src/splines.f90: use do cocurrent for transform

This commit is contained in:
Michele Guerini Rocco 2024-08-14 13:04:55 +02:00
parent 2c441668bb
commit c44176a505
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450
2 changed files with 38 additions and 49 deletions

View File

@ -20,6 +20,39 @@ module gray_plasma
procedure(zeff_fun), deferred :: zeff procedure(zeff_fun), deferred :: zeff
end type end type
abstract interface
subroutine density_sub(self, psin, dens, ddens)
! Computes the density its first derivative as a function of
! normalised poloidal flux.
!
! Note: density has units of 10¹ m³.
import :: abstract_plasma, wp_
class(abstract_plasma), intent(in) :: self
real(wp_), intent(in) :: psin ! normalised poloidal flux
real(wp_), intent(out) :: dens, ddens ! density and first derivative
end subroutine density_sub
function temp_fun(self, psin) result(temp)
! Computes the temperature as a function of the
! normalised poloidal flux.
!
! Note: temperature has units of keV.
import :: abstract_plasma, wp_
class(abstract_plasma), intent(in) :: self
real(wp_), intent(in) :: psin
real(wp_) :: temp
end function temp_fun
function zeff_fun(self, psin) result(zeff)
! Computes the effective charge Z_eff as a
! function of the normalised poloidal flux.
import :: abstract_plasma, wp_
class(abstract_plasma), intent(in) :: self
real(wp_), intent(in) :: psin
real(wp_) :: zeff
end function zeff_fun
end interface
! Analytical plasma description ! Analytical plasma description
type, extends(abstract_plasma) :: analytic_plasma type, extends(abstract_plasma) :: analytic_plasma
private private
@ -57,48 +90,6 @@ module gray_plasma
procedure :: zeff => numeric_zeff procedure :: zeff => numeric_zeff
end type end type
abstract interface
subroutine density_sub(self, psin, dens, ddens)
! Computes the density its first derivative as a function of
! normalised poloidal flux.
!
! Note: density has units of 10¹ m³.
import :: abstract_plasma, wp_
class(abstract_plasma), intent(in) :: self
real(wp_), intent(in) :: psin ! normalised poloidal flux
real(wp_), intent(out) :: dens, ddens ! density and first derivative
end subroutine density_sub
function temp_fun(self, psin) result(temp)
! Computes the temperature as a function of the
! normalised poloidal flux.
!
! Note: temperature has units of keV.
import :: abstract_plasma, wp_
class(abstract_plasma), intent(in) :: self
real(wp_), intent(in) :: psin
real(wp_) :: temp
end function temp_fun
function zeff_fun(self, psin) result(zeff)
! Computes the effective charge Z_eff as a
! function of the normalised poloidal flux.
import :: abstract_plasma, wp_
class(abstract_plasma), intent(in) :: self
real(wp_), intent(in) :: psin
real(wp_) :: zeff
end function zeff_fun
end interface
! Parameters of the analytical profiles model
type analytic_model
real(wp_) :: dens0 ! Density scaling factor
real(wp_) :: n1, n2 ! Density exponents
real(wp_) :: te0, te1 ! Temperature at ψ=0, ψ=1
real(wp_) :: t1, t2 ! Temperature exponents
real(wp_) :: zeff ! Effective charge
end type
private private
public abstract_plasma ! The abstract plasma object public abstract_plasma ! The abstract plasma object
public analytic_plasma, numeric_plasma ! Implementations public analytic_plasma, numeric_plasma ! Implementations

View File

@ -559,12 +559,10 @@ contains
! first m elements contain the spline coefficients ! first m elements contain the spline coefficients
m = (self%nknots_x - 3 - 1) * (self%nknots_y - 3 - 1) m = (self%nknots_x - 3 - 1) * (self%nknots_y - 3 - 1)
do i = 0, size(self%partial, dim=1) - 1 do concurrent (i = 0:size(self%partial, dim=1) - 1, &
do j = 0, size(self%partial, dim=2) - 1 j = 0:size(self%partial, dim=2) - 1, &
if (associated(self%partial(i, j)%ptr)) then associated(self%partial(i, j)%ptr))
self%partial(i, j)%ptr(1:m) = a * self%partial(i, j)%ptr(1:m) self%partial(i, j)%ptr(1:m) = a * self%partial(i, j)%ptr(1:m)
end if
end do
end do end do
end if end if