simpson quadrature replaced with simpler rule for unevenly spaced intervals (computation of <rho>_{P,J} and d<rho>_{P,J)
This commit is contained in:
parent
f9facdc28e
commit
b6d8dd5a6f
@ -6167,36 +6167,30 @@ c
|
||||
end do
|
||||
end do
|
||||
|
||||
h=1.0d0/dble(nd-1) !!!!!!!!!! equi-spaced grid expected in
|
||||
rhotpav=0.0d0 !!!!!!!!!! simpson subroutine
|
||||
drhotpav=0.0d0 !!!!!!!!!! wrong integrals until fixed
|
||||
rhotjav=0.0d0 !!!!!!!!!! (d)rhotpav,rhotjav,(d)rhotjava affected
|
||||
rhotpav=0.0d0
|
||||
rhot2pav=0.0d0
|
||||
rhotjav=0.0d0
|
||||
rhotjava=0.0d0
|
||||
rhot2java=0.0d0
|
||||
|
||||
fi=dpdv/h
|
||||
call simpson (nd,h,fi,spds)
|
||||
fi=rhotv*dpdv/h
|
||||
call simpson (nd,h,fi,rhotpav)
|
||||
fi=rhotv*rhotv*dpdv/h
|
||||
call simpson (nd,h,fi,rhot2pav)
|
||||
rhotpav=rhotpav/spds
|
||||
rhot2pav=rhot2pav/spds
|
||||
c here dpdv is still dP (not divided yet by dV)
|
||||
spds=sum(dpdv(1:nd))
|
||||
if (spds.gt.0.0d0) then
|
||||
rhotpav=sum(rhotv(1:nd)*dpdv(1:nd))/spds
|
||||
rhot2pav=sum(rhotv(1:nd)*rhotv(1:nd)*dpdv(1:nd))/spds
|
||||
end if
|
||||
|
||||
c here ajphiv is still dI (not divided yet by dA)
|
||||
if (ieccd.ne.0) then
|
||||
fi=ajphiv/h
|
||||
call simpson (nd,h,fi,sccs)
|
||||
fi=rhotv*ajphiv/h
|
||||
call simpson (nd,h,fi,rhotjav)
|
||||
fi=abs(ajphiv)/h
|
||||
call simpson (nd,h,fi,sccsa)
|
||||
fi=rhotv*abs(ajphiv)/h
|
||||
call simpson (nd,h,fi,rhotjava)
|
||||
fi=rhotv*rhotv*abs(ajphiv)/h
|
||||
call simpson (nd,h,fi,rhot2java)
|
||||
rhotjav=rhotjav/sccs
|
||||
rhotjava=rhotjava/sccsa
|
||||
rhot2java=rhot2java/sccsa
|
||||
sccs=sum(ajphiv(1:nd))
|
||||
if (sccs.gt.0.0d0) then
|
||||
rhotjav=sum(rhotv(1:nd)*ajphiv(1:nd))/sccs
|
||||
end if
|
||||
sccsa=sum(abs(ajphiv(1:nd)))
|
||||
if (sccsa.gt.0.0d0) then
|
||||
rhotjava=sum(rhotv(1:nd)*abs(ajphiv(1:nd)))/sccsa
|
||||
rhot2java=sum(rhotv(1:nd)*rhotv(1:nd)*abs(ajphiv(1:nd)))/sccsa
|
||||
end if
|
||||
end if
|
||||
|
||||
c factor sqrt(8)=2 sqrt(2) to match with full width
|
||||
@ -6205,7 +6199,7 @@ c of gaussian profile
|
||||
drhotpav=sqrt(8.d0*drhot2pav)
|
||||
drhot2java=rhot2java-rhotjava**2
|
||||
drhotjava=sqrt(8.d0*drhot2java)
|
||||
|
||||
|
||||
spds=0.0d0
|
||||
sccs=0.0d0
|
||||
do i=1,nd
|
||||
@ -6221,7 +6215,7 @@ c of gaussian profile
|
||||
facjs=1.0d0
|
||||
if(spds.gt.0.0d0) facpds=pabs/spds
|
||||
if(sccs.ne.0.0d0) facjs=currt/sccs
|
||||
|
||||
|
||||
do i=1,nd
|
||||
dpdv(i)=facpds*dpdv(i)
|
||||
ajphiv(i)=facjs*ajphiv(i)
|
||||
|
19
src/grayl.f
19
src/grayl.f
@ -257,6 +257,25 @@ c
|
||||
end subroutine simpson
|
||||
c
|
||||
c
|
||||
c
|
||||
subroutine trapezoid(n,xi,fi,s)
|
||||
c subroutine for integration with the trapezoidal rule.
|
||||
c fi: integrand f(x); xi: abscissa x;
|
||||
c s: integral Int_{xi(1)}^{xi(n)} f(x)dx
|
||||
implicit none
|
||||
integer n
|
||||
real*8 xi(n),fi(n)
|
||||
real*8 s
|
||||
integer i
|
||||
c
|
||||
s = 0.0d0
|
||||
do i = 1, n-1
|
||||
s = s+(xi(i+1)-xi(i))*(fi(i+1)-fi(i))
|
||||
end do
|
||||
s = 0.5d0*s
|
||||
end subroutine trapezoid
|
||||
c
|
||||
c
|
||||
c spline routines: begin
|
||||
c
|
||||
c
|
||||
|
Loading…
Reference in New Issue
Block a user