
||||
else
|
||||
ju=jm
|
||||
endif
|
||||
end do
|
||||
j=jl
|
||||
end function locatef
|
||||
|
||||
subroutine locate(xx,n,x,j)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: xx(n), x
|
||||
integer, intent(out) :: j
|
||||
integer :: jl,ju,jm
|
||||
logical :: incr
|
||||
!
|
||||
! Given an array xx(n), and a value x
|
||||
! returns a value j such that xx(j) < x < xx(j+1)
|
||||
! xx(n) must be monotonic, either increasing or decreasing.
|
||||
! j=0 or j=n indicate that x is out of range (Numerical Recipes)
|
||||
!
|
||||
jl=0
|
||||
ju=n+1
|
||||
incr=xx(n)>xx(1)
|
||||
do while ((ju-jl)>1)
|
||||
jm=(ju+jl)/2
|
||||
if(incr .eqv. (x>xx(jm))) then
|
||||
jl=jm
|
||||
else
|
||||
ju=jm
|
||||
endif
|
||||
end do
|
||||
j=jl
|
||||
end subroutine locate
|
||||
|
||||
subroutine locatex(xx,n,n1,n2,x,j)
|
||||
implicit none
|
||||
integer, intent(in) :: n,n1,n2
|
||||
real(wp_), intent(in) :: xx(n), x
|
||||
integer, intent(out) :: j
|
||||
integer :: jl,ju,jm
|
||||
!
|
||||
! Given an array xx(n), and a value x
|
||||
! returns a value j such that xx(j) < x < xx(j+1)
|
||||
! xx(n) must be monotonic, either increasing or decreasing.
|
||||
! j=n1-1or j=n2+1 indicate that x is out of range
|
||||
! modified from subr. locate (Numerical Recipes)
|
||||
!
|
||||
jl=n1-1
|
||||
ju=n2+1
|
||||
do while ((ju-jl)>1)
|
||||
jm=(ju+jl)/2
|
||||
if((xx(n2)>xx(n1)) .eqv. (x>xx(jm))) then
|
||||
jl=jm
|
||||
else
|
||||
ju=jm
|
||||
endif
|
||||
end do
|
||||
j=jl
|
||||
end subroutine locatex
|
||||
|
||||
subroutine locate_unord(a,n,x,j,m,nj)
|
||||
implicit none
|
||||
integer, intent(in) :: n,m
|
||||
integer, intent(out) :: nj
|
||||
real(wp_), dimension(n), intent(in) :: a
|
||||
real(wp_), intent(in) :: x
|
||||
integer, dimension(m), intent(inout) :: j
|
||||
integer :: i
|
||||
nj=0
|
||||
do i=1,n-1
|
||||
if (x>a(i).neqv.x>a(i+1)) then
|
||||
nj=nj+1
|
||||
if (nj<=m) j(nj)=i
|
||||
end if
|
||||
end do
|
||||
end subroutine locate_unord
|
||||
|
||||
function intlinf(x1,y1,x2,y2,x) result(y)
|
||||
!linear interpolation
|
||||
!must be x1 != x2
|
||||
use const_and_precisions, only : one
|
||||
implicit none
|
||||
real(wp_),intent(in) :: x1,y1,x2,y2,x
|
||||
real(wp_) :: y
|
||||
real(wp_) :: a
|
||||
a=(x2-x)/(x2-x1)
|
||||
y=a*y1+(one-a)*y2
|
||||
end function intlinf
|
||||
|
||||
subroutine intlin(x1,y1,x2,y2,x,y)
|
||||
implicit none
|
||||
real(wp_), intent(in) :: x1,y1,x2,y2,x
|
||||
real(wp_), intent(out) :: y
|
||||
real(wp_) :: dx,aa,bb
|
||||
!
|
||||
! linear interpolation
|
||||
! (x1,y1) < (x,y) < (x2,y2)
|
||||
!
|
||||
dx=x2-x1
|
||||
aa=(x2-x)/dx
|
||||
bb=1.0_wp_-aa
|
||||
y=aa*y1+bb*y2
|
||||
end subroutine intlin
|
||||
|
||||
subroutine vmax(x,n,xmax,imx)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(out) :: xmax
|
||||
integer, intent(out) :: imx
|
||||
integer :: i
|
||||
|
||||
if (n<1) then
|
||||
imx=0
|
||||
return
|
||||
end if
|
||||
imx=1
|
||||
xmax=x(1)
|
||||
do i=2,n
|
||||
if(x(i)>xmax) then
|
||||
xmax=x(i)
|
||||
imx=i
|
||||
end if
|
||||
end do
|
||||
end subroutine vmax
|
||||
|
||||
subroutine vmin(x,n,xmin,imn)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(out) :: xmin
|
||||
integer, intent(out) :: imn
|
||||
integer :: i
|
||||
|
||||
if (n<1) then
|
||||
imn=0
|
||||
return
|
||||
end if
|
||||
imn=1
|
||||
xmin=x(1)
|
||||
do i=2,n
|
||||
if(x(i)<xmin) then
|
||||
xmin=x(i)
|
||||
imn=i
|
||||
end if
|
||||
end do
|
||||
end subroutine vmin
|
||||
|
||||
subroutine vmaxmini(x,n,xmin,xmax,imn,imx)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(out) :: xmin, xmax
|
||||
integer, intent(out) :: imn, imx
|
||||
integer :: i
|
||||
if (n<1) then
|
||||
imn=0
|
||||
imx=0
|
||||
return
|
||||
end if
|
||||
imn=1
|
||||
imx=1
|
||||
xmin=x(1)
|
||||
xmax=x(1)
|
||||
do i=2,n
|
||||
if(x(i)<xmin) then
|
||||
xmin=x(i)
|
||||
imn=i
|
||||
else if(x(i)>xmax) then
|
||||
xmax=x(i)
|
||||
imx=i
|
||||
end if
|
||||
end do
|
||||
end subroutine vmaxmini
|
||||
|
||||
subroutine vmaxmin(x,n,xmin,xmax)
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(out) :: xmin, xmax
|
||||
integer :: i
|
||||
|
||||
if (n<1) then
|
||||
return
|
||||
end if
|
||||
xmin=x(1)
|
||||
xmax=x(1)
|
||||
do i=2,n
|
||||
if(x(i)<xmin) then
|
||||
xmin=x(i)
|
||||
else if(x(i)>xmax) then
|
||||
xmax=x(i)
|
||||
end if
|
||||
end do
|
||||
end subroutine vmaxmin
|
||||
|
||||
subroutine order(p,q)
|
||||
! returns p,q in ascending order
|
||||
implicit none
|
||||
real(wp_), intent(inout) :: p,q
|
||||
real(wp_) :: temp
|
||||
if (p>q) then
|
||||
temp=p
|
||||
p=q
|
||||
q=temp
|
||||
end if
|
||||
end subroutine order
|
||||
|
||||
subroutine bubble(a,n)
|
||||
! bubble sorting of array a
|
||||
implicit none
|
||||
integer, intent(in) :: n
|
||||
real(wp_), dimension(n), intent(inout) :: a
|
||||
integer :: i, j
|
||||
do i=1,n
|
||||
do j=n,i+1,-1
|
||||
call order(a(j-1), a(j))
|
||||
end do
|
||||
end do
|
||||
end subroutine bubble
|
||||
|
||||
function get_free_unit(umin,umax) result(i)
|
||||
implicit none
|
||||
integer :: i
|
||||
integer, intent(in), optional :: umin, umax
|
||||
integer, parameter :: max_allowed = 999
|
||||
integer :: ierr, iend
|
||||
logical :: ex, op
|
||||
|
||||
if (present(umin)) then
|
||||
i = max(0,umin) ! start searching from unit min
|
||||
else
|
||||
i = 0
|
||||
end if
|
||||
if (present(umax)) then
|
||||
iend = min(max(0,umax),max_allowed)
|
||||
else
|
||||
iend = max_allowed
|
||||
end if
|
||||
do
|
||||
if (i>iend) then
|
||||
i=-1 ! no free units found
|
||||
exit
|
||||
end if
|
||||
inquire(unit=i,exist=ex,opened=op,iostat=ierr)
|
||||
if (ierr==0.and.ex.and..not.op) exit ! unit i exists and is not open
|
||||
i = i + 1
|
||||
end do
|
||||
end function get_free_unit
|
||||
|
||||
end module utils
|
Loading…
Reference in New Issue
Block a user