simplify handling of splines

This adds a new `splines` module which implements a high-level interface
for creating and evaluating splines and rewrite almost all modules to
use it. Also, notably:

1. both `simplespline` and DIERCKX splines can now used with a uniform
   interface

2. most complexity due to handling working space arrays is gone

3. memory management has been significantly simplified too
This commit is contained in:
Michele Guerini Rocco 2022-12-18 14:09:40 +01:00
parent 1261860f40
commit b1accf0ae3
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450
10 changed files with 1181 additions and 1080 deletions

View File

@ -97,7 +97,7 @@ contains
! - φ_w, φ_R are the angles of the amplitude and phase ellipses (deg)
use gray_params, only : antenna_parameters
use simplespline, only : spli, difcs
use splines, only : spline_simple
use utils, only : get_free_unit,locate
use logger, only : log_error
@ -108,13 +108,14 @@ contains
integer, intent(in), optional :: unit
! local variables
integer :: u, iopt, ier, nisteer, i, k, ii
integer :: u, nisteer, i, k, ii
real(wp_) :: steer, dal
real(wp_), dimension(:), allocatable :: &
alphastv, betastv, x00v, y00v, &
z00v, waist1v, waist2v, rci1v, rci2v, phi1v, phi2v, &
cbeta, cx0, cy0, cz0, cwaist1, cwaist2, &
crci1, crci2, cphi1, cphi2
z00v, waist1v, waist2v, rci1v, rci2v, phi1v, phi2v
type(spline_simple) :: beta, waist1, waist2, &
rci1, rci2, phi1, phi2, &
x0, y0, z0
integer :: err
u = get_free_unit(unit)
@ -131,10 +132,7 @@ contains
allocate(alphastv(nisteer), betastv(nisteer), waist1v(nisteer), &
waist2v(nisteer), rci1v(nisteer), rci2v(nisteer), &
phi1v(nisteer), phi2v(nisteer), x00v(nisteer), &
y00v(nisteer), z00v(nisteer), cbeta(4*nisteer), &
cx0(4*nisteer), cy0(4*nisteer), cz0(4*nisteer), &
cwaist1(4*nisteer), cwaist2(4*nisteer), crci1(4*nisteer), &
crci2(4*nisteer), cphi1(4*nisteer), cphi2(4*nisteer))
y00v(nisteer), z00v(nisteer))
do i=1,nisteer
read(u, *) steer, alphastv(i), betastv(i), &
@ -151,34 +149,33 @@ contains
z00v = 0.1_wp_ * z00v
waist1v = 0.1_wp_ * waist1v
waist2v = 0.1_wp_ * waist2v
rci1v = 10._wp_ * rci1v
rci2v = 10._wp_ * rci2v
rci1v = 10 * rci1v
rci2v = 10 * rci2v
iopt = 0
call difcs(alphastv, betastv, nisteer, iopt, cbeta, ier)
call difcs(alphastv, waist1v, nisteer, iopt, cwaist1, ier)
call difcs(alphastv, rci1v, nisteer, iopt, crci1, ier)
call difcs(alphastv, waist2v, nisteer, iopt, cwaist2, ier)
call difcs(alphastv, rci2v, nisteer, iopt, crci2, ier)
call difcs(alphastv, phi1v, nisteer, iopt, cphi1, ier)
call difcs(alphastv, phi2v, nisteer, iopt, cphi2, ier)
call difcs(alphastv, x00v, nisteer, iopt, cx0, ier)
call difcs(alphastv, y00v, nisteer, iopt, cy0, ier)
call difcs(alphastv, z00v, nisteer, iopt, cz0, ier)
call beta%init(alphastv, betastv, nisteer)
call waist1%init(alphastv, waist1v, nisteer)
call waist2%init(alphastv, waist2v, nisteer)
call rci1%init(alphastv, rci1v, nisteer)
call rci2%init(alphastv, rci2v, nisteer)
call phi1%init(alphastv, phi1v, nisteer)
call phi2%init(alphastv, phi2v, nisteer)
call x0%init(alphastv, x00v, nisteer)
call y0%init(alphastv, y00v, nisteer)
call z0%init(alphastv, z00v, nisteer)
if((params%alpha > alphastv(1)) .and. (params%alpha < alphastv(nisteer))) then
call locate(alphastv, nisteer, params%alpha , k)
dal = params%alpha - alphastv(k)
params%beta = spli(cbeta, nisteer, k, dal)
params%pos(1) = spli(cx0, nisteer, k, dal)
params%pos(2) = spli(cy0, nisteer, k, dal)
params%pos(3) = spli(cz0, nisteer, k, dal)
params%w(1) = spli(cwaist1, nisteer, k, dal)
params%w(2) = spli(cwaist2, nisteer, k, dal)
params%ri(1) = spli(crci1, nisteer, k, dal)
params%ri(2) = spli(crci2, nisteer, k, dal)
params%phi(1) = spli(cphi1, nisteer, k, dal)
params%phi(2) = spli(cphi2, nisteer, k, dal)
params%beta = beta%raw_eval(k, dal)
params%pos(1) = x0%raw_eval(k, dal)
params%pos(2) = y0%raw_eval(k, dal)
params%pos(3) = z0%raw_eval(k, dal)
params%w(1) = waist1%raw_eval(k, dal)
params%w(2) = waist2%raw_eval(k, dal)
params%ri(1) = rci1%raw_eval(k, dal)
params%ri(2) = rci2%raw_eval(k, dal)
params%phi(1) = phi1%raw_eval(k, dal)
params%phi(2) = phi2%raw_eval(k, dal)
else
! params%alpha outside table range
if(params%alpha >= alphastv(nisteer)) ii=nisteer
@ -196,10 +193,20 @@ contains
params%phi(2) = phi2v(ii)
end if
deallocate(alphastv, betastv, waist1v, waist2v, rci1v, rci2v, &
phi1v, phi2v, x00v, y00v, z00v, cbeta, &
cx0, cy0, cz0, cwaist1, cwaist2, &
crci1, crci2, cphi1, cphi2)
deallocate(alphastv, betastv, waist1v, waist2v, &
rci1v, rci2v, phi1v, phi2v, &
x00v, y00v, z00v)
call beta%deinit
call waist1%deinit
call waist2%deinit
call rci1%deinit
call rci2%deinit
call phi1%deinit
call phi2%deinit
call x0%deinit
call y0%deinit
call z0%deinit
end subroutine read_beam1

View File

@ -1,4 +1,4 @@
! This modules handles the loading, interpolation and evaluation of the
! This module handles the loading, interpolation and evaluation of the
! plasma profiles (density, temperature, effective charge)
!
! Two kinds of profiles are supported: analytical (suffix `_an` in the
@ -6,20 +6,10 @@
! the data is interpolated using splines.
module coreprofiles
use const_and_precisions, only : wp_, zero, one
use splines, only : spline_simple, spline_1d
implicit none
! Parameters of the plasma profiles splines
type spline_parameters
integer :: ndata ! Number of data points
integer :: nknots ! Number of spline knots
! Density spline (ψ, knots, B-spline coefficients)
real(wp_), dimension(:), allocatable :: knots, coeffs
! Temperature and effective charge arrays (ψ, T(ψ), Zeff(ψ))
real(wp_), dimension(:), allocatable :: psi
real(wp_), dimension(:, :), allocatable :: temp, zeff
end type
! Parameters of the C² polynomial tail of the density spline
type density_tail
real(wp_) :: start ! ψ, start of the tail
@ -38,8 +28,10 @@ module coreprofiles
real(wp_) :: zeff ! Effective charge
end type
! Global variable storing the state of the module
type(spline_parameters), save :: spline
! Global variables storing the state of the module
type(spline_1d), save :: dens_spline
type(spline_simple), save :: temp_spline
type(spline_simple), save :: zeff_spline
type(density_tail), save :: tail
type(analytic_model), save :: model
@ -58,7 +50,6 @@ contains
!
! Note: density has units of 10¹ m³.
use gray_params, only : iprof
use dierckx, only : splev, splder
use logger, only : log_error
implicit none
@ -68,14 +59,11 @@ contains
real(wp_), intent(out) :: dens, ddens ! density and first derivative
! local variables
integer :: ier ! dierck error code
real(wp_) :: f(1) ! dierck output (must be an array)
real(wp_) :: wrkfd(spline%ndata+4) ! dierck working space array
character(256) :: msg ! for log messages formatting
! Initialise both to zero
dens = zero
ddens = zero
dens = 0
ddens = 0
! Outside the tail end both density and its
! derivatives are identically zero
@ -97,16 +85,10 @@ contains
! Use the interpolating spline when in range
! Evaluate the spline
ier = 0
call splev(spline%knots, spline%nknots, spline%coeffs, &
3, [psin], f, 1, ier)
dens = f(1)
dens = dens_spline%eval(psin)
ddens = dens_spline%deriv(psin)
! Evaluate the spline 1st derivative
ier = 0
call splder(spline%knots, spline%nknots, spline%coeffs, &
3, 1, [psin], f, 1, wrkfd, ier)
ddens = f(1)
if (abs(dens) < 1.0e-10_wp_) dens = zero
else
! Use a C² polynomial extension outside (ψ > ψ)
@ -159,8 +141,6 @@ contains
!
! Note: temperature has units of keV.
use gray_params, only : iprof
use utils, only : locate
use simplespline, only : spli
implicit none
@ -169,10 +149,9 @@ contains
real(wp_) :: temp
! local variables
integer :: k
real(wp_) :: proft, dps
real(wp_) :: proft
temp = zero
temp = 0
if (psin >= 1 .or. psin < 0) return
if (iprof == 0) then
! Use the analytical model
@ -183,10 +162,7 @@ contains
temp = (model%te0 - model%te1)*proft + model%te1
else
! Use the interpolated numerical data
call locate(spline%psi, spline%ndata, psin, k)
k = max(1, min(k, spline%ndata - 1))
dps = psin - spline%psi(k)
temp = spli(spline%temp, spline%ndata, k, dps)
temp = temp_spline%eval(psin)
endif
end function temp
@ -195,8 +171,6 @@ contains
! Computes the effective charge Zeff as a
! function of the normalised poloidal flux.
use gray_params, only : iprof
use utils, only : locate
use simplespline, only : spli
implicit none
@ -204,10 +178,6 @@ contains
real(wp_), intent(in) :: psin
real(wp_) :: fzeff
! local variables
integer :: k
real(wp_) :: dps
fzeff = one
if (psin >= 1 .or. psin < 0) return
if (iprof == 0) then
@ -215,10 +185,7 @@ contains
fzeff = model%zeff
else
! Use the interpolated numerical data
call locate(spline%psi, spline%ndata, psin, k)
k = max(1, min(k, spline%ndata - 1))
dps = psin - spline%psi(k)
fzeff = spli(spline%zeff, spline%ndata, k, dps)
fzeff = zeff_spline%eval(psin)
endif
end function fzeff
@ -378,8 +345,6 @@ contains
! When `launch_pos` (cartesian launch coordinates in cm) is present,
! the subroutine will also check that the wave launcher is strictly
! outside the reconstructed plasma density boundary.
use simplespline, only : difcs
use dierckx, only : curfit, splev, splder
use gray_params, only : profiles_parameters, profiles_data
use logger, only : log_debug, log_info, log_warning, log_error
@ -390,68 +355,28 @@ contains
type(profiles_data), intent(inout) :: data
real(wp_), optional, intent(in) :: launch_pos(3)
! curfit parameters
integer, parameter :: iopt = 0 ! smoothing spline mode
integer, parameter :: kspl = 3 ! order of spline (cubic)
! local variables
integer :: n, npest, ier
real(wp_) :: xb, xe, fp, ssplne_loc
! working space arrays for the dierckx functions
integer :: lwrkf
real(wp_), dimension(:), allocatable :: wf, wrkf
integer, dimension(:), allocatable :: iwrkf
integer :: n, err
! for log messages formatting
character(256) :: msg
n = size(data%psrad)
npest = n + 4
lwrkf = n*4 + npest*16
allocate(wrkf(lwrkf), iwrkf(npest), wf(n))
ssplne_loc=params%sspld
! If necessary, reallocate the spline arrays
if (.not. allocated(spline%psi)) then
allocate(spline%psi(n), spline%temp(n, 4), spline%zeff(n, 4))
else
if (size(spline%psi) < n) then
deallocate(spline%psi, spline%temp, spline%zeff)
allocate(spline%psi(n), spline%temp(n, 4), spline%zeff(n, 4))
end if
end if
if (.not. allocated(spline%coeffs)) then
allocate(spline%knots(npest), spline%coeffs(npest))
else
if (size(spline%coeffs) < npest) then
deallocate(spline%knots, spline%coeffs)
allocate(spline%knots(npest), spline%coeffs(npest))
end if
end if
! Spline interpolation of temperature and effective charge
call difcs(data%psrad, data%terad, n, iopt, spline%temp, ier)
call difcs(data%psrad, data%zfc, n, iopt, spline%zeff, ier)
spline%psi = data%psrad
spline%ndata = n
call temp_spline%init(data%psrad, data%terad, n)
call zeff_spline%init(data%psrad, data%zfc, n)
! Spline interpolation of density
xb = zero
xe = data%psrad(n)
wf(:) = one
call curfit(iopt, n, data%psrad, data%derad, wf, xb, xe, kspl, &
ssplne_loc, npest, spline%nknots, spline%knots, &
spline%coeffs, fp, wrkf, lwrkf, iwrkf, ier)
! if ier=-1 data are re-fitted using sspl=0
if (ier == -1) then
call log_warning('curfit failed with error -1: re-fitting with '// &
's=0', mod='coreprofiles', proc='density')
ssplne_loc = zero
call curfit(iopt, n, data%psrad, data%derad, wf, xb, xe, kspl, &
ssplne_loc, npest, spline%nknots, spline%knots, &
spline%coeffs, fp, wrkf, lwrkf, iwrkf, ier)
! Spline interpolation of density (smooth spline)
call dens_spline%init(data%psrad, data%derad, n, range=[zero, data%psrad(n)], &
tension=params%sspld, err=err)
! if failed, re-fit with an interpolating spline (zero tension)
if (err == -1) then
call log_warning('density fit failed with error -1: re-fitting with '// &
'zero tension', mod='coreprofiles', proc='density')
call dens_spline%init(data%psrad, data%derad, n, &
range=[zero, data%psrad(n)], tension=zero)
end if
! Computation of the polynomial tail parameters
@ -460,9 +385,9 @@ contains
! at the edge. The spline thus has to be extended to transition
! smoothly from the last profile point to 0 outside the plasma.
block
real(wp_), dimension(1) :: s0, s1, s2 ! spline, 1st, 2nd derivative
real(wp_), dimension(1) :: delta4 ! discriminant Δ/4 of q(x)
real(wp_), dimension(1) :: x0, x1 ! vertex of q(x), solution
real(wp_) :: s0, s1, s2 ! spline, 1st, 2nd derivative
real(wp_) :: delta4 ! discriminant Δ/4 of q(x)
real(wp_) :: x0, x1 ! vertex of q(x), solution
! Compute the coefficients of a 2nd order Taylor polinomial to
! extend the spline beyond the last point:
@ -471,12 +396,9 @@ contains
!
! where s(ψ) is the spline and ψ the last point.
!
call splev(spline%knots, spline%nknots, spline%coeffs, kspl, &
data%psrad(n:n), s0, 1, ier)
call splder(spline%knots, spline%nknots, spline%coeffs, kspl, 1, &
data%psrad(n:n), s1, 1, wrkf(1:spline%nknots), ier)
call splder(spline%knots, spline%nknots, spline%coeffs, kspl, 2, &
data%psrad(n:n), s2, 1, wrkf(1:spline%nknots), ier)
s0 = dens_spline%eval(data%psrad(n))
s1 = dens_spline%deriv(data%psrad(n), order=1)
s2 = dens_spline%deriv(data%psrad(n), order=2)
! Determine where to end the tail (to ensure the density remains
! positive) from the zeros of the Taylor polynomial p(ψ)
@ -491,7 +413,7 @@ contains
x0 = -s1 / s2 ! vertex of parabola y=q(x)
delta4 = (s1 / s2)**2 - 2*s0/s2 ! Δ/4 of q(x)
if (delta4(1) > 0) then
if (delta4 > 0) then
! Pick the smallest positive zero (implying >ψ)
x1 = x0 + sign(sqrt(delta4), sqrt(delta4) - x0)
else
@ -503,10 +425,10 @@ contains
! Store the tail parameters
tail%start = data%psrad(n)
tail%end = tail%start + x1(1)
tail%value = s0(1)
tail%deriv1 = s1(1)
tail%deriv2 = s2(1)
tail%end = tail%start + x1
tail%value = s0
tail%deriv1 = s1
tail%deriv2 = s2
end block
! Make sure the wave launcher does not fall inside the tail
@ -550,8 +472,6 @@ contains
write (msg, '(a,g0.4)') 'density boundary: ψ=', tail%end
call log_info(msg, mod='coreprofiles', proc='set_profiles_spline')
deallocate(iwrkf, wrkf, wf)
end subroutine set_profiles_spline
@ -560,11 +480,9 @@ contains
implicit none
if (allocated(spline%psi)) deallocate(spline%psi)
if (allocated(spline%temp)) deallocate(spline%temp)
if (allocated(spline%zeff)) deallocate(spline%zeff)
if (allocated(spline%knots)) deallocate(spline%knots)
if (allocated(spline%coeffs)) deallocate(spline%coeffs)
call dens_spline%deinit
call temp_spline%deinit
call zeff_spline%deinit
end subroutine unset_profiles_spline

File diff suppressed because it is too large Load Diff

View File

@ -2187,7 +2187,7 @@ bb: do
subroutine print_prof
! Prints the (input) plasma kinetic profiles (unit 98)
use equilibrium, only : psinr, nq, fq, frhotor, tor_curr_psi
use equilibrium, only : q_spline, fq, frhotor, tor_curr_psi
use coreprofiles, only : density, temp
use units, only : uprfin, unit_active
@ -2198,19 +2198,19 @@ bb: do
! local variables
integer :: i
real(wp_) :: psin, rhot, ajphi, dens, ddens
real(wp_) :: psin, rhot, jphi, dens, ddens
if (.not. unit_active(uprfin)) return
write (uprfin, *) '#psi rhot ne Te q Jphi'
do i=1,nq
psin = psinr(i)
do i = 1, q_spline%ndata
psin = q_spline%data(i)
rhot = frhotor(sqrt(psin))
call density(psin, dens, ddens)
call tor_curr_psi(max(eps, psin), ajphi)
jphi = tor_curr_psi(max(eps, psin))
write (uprfin, '(12(1x,e12.5))') &
psin, rhot, dens, temp(psin), fq(psin), ajphi*1.e-6_wp_
psin, rhot, dens, temp(psin), fq(psin), jphi*1.e-6_wp_
end do
end subroutine print_prof
@ -2218,7 +2218,7 @@ bb: do
subroutine print_bres(bres)
! Prints the EC resonance surface table (unit 70)
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, bfield, nq
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, bfield, q_spline
use units, only : ubres, unit_active
implicit none
@ -2234,14 +2234,14 @@ bb: do
integer, dimension(10) :: ncpts
real(wp_) :: dr,dz,btmx,btmn,zzk,rrj,bbphi,bbr,bbz,bbb
real(wp_), dimension(icmx) :: rrcb,zzcb
real(wp_) :: rv(nq), zv(nq)
real(wp_), dimension(nq,nq) :: btotal
real(wp_) :: rv(q_spline%ndata), zv(q_spline%ndata)
real(wp_), dimension(q_spline%ndata,q_spline%ndata) :: btotal
if (.not. unit_active(ubres)) return
dr = (rmxm - rmnm)/(nq - 1)
dz = (zmxm - zmnm)/(nq - 1)
do j=1,nq
dr = (rmxm - rmnm)/(q_spline%ndata - 1)
dz = (zmxm - zmnm)/(q_spline%ndata - 1)
do j=1,q_spline%ndata
rv(j) = rmnm + dr*(j - 1)
zv(j) = zmnm + dz*(j - 1)
end do
@ -2249,9 +2249,9 @@ bb: do
! Btotal on psi grid
btmx = -1.0e30_wp_
btmn = 1.0e30_wp_
do k=1,nq
do k = 1, q_spline%ndata
zzk = zv(k)
do j=1,nq
do j = 1, q_spline%ndata
rrj = rv(j)
call bfield(rrj, zzk, bbphi, bbr, bbz)
btotal(j,k) = sqrt(bbr**2 + bbz**2 + bbphi**2)
@ -2262,14 +2262,14 @@ bb: do
! compute Btot=Bres/n with n=1,5
write (ubres, *) '#i Btot R z'
do n=1,5
do n = 1, 5
bbb = bres/dble(n)
if (bbb >= btmn .and. bbb <= btmx) then
nconts = size(ncpts)
nctot = size(rrcb)
call cniteq(rv, zv, btotal, nq, nq, bbb, &
call cniteq(rv, zv, btotal, q_spline%ndata, q_spline%ndata, bbb, &
nconts, ncpts, nctot, rrcb, zzcb)
do j=1,nctot
do j = 1, nctot
write (ubres, '(i6,12(1x,e12.5))') j, bbb, rrcb(j), zzcb(j)
end do
end if
@ -2284,7 +2284,7 @@ bb: do
use gray_params, only : iequil
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, equian, equinum_psi, &
equinum_fpol, nq
equinum_fpol, q_spline
use coreprofiles, only : density, temp
use units, only : umaps, unit_active
@ -2297,28 +2297,28 @@ bb: do
integer :: j,k
real(wp_) :: dr, dz, zk, rj, bphi, br, bz, btot, &
psin, ne, dne, te, xg, yg, anpl
real(wp_), dimension(nq) :: r, z
real(wp_), dimension(q_spline%ndata) :: r, z
if (.not. unit_active(umaps)) return
dr = (rmxm-rmnm)/(nq - 1)
dz = (zmxm-zmnm)/(nq - 1)
do j=1,nq
dr = (rmxm-rmnm)/(q_spline%ndata - 1)
dz = (zmxm-zmnm)/(q_spline%ndata - 1)
do j=1,q_spline%ndata
r(j) = rmnm + dr*(j - 1)
z(j) = zmnm + dz*(j - 1)
end do
write (umaps, *) '#R z psin Br Bphi Bz Btot ne Te X Y Npl'
do j=1,nq
do j = 1, q_spline%ndata
rj = r(j)
anpl = anpl0 * r0/rj
do k=1,nq
do k = 1, q_spline%ndata
zk = z(k)
if (iequil < 2) then
call equian(rj, zk, psinv=psin, fpolv=bphi, dpsidr=bz, dpsidz=br)
call equian(rj, zk, psi=psin, fpolv=bphi, dpsidr=bz, dpsidz=br)
else
call equinum_psi(rj, zk, psinv=psin, dpsidr=bz, dpsidz=br)
call equinum_fpol(psin, fpolv=bphi)
call equinum_psi(rj, zk, psi=psin, dpsidr=bz, dpsidz=br)
call equinum_fpol(psin, fpol=bphi)
end if
br = -br/rj
bphi = bphi/rj
@ -2340,7 +2340,7 @@ bb: do
subroutine print_surfq(qval)
! Print constant ψ surfaces for a given `q` value
use equilibrium, only : psinr, nq, fq, frhotor, &
use equilibrium, only : q_spline, fq, frhotor, &
rmaxis, zmaxis, zbsup, zbinf
use magsurf_data, only : contours_psi, npoints, print_contour
use utils, only : locate, intlin
@ -2355,23 +2355,23 @@ bb: do
integer :: i1,i
real(wp_) :: rup,zup,rlw,zlw,rhot,psival
real(wp_), dimension(npoints) :: rcn,zcn
real(wp_), dimension(nq) :: qpsi
real(wp_), dimension(q_spline%ndata) :: qpsi
character(256) :: msg ! for log messages formatting
! build q profile on psin grid
do i=1,nq
qpsi(i) = fq(psinr(i))
! build the q profile on the ψ grid
do i = 1, q_spline%ndata
qpsi(i) = fq(q_spline%data(i))
end do
! locate ψ surface for q=qval
call log_info('constant ψ surfaces for:', &
mod='gray_core', proc='print_surfq')
do i=1,size(qval)
do i=1, size(qval)
! FIXME: check for non monotonous q profile
call locate(abs(qpsi),nq,qval(i),i1)
if (i1>0 .and. i1<nq) then
call intlin(abs(qpsi(i1)), psinr(i1), abs(qpsi(i1+1)), psinr(i1+1), &
qval(i),psival)
call locate(abs(qpsi), q_spline%ndata, qval(i), i1)
if (i1 > 0 .and. i1 < q_spline%ndata) then
call intlin(abs(qpsi(i1)), q_spline%data(i1), abs(qpsi(i1+1)), &
q_spline%data(i1+1), qval(i), psival)
rup = rmaxis
rlw = rmaxis
zup = (zbsup + zmaxis)/2.0_wp_

View File

@ -127,13 +127,11 @@ subroutine gray_jetto1beam(ijetto, mr, mz, r, z, psin, psia, rax, zax, &
! Free memory
free_memory: block
use equilibrium, only : unset_equil_spline, unset_rho_spline, unset_q
use equilibrium, only : unset_equil_spline
use coreprofiles, only : unset_profiles_spline
! Unset global variables of the `equilibrium` module
call unset_equil_spline
call unset_rho_spline
call unset_q
! Unset global variables of the `coreprofiles` module
call unset_profiles_spline

View File

@ -1,5 +1,7 @@
module magsurf_data
use const_and_precisions, only : wp_
use splines, only : spline_simple
implicit none
integer, save :: npsi, npoints !# sup mag, # punti per sup
@ -14,12 +16,11 @@ module magsurf_data
real(wp_), dimension(:), allocatable, save :: tjp,tlm,ch,ch01
real(wp_), dimension(:,:), allocatable, save :: rcon,zcon
real(wp_), dimension(:,:), allocatable, save :: cdadrhot,cdvdrhot
real(wp_), dimension(:,:), allocatable, save :: cvol,crri,crbav,cbmx,cbmn,carea,cfc
real(wp_), dimension(:,:), allocatable, save :: crhotq
real(wp_), dimension(:,:), allocatable, save :: cratja,cratjb,cratjpl
type(spline_simple), save :: cvol, crri, crbav, cbmx, cbmn, carea, cfc
type(spline_simple), save :: crhotq
type(spline_simple), save :: cratja, cratjb, cratjpl
type(spline_simple), save :: cdadrhot, cdvdrhot
contains
@ -58,10 +59,7 @@ contains
allocate(pstab(npsi), &
rhot_eq(npsi),rhotqv(npsi),bav(npsi),bmxpsi(npsi),bmnpsi(npsi),varea(npsi), &
vvol(npsi),vcurrp(npsi),vajphiav(npsi),qqv(npsi),ffc(npsi),vratja(npsi), &
vratjb(npsi),rpstab(npsi),rri(npsi),rbav(npsi),cdadrhot(npsi,4), &
cdvdrhot(npsi,4),cbmx(npsi,4),cbmn(npsi,4),crbav(npsi,4),cvol(npsi,4), &
crri(npsi,4),carea(npsi,4),cfc(npsi,4),crhotq(npsi,4),cratjpl(npsi,4), &
cratja(npsi,4),cratjb(npsi,4))
vratjb(npsi),rpstab(npsi),rri(npsi),rbav(npsi))
end subroutine alloc_surfvec
subroutine dealloc_surfvec
@ -84,20 +82,20 @@ contains
if(allocated(rpstab)) deallocate(rpstab)
if(allocated(rri)) deallocate(rri)
if(allocated(rbav)) deallocate(rbav)
if(allocated(cdadrhot)) deallocate(cdadrhot)
if(allocated(cdvdrhot)) deallocate(cdvdrhot)
if(allocated(cbmx)) deallocate(cbmx)
if(allocated(cbmn)) deallocate(cbmn)
if(allocated(crbav)) deallocate(crbav)
if(allocated(cvol)) deallocate(cvol)
if(allocated(crri)) deallocate(crri)
if(allocated(carea)) deallocate(carea)
if(allocated(cfc)) deallocate(cfc)
if(allocated(crhotq)) deallocate(crhotq)
if(allocated(cratjpl)) deallocate(cratjpl)
if(allocated(cratja)) deallocate(cratja)
if(allocated(cratjb)) deallocate(cratjb)
if(allocated(tjp)) deallocate(tjp,tlm,ch)
call cvol%deinit
call crbav%deinit
call crri%deinit
call cbmx%deinit
call cbmn%deinit
call cratja%deinit
call cratjb%deinit
call cratjpl%deinit
call carea%deinit
call cfc%deinit
call cdadrhot%deinit
call cdvdrhot%deinit
end subroutine dealloc_surfvec
@ -106,7 +104,6 @@ contains
use gray_params, only : iequil
use equilibrium, only : btrcen,btaxis,rmaxis,zmaxis,phitedge,zbsup,zbinf, &
equian,equinum_psi,bfield,frhotor,fq,tor_curr
use simplespline, only : difcs
use dierckx, only : regrid,coeff_parder
implicit none
@ -232,7 +229,7 @@ contains
bmmx=-1.0e+30_wp_
bmmn=1.0e+30_wp_
call tor_curr(rctemp(1),zctemp(1),ajphi0)
ajphi0 = tor_curr(rctemp(1),zctemp(1))
call bfield(rctemp(1),zctemp(1),bphi,br=brr,bz=bzz)
fpolv=bphi*rctemp(1)
btot0=sqrt(bphi**2+brr**2+bzz**2)
@ -260,7 +257,7 @@ contains
rpsim=rctemp(inc1)
zpsim=zctemp(inc1)
call bfield(rpsim,zpsim,br=brr,bz=bzz)
call tor_curr(rpsim,zpsim,ajphi)
ajphi = tor_curr(rpsim,zpsim)
bphi=fpolv/rpsim
btot=sqrt(bphi**2+brr**2+bzz**2)
bpoloid=sqrt(brr**2+bzz**2)
@ -372,36 +369,22 @@ contains
rpstab(npsi)=1.0_wp_
pstab(npsi)=1.0_wp_
! spline coefficients of area,vol,rbav,rri,bmxpsi,bmnpsi,fc,dadrhot,dvdrhot,ratioJs
! used for computations of dP/dV and J_cd
iopt=0
call difcs(rpstab,vvol,npsi,iopt,cvol,ier)
iopt=0
call difcs(rpstab,rbav,npsi,iopt,crbav,ier)
iopt=0
call difcs(rpstab,rri,npsi,iopt,crri,ier)
iopt=0
call difcs(rpstab,bmxpsi,npsi,iopt,cbmx,ier)
iopt=0
call difcs(rpstab,bmnpsi,npsi,iopt,cbmn,ier)
iopt=0
call difcs(rpstab,vratja,npsi,iopt,cratja,ier)
iopt=0
call difcs(rpstab,vratjb,npsi,iopt,cratjb,ier)
iopt=0
call difcs(rpstab,vratjpl,npsi,iopt,cratjpl,ier)
iopt=0
call difcs(rpstab,varea,npsi,iopt,carea,ier)
iopt=0
call difcs(rpstab,ffc,npsi,iopt,cfc,ier)
iopt=0
call difcs(rpstab,dadrhotv,npsi,iopt,cdadrhot,ier)
iopt=0
call difcs(rpstab,dvdrhotv,npsi,iopt,cdvdrhot,ier)
! iopt=0
! call difcs(rpstab,qqv,npsi,iopt,cqq,ier)
! spline coefficients of area,vol,rbav,rri,bmxpsi,bmnpsi,fc,dadrhot,dvdrhot,ratioJs
! used for computations of dP/dV and J_cd
call cvol%init(rpstab, vvol, npsi)
call crbav%init(rpstab, rbav, npsi)
call crri%init(rpstab, rri, npsi)
call cbmx%init(rpstab, bmxpsi, npsi)
call cbmn%init(rpstab, bmnpsi, npsi)
call cratja%init(rpstab, vratja, npsi)
call cratjb%init(rpstab, vratjb, npsi)
call cratjpl%init(rpstab, vratjpl, npsi)
call carea%init(rpstab, varea, npsi)
call cfc%init(rpstab, ffc, npsi)
call cdadrhot%init(rpstab, dadrhotv, npsi)
call cdvdrhot%init(rpstab, dvdrhotv, npsi)
! spline interpolation of H(lambda,rhop) and dH/dlambda
! spline interpolation of H(lambda,rhop) and dH/dlambda
iopt=0
s=0.0_wp_
call regrid(iopt,npsi,rpstab,nlam,alam,ffhlam,zero,one,zero,one, &
@ -430,37 +413,30 @@ contains
subroutine fluxval(rhop,area,vol,dervol,dadrhot,dvdrhot, &
rri,rbav,bmn,bmx,fc,ratja,ratjb,ratjpl)
use const_and_precisions, only : wp_
use utils, only : locate
use simplespline, only :spli,splid
implicit none
! arguments
! subroutine arguments
real(wp_), intent(in) :: rhop
real(wp_), intent(out), optional :: vol,area,rri,rbav,dervol,bmn,bmx,fc, &
ratja,ratjb,ratjpl,dadrhot,dvdrhot
! local variables
integer :: ip
real(wp_) :: drh
real(wp_), intent(out), optional :: &
vol, area, rri, rbav, dervol, bmn, bmx, fc, &
ratja, ratjb, ratjpl, dadrhot, dvdrhot
call locate(rpstab,npsi,rhop,ip)
ip=min(max(1,ip),npsi-1)
drh=rhop-rpstab(ip)
if (present(area)) area = carea%eval(rhop)
if (present(vol)) vol = cvol%eval(rhop)
if (present(area)) area=spli(carea,npsi,ip,drh)
if (present(vol)) vol=spli(cvol,npsi,ip,drh)
if (present(dervol)) dervol = cvol%deriv(rhop)
if (present(dadrhot)) dadrhot = cdadrhot%eval(rhop)
if (present(dvdrhot)) dvdrhot = cdvdrhot%eval(rhop)
if (present(dervol)) dervol=splid(cvol,npsi,ip,drh)
if (present(dadrhot)) dadrhot=spli(cdadrhot,npsi,ip,drh)
if (present(dvdrhot)) dvdrhot=spli(cdvdrhot,npsi,ip,drh)
if (present(rri)) rri = crri%eval(rhop)
if (present(rbav)) rbav = crbav%eval(rhop)
if (present(bmn)) bmn = cbmn%eval(rhop)
if (present(bmx)) bmx = cbmx%eval(rhop)
if (present(fc)) fc = cfc%eval(rhop)
if (present(rri)) rri=spli(crri,npsi,ip,drh)
if (present(rbav)) rbav=spli(crbav,npsi,ip,drh)
if (present(bmn)) bmn=spli(cbmn,npsi,ip,drh)
if (present(bmx)) bmx=spli(cbmx,npsi,ip,drh)
if (present(fc)) fc=spli(cfc,npsi,ip,drh)
if (present(ratja)) ratja=spli(cratja,npsi,ip,drh)
if (present(ratjb)) ratjb=spli(cratjb,npsi,ip,drh)
if (present(ratjpl)) ratjpl=spli(cratjpl,npsi,ip,drh)
if (present(ratja)) ratja = cratja%eval(rhop)
if (present(ratjb)) ratjb = cratjb%eval(rhop)
if (present(ratjpl)) ratjpl = cratjpl%eval(rhop)
end subroutine fluxval
@ -470,22 +446,26 @@ contains
use const_and_precisions, only : wp_,pi
use gray_params, only : iequil
use logger, only : log_warning
use dierckx, only : profil,sproota
use equilibrium, only : rmaxis,zmaxis,aminor,frhotor,tr,nsr,tz,nsz,cceq, &
kspl,psiant,psinop,points_tgo
use dierckx, only : profil, sproota
use equilibrium, only : rmaxis, zmaxis, aminor, frhotor, psi_spline, &
kspl, psiant, psinop, points_tgo
use limiter, only : rwallm
implicit none
! local constants
! local constants
integer, parameter :: mest=4
! arguments
! subroutine arguments
real(wp_), intent(in) :: h
real(wp_), dimension(:), intent(out) :: rcn,zcn
real(wp_), intent(inout) :: rup,zup,rlw,zlw
! local variables
! local variables
integer :: npoints,np,info,ic,ier,iopt,m
real(wp_) :: ra,rb,za,zb,rn,th,zc,val
real(wp_), dimension(mest) :: zeroc
real(wp_), dimension(nsr) :: czc
real(wp_), dimension(psi_spline%nknots_x) :: czc
npoints=size(rcn)
np=(npoints-1)/2
@ -517,7 +497,10 @@ contains
do ic=2,np
zc=zlw+(zup-zlw)*(1.0_wp_-cos(th*(ic-1)))/2.0_wp_
iopt=1
call profil(iopt,tr,nsr,tz,nsz,cceq,kspl,kspl,zc,nsr,czc,ier)
call profil(iopt, psi_spline%knots_x, psi_spline%nknots_x, &
psi_spline%knots_y, psi_spline%nknots_y, &
psi_spline%coeffs, kspl, kspl, zc, &
psi_spline%nknots_x, czc, ier)
if (ier > 0) then
block
character(256) :: msg
@ -527,7 +510,8 @@ contains
end block
end if
val=h*psiant+psinop
call sproota(val,tr,nsr,czc,zeroc,mest,m,ier)
call sproota(val, psi_spline%knots_x, psi_spline%nknots_x, &
czc, zeroc, mest, m, ier)
if (zeroc(1).gt.rwallm) then
rcn(ic)=zeroc(1)
rcn(npoints+1-ic)=zeroc(2)

View File

@ -193,7 +193,7 @@ contains
! or an analytical description) and initialises the respective
! GRAY parameters and data.
use equilibrium, only : read_equil_an, read_eqdsk, change_cocos, &
set_equil_an, set_equil_spline, eq_scal
set_equil_an, set_equil_spline, scale_equil
use logger, only : log_debug
implicit none
@ -223,7 +223,7 @@ contains
end if
! Rescale B, I and/or force their signs
call eq_scal(params%equilibrium, data%equilibrium)
call scale_equil(params%equilibrium, data%equilibrium)
! Set global variables (for splines)
if (params%equilibrium%iequil < 2) then
@ -239,7 +239,7 @@ contains
subroutine deinit_equilibrium(data)
! Free all memory allocated by the init_equilibrium subroutine.
use gray_params, only : equilibrium_data
use equilibrium, only : unset_equil_spline, unset_rho_spline, unset_q
use equilibrium, only : unset_equil_spline
implicit none
@ -254,8 +254,6 @@ contains
! Unset global variables of the `equilibrium` module
call unset_equil_spline
call unset_rho_spline
call unset_q
end subroutine deinit_equilibrium

View File

@ -1,273 +0,0 @@
module simplespline
use const_and_precisions, only : wp_
implicit none
contains
function spli(cspli,n,k,dx)
implicit none
integer, intent(in) :: n, k
real(wp_), intent(in) :: cspli(n,4), dx
real(wp_) :: spli
spli=cspli(k,1)+dx*(cspli(k,2)+dx*(cspli(k,3)+dx*cspli(k,4)))
end function spli
function splid(cspli,n,k,dx)
implicit none
integer, intent(in) :: n, k
real(wp_), intent(in) :: cspli(n,4), dx
real(wp_) :: splid
splid=cspli(k,2)+dx*(2.0_wp_*cspli(k,3)+3.0_wp_*dx*cspli(k,4))
end function splid
subroutine difcs(x,y,n,iopt,c,ier)
implicit none
integer, intent(in) :: n, iopt
real(wp_), intent(in) :: x(n), y(n)
real(wp_), intent(inout) :: c(n*4)
integer :: ier
integer :: jmp,iol,ioh,i,ii,j,j1,j2,j3
real(wp_) :: xb,xc,ya,yb,h,a,r,dya,dyb,dy2
jmp =1
if (n <= 1) return
!
! initialization
!
xc =x(1)
yb =y(1)
h =0.0_wp_
a =0.0_wp_
r =0.0_wp_
dyb =0.0_wp_
!
! iol=0 - given derivative at first point
! ioh=0 - given derivative at last point
!
iol =iopt-1
ioh =iopt-2
if (ioh == 1) then
iol =0
ioh =0
end if
dy2 =c(2)
!
! form the system of linear equations
! and eliminate subsequentially
!
j =1
do i=1,n
j2 =n+i
j3 =j2+n
a =h*(2.0_wp_-a)
dya =dyb+h*r
if (i>=n) then
!
! set derivative dy2 at last point
!
dyb =dy2
h =0.0_wp_
if (ioh/=0) then
dyb =dya
goto 13
end if
else
j =j+jmp
xb =xc
xc =x(j)
h =xc-xb
!
! ii=0 - increasing abscissae
! ii=1 - decreasing abscissae
!
ii =0
if (h==0) return
if (h<0) ii =1
ya =yb
yb =y(j)
dyb =(yb-ya)/h
if (i<=1) then
j1 =ii
if (iol/=0) goto 13
dya =c(1)
end if
end if
if (j1-ii /= 0) return
a =1.0_wp_/(h+h+a)
13 continue
r =a*(dyb-dya)
c(j3)=r
a =h*a
c(j2)=a
c(i) =dyb
end do
!
! back substitution of the system of linear equations
! and computation of the other coefficients
!
a =1.0_wp_
j1 =j3+n+ii-ii*n
i =n
do iol=1,n
xb =x(j)
h =xc-xb
xc =xb
a =a+h
yb =r
r =c(j3)-r*c(j2)
ya =r+r
c(j3)=ya+r
c(j2)=c(i)-h*(ya+yb)
c(j1)=(yb-r)/a
c(i) =y(j)
a =0.0_wp_
j =j-jmp
i =i-1
j2 =j2-1
j3 =j3-1
j1 =j3+n+ii
end do
ier =0
end subroutine difcs
subroutine difcsn(xx,yy,nmx,n,iopt,cc,ier)
!
! same as difcs but with dimension(xx,yy) = nmx > n
!
implicit none
integer, intent(in) :: nmx, n, iopt
real(wp_), intent(in) :: xx(nmx), yy(nmx)
real(wp_), intent(inout) :: cc(nmx,4)
integer :: ier
integer :: jmp,iol,ioh,i,ii,j,j1,j2,j3
real(wp_) :: x(n),y(n),c(n*4),xb,xc,ya,yb,h,a,r,dya,dyb,dy2
!
do i=1,n
x(i)=xx(i)
y(i)=yy(i)
end do
ii=0
do j=1,4
do i=1,n
ii=ii+1
c(ii)=cc(i,j)
end do
end do
!
jmp =1
if (n>1) then
!
! initialization
!
xc =x(1)
yb =y(1)
h =0.0_wp_
a =0.0_wp_
r =0.0_wp_
dyb =0.0_wp_
!
! iol=0 - given derivative at first point
! ioh=0 - given derivative at last point
!
iol =iopt-1
ioh =iopt-2
if (ioh==1) then
iol =0
ioh =0
end if
dy2 =c(2)
!
! form the system of linear equations
! and eliminate subsequentially
!
j =1
do i=1,n
j2 =n+i
j3 =j2+n
a =h*(2.0_wp_-a)
dya =dyb+h*r
if (i>=n) then
!
! set derivative dy2 at last point
!
dyb =dy2
h =0.0_wp_
if (ioh/=0) then
dyb =dya
goto 13
end if
else
j =j+jmp
xb =xc
xc =x(j)
h =xc-xb
!
! ii=0 - increasing abscissae
! ii=1 - decreasing abscissae
!
ii =0
if (h==0) goto 16
if (h<0) ii =1
ya =yb
yb =y(j)
dyb =(yb-ya)/h
if (i<=1) then
j1 =ii
if (iol/=0) goto 13
dya =c(1)
end if
end if
if (j1/=ii) goto 16
a =1.0_wp_/(h+h+a)
13 continue
r =a*(dyb-dya)
c(j3)=r
a =h*a
c(j2)=a
c(i) =dyb
end do
!
! back substitution of the system of linear equations
! and computation of the other coefficients
!
a =1.0_wp_
j1 =j3+n+ii-ii*n
i =n
do iol=1,n
xb =x(j)
h =xc-xb
xc =xb
a =a+h
yb =r
r =c(j3)-r*c(j2)
ya =r+r
c(j3)=ya+r
c(j2)=c(i)-h*(ya+yb)
c(j1)=(yb-r)/a
c(i) =y(j)
a =0.0_wp_
j =j-jmp
i =i-1
j2 =j2-1
j3 =j3-1
j1 =j3+n+ii
end do
ier =0
end if
!
16 continue
ii=0
do j=1,4
do i=1,nmx
if(i<=n) then
ii=ii+1
cc(i,j)=c(ii)
else
cc(i,j)=0.0_wp_
end if
end do
end do
!
end subroutine difcsn
end module simplespline

546
src/splines.f90 Normal file
View File

@ -0,0 +1,546 @@
! This module provides a high-level interface for creating and evaluating
! several kind of splines:
!
! `spline_simple` is a simple interpolating cubic spline,
! `spline_1d` and `spline_2d` are wrapper around the DIERCKX cubic splines.
module splines
use const_and_precisions, only : wp_
implicit none
! A 1D interpolating cubic spline
type spline_simple
integer :: ndata ! Number of data points
real(wp_), allocatable :: data(:) ! Data points (ndata)
real(wp_), allocatable :: coeffs(:,:) ! Spline coefficients (ndata, 4)
contains
procedure :: init => spline_simple_init
procedure :: deinit => spline_simple_deinit
procedure :: eval => spline_simple_eval
procedure :: raw_eval => spline_simple_raw_eval
procedure :: deriv => spline_simple_deriv
end type
! A 1D smoothing/interpolating cubic spline
type spline_1d
integer :: nknots ! Number of spline knots
real(wp_), allocatable :: knots(:) ! Knots positions
real(wp_), allocatable :: coeffs(:) ! B-spline coefficients
contains
procedure :: init => spline_1d_init
procedure :: deinit => spline_1d_deinit
procedure :: eval => spline_1d_eval
procedure :: deriv => spline_1d_deriv
end type
! A 2D smoothing/interpolating cubic spline s(x, y)
type spline_2d
integer :: nknots_x ! Number of x knots
integer :: nknots_y ! Number of y knots
real(wp_), allocatable :: knots_x(:) ! Knots x positions
real(wp_), allocatable :: knots_y(:) ! Knots y positions
real(wp_), allocatable :: coeffs(:) ! B-spline coefficients
! B-spline coefficients of the partial derivatives
type(pointer), allocatable :: partial(:,:)
contains
procedure :: init => spline_2d_init
procedure :: deinit => spline_2d_deinit
procedure :: eval => spline_2d_eval
procedure :: init_deriv => spline_2d_init_deriv
procedure :: deriv => spline_2d_deriv
end type
! Wrapper to store pointers in an array
type pointer
real(wp_), pointer :: ptr(:) => null()
end type
private
public spline_simple, spline_1d, spline_2d
contains
subroutine spline_simple_init(self, x, y, n)
! Initialises the spline
implicit none
! subroutine arguments
class(spline_simple), intent(inout) :: self
integer, intent(in) :: n
real(wp_), dimension(n), intent(in) :: x, y
call self%deinit
self%ndata = n
allocate(self%data(n))
allocate(self%coeffs(n, 4))
self%data = x
call spline_simple_coeffs(x, y, n, self%coeffs)
end subroutine spline_simple_init
subroutine spline_simple_deinit(self)
! Deinitialises a simple_spline
implicit none
! subroutine arguments
class(spline_simple), intent(inout) :: self
if (allocated(self%data)) deallocate(self%data)
if (allocated(self%coeffs)) deallocate(self%coeffs)
self%ndata = 0
end subroutine spline_simple_deinit
function spline_simple_eval(self, x) result(y)
! Evaluates the spline at x
use utils, only : locate
implicit none
! subroutine arguments
class(spline_simple), intent(in) :: self
real(wp_), intent(in) :: x
real(wp_) :: y
! local variables
integer :: i
real(wp_) :: dx
call locate(self%data, self%ndata, x, i)
i = min(max(1, i), self%ndata - 1)
dx = x - self%data(i)
y = self%raw_eval(i, dx)
end function spline_simple_eval
function spline_simple_raw_eval(self, i, dx) result(y)
! Evaluates the i-th polynomial of the spline at dx
implicit none
! subroutine arguments
class(spline_simple), intent(in) :: self
integer, intent(in) :: i
real(wp_), intent(in) :: dx
real(wp_) :: y
y = self%coeffs(i,1) + dx*(self%coeffs(i,2) &
+ dx*(self%coeffs(i,3) + dx*self%coeffs(i,4)))
end function spline_simple_raw_eval
function spline_simple_deriv(self, x) result(y)
! Computes the derivative of the spline at x
use utils, only : locate
implicit none
! subroutine arguments
class(spline_simple), intent(in) :: self
real(wp_), intent(in) :: x
real(wp_) :: y
! local variables
integer :: i
real(wp_) :: dx
call locate(self%data, self%ndata, x, i)
i = min(max(1, i), self%ndata - 1)
dx = x - self%data(i)
y = self%coeffs(i,2) + dx*(2*self%coeffs(i,3) + 3*dx*self%coeffs(i,4))
end function spline_simple_deriv
subroutine spline_simple_coeffs(x, y, n, c)
! Computes the cubic coefficients of all n polynomials
implicit none
! subroutine arguments
integer, intent(in) :: n
real(wp_), intent(in) :: x(n), y(n)
real(wp_), intent(inout) :: c(n*4)
! local variables
integer :: jmp, i, ii, j, j1, j2, j3, k
real(wp_) :: xb, xc, ya, yb, h, a, r, dya, dyb, dy2
jmp = 1
if (n <= 1) return
! initialisation
xc = x(1)
yb = y(1)
h = 0
a = 0
r = 0
dyb = 0
dy2 = c(2)
! form the system of linear equations
! and eliminate subsequentially
j = 1
do i = 1, n
j2 = n + i
j3 = j2 + n
a = h*(2 - a)
dya = dyb + h*r
if (i >= n) then
! set derivative dy2 at last point
dyb = dy2
h = 0
dyb = dya
goto 13
else
j = j+jmp
xb = xc
xc = x(j)
h = xc-xb
! ii=0 - increasing abscissae
! ii=1 - decreasing abscissae
ii = 0
if (h == 0) return
if (h < 0) ii = 1
ya = yb
yb = y(j)
dyb = (yb - ya)/h
if (i <= 1) then
j1 = ii
goto 13
end if
end if
if (j1-ii /= 0) return
a = 1 / (2*h + a)
13 continue
r = a*(dyb - dya)
c(j3) = r
a = h*a
c(j2) = a
c(i) = dyb
end do
! back substitution of the system of linear equations
! and computation of the other coefficients
a = 1
j1 = j3+n+ii-ii*n
i = n
do k = 1, n
xb = x(j)
h = xc - xb
xc = xb
a = a+h
yb = r
r = c(j3)-r*c(j2)
ya = 2*r
c(j3) = ya + r
c(j2) = c(i) - h*(ya+yb)
c(j1) = (yb - r)/a
c(i) = y(j)
a = 0
j = j-jmp
i = i-1
j2 = j2-1
j3 = j3-1
j1 = j3+n+ii
end do
end subroutine spline_simple_coeffs
subroutine spline_1d_init(self, x, y, n, range, weights, tension, err)
! Initialises a spline_1d.
! Takes:
! x: x data points
! y: y data points
! n: number of data points
! range: interpolation range as [x_min, x_max]
! weights: factors weighting the data points (default: all 1)
! tension: parameter controlling the amount of smoothing (default: 0)
! Returns:
! err: error code of `curfit`
use dierckx, only : curfit
implicit none
! subroutine arguments
class(spline_1d), intent(inout) :: self
real(wp_), intent(in) :: x(n)
real(wp_), intent(in) :: y(n)
integer, intent(in) :: n
real(wp_), intent(in) :: range(2)
real(wp_), intent(in), optional :: weights(n)
real(wp_), intent(in), optional :: tension
integer, intent(out), optional :: err
! local variables
integer :: nknots_est ! over-estimate of the number of knots
real(wp_) :: residuals ! sum of the residuals
integer :: work_int(n + 4) ! integer working space
real(wp_) :: work_real(4*n + 16*(n + 4)) ! real working space
! default values
integer :: err_def
real(wp_) :: weights_def(n), tension_def
weights_def = 1
tension_def = 0
if (present(weights)) weights_def = weights
if (present(tension)) tension_def = tension
! clear memory, if necessary
call self%deinit
! allocate the spline arrays
nknots_est = n + 4
allocate(self%knots(nknots_est), self%coeffs(nknots_est))
call curfit(0, n, x, y, weights_def, range(1), range(2), 3, tension_def, &
nknots_est, self%nknots, self%knots, self%coeffs, residuals, &
work_real, size(work_real), work_int, err_def)
if (present(err)) err = err_def
end subroutine spline_1d_init
subroutine spline_1d_deinit(self)
! Deinitialises a spline_1d
implicit none
class(spline_1d), intent(inout) :: self
if (allocated(self%knots)) deallocate(self%knots)
if (allocated(self%coeffs)) deallocate(self%coeffs)
self%nknots = 0
end subroutine spline_1d_deinit
function spline_1d_eval(self, x) result(y)
! Evaluates the spline at x
use dierckx, only : splev
implicit none
! subroutine arguments
class(spline_1d), intent(in) :: self
real(wp_), intent(in) :: x
real(wp_) :: y
! local variables
integer :: err
real(wp_) :: yv(1) ! because splev returns a vector
call splev(self%knots, self%nknots, self%coeffs, 3, [x], yv, 1, err)
y = yv(1)
end function spline_1d_eval
function spline_1d_deriv(self, x, order) result(y)
! Evaluates the spline n-th order derivative at x
use dierckx, only : splder
implicit none
! subroutine arguments
class(spline_1d), intent(in) :: self
real(wp_), intent(in) :: x
integer, intent(in), optional :: order
real(wp_) :: y
! local variables
integer :: err, n
real(wp_) :: yv(1) ! because splev returns a vector
real(wp_) :: work(self%nknots) ! working space array
n = 1
if (present(order)) n = order
call splder(self%knots, self%nknots, self%coeffs, &
3, n, [x], yv, 1, work, err)
y = yv(1)
end function spline_1d_deriv
subroutine spline_2d_init(self, x, y, z, nx, ny, range, tension, err)
! Initialises a spline_2d.
! Takes:
! x, y: data points on a regular grid
! z: data points of z(x, y)
! n: number of data points
! range: interpolation range as [x_min, x_max, y_min, y_max]
! weights: factors weighting the data points (default: all 1)
! tension: parameter controlling the amount of smoothing (default: 0)
! Returns:
! err: error code of `curfit`
use dierckx, only : regrid
implicit none
! subroutine arguments
class(spline_2d), intent(inout) :: self
real(wp_), intent(in) :: x(nx)
real(wp_), intent(in) :: y(ny)
real(wp_), intent(in) :: z(nx * ny)
integer, intent(in) :: nx, ny
real(wp_), intent(in) :: range(4)
real(wp_), intent(in), optional :: tension
integer, intent(out), optional :: err
! local variables
integer :: nknots_x_est ! over-estimate of the number of knots
integer :: nknots_y_est !
real(wp_) :: residuals ! sum of the residuals
! working space arrays
integer :: work_int(2*(ny + nx) + 11)
real(wp_) :: work_real(15*(nx + ny) + ny*(nx + 4) + 92 + max(ny, nx + 4))
! default values
integer :: err_def
real(wp_) :: tension_def
tension_def = 0
if (present(tension)) tension_def = tension
! clear memory, if necessary
call self%deinit
! allocate the spline arrays
nknots_x_est = nx + 4
nknots_y_est = ny + 4
allocate(self%knots_x(nknots_x_est), self%knots_y(nknots_y_est))
allocate(self%coeffs(nx * ny))
call regrid(0, nx, x, ny, y, z, range(1), range(2), range(3), range(4), &
3, 3, tension_def, nknots_x_est, nknots_y_est, &
self%nknots_x, self%knots_x, self%nknots_y, self%knots_y, &
self%coeffs, residuals, work_real, size(work_real), &
work_int, size(work_int), err_def)
if (present(err)) err = err_def
end subroutine spline_2d_init
subroutine spline_2d_deinit(self)
! Deinitialises a spline_2d
implicit none
class(spline_2d), intent(inout) :: self
if (allocated(self%knots_x)) deallocate(self%knots_x)
if (allocated(self%knots_y)) deallocate(self%knots_y)
if (allocated(self%coeffs)) deallocate(self%coeffs)
! Note: partial derivatives coeff. are pointers
if (allocated(self%partial)) then
deallocate(self%partial(1, 0)%ptr)
deallocate(self%partial(0, 1)%ptr)
deallocate(self%partial(1, 1)%ptr)
deallocate(self%partial(2, 0)%ptr)
deallocate(self%partial(0, 2)%ptr)
deallocate(self%partial)
end if
self%nknots_x = 0
self%nknots_y = 0
end subroutine spline_2d_deinit
function spline_2d_eval(self, x, y) result(z)
! Evaluates the spline at (x, y)
use dierckx, only : fpbisp
implicit none
! subroutine arguments
class(spline_2d), intent(in) :: self
real(wp_), intent(in) :: x, y
real(wp_) :: z
! local variables
real(wp_) :: zv(1) ! because fpbisp returns a vector
integer :: work_int(8) ! integer working space
real(wp_) :: work_real(8) ! real working space
! Note: see https://netlib.org/dierckx/bispev.f for
! this apparently nonsensical invocation
call fpbisp(self%knots_x, self%nknots_x, &
self%knots_y, self%nknots_y, &
self%coeffs, 3, 3, [x], 1, [y], 1, &
zv, work_real(1), work_real(5), &
work_int(1), work_int(2))
z = zv(1)
end function spline_2d_eval
subroutine spline_2d_init_deriv(self, p, q, n, m)
! Computes the spline coefficients of n-th partial derivative
! w.r.t x and m-th partial derivative w.r.t y on a grid of
! p×q points.
!
! Note: for simplicity, only up to second-order is supported.
use dierckx, only : coeff_parder
implicit none
! subroutine arguments
class(spline_2d), intent(inout) :: self
integer, intent(in) :: p, q ! grid dimensions
integer, intent(in) :: n, m ! derivative order
! local variables
integer :: coeff_size
integer :: err
! coeff. array (actually, the working space) size
coeff_size = p*(4 - n) + q*(4 - m) + p*q
! allocate slots for storing the derivatives (first call only)
if (.not. allocated(self%partial)) allocate(self%partial(0:2, 0:2))
! allocate the coefficients array
allocate(self%partial(n, m)%ptr(coeff_size))
! compute the coefficients
call coeff_parder(self%knots_x, self%nknots_x, &
self%knots_y, self%nknots_y, &
self%coeffs, 3, 3, n, m, &
self%partial(n, m)%ptr, coeff_size, err)
end subroutine spline_2d_init_deriv
function spline_2d_deriv(self, x, y, n, m) result(z)
! Evaluates the spline n-th partial derivative w.r.t x
! and m-th partial derivative w.r.t y at (x, y)
!
! Note: the coefficients of the derivative must have been
! initialised with init_deriv before calling this method.
use dierckx, only : fpbisp
implicit none
! subroutine arguments
class(spline_2d), intent(in) :: self
real(wp_), intent(in) :: x, y
integer, intent(in) :: n, m
real(wp_) :: z
! local variables
real(wp_), dimension(1) :: zv ! because splev returns a vector
integer, dimension(1) :: work_int_x, work_int_y ! integer working space
real(wp_), dimension(1,4) :: work_real_x, work_real_y ! real working space
call fpbisp(self%knots_x(1 + n), self%nknots_x - 2*n, &
self%knots_y(1 + m), self%nknots_y - 2*m, &
self%partial(n, m)%ptr, &
3 - n, 3 - m, [x], 1, [y], 1, zv, &
work_real_x, work_real_y, work_int_x, work_int_y)
z = zv(1)
end function spline_2d_deriv
end module splines