simplify handling of splines
This adds a new `splines` module which implements a high-level interface for creating and evaluating splines and rewrite almost all modules to use it. Also, notably: 1. both `simplespline` and DIERCKX splines can now used with a uniform interface 2. most complexity due to handling working space arrays is gone 3. memory management has been significantly simplified too
This commit is contained in:
parent
1261860f40
commit
b1accf0ae3
@ -97,7 +97,7 @@ contains
|
||||
! - φ_w, φ_R are the angles of the amplitude and phase ellipses (deg)
|
||||
|
||||
use gray_params, only : antenna_parameters
|
||||
use simplespline, only : spli, difcs
|
||||
use splines, only : spline_simple
|
||||
use utils, only : get_free_unit,locate
|
||||
use logger, only : log_error
|
||||
|
||||
@ -108,13 +108,14 @@ contains
|
||||
integer, intent(in), optional :: unit
|
||||
|
||||
! local variables
|
||||
integer :: u, iopt, ier, nisteer, i, k, ii
|
||||
integer :: u, nisteer, i, k, ii
|
||||
real(wp_) :: steer, dal
|
||||
real(wp_), dimension(:), allocatable :: &
|
||||
alphastv, betastv, x00v, y00v, &
|
||||
z00v, waist1v, waist2v, rci1v, rci2v, phi1v, phi2v, &
|
||||
cbeta, cx0, cy0, cz0, cwaist1, cwaist2, &
|
||||
crci1, crci2, cphi1, cphi2
|
||||
z00v, waist1v, waist2v, rci1v, rci2v, phi1v, phi2v
|
||||
type(spline_simple) :: beta, waist1, waist2, &
|
||||
rci1, rci2, phi1, phi2, &
|
||||
x0, y0, z0
|
||||
integer :: err
|
||||
|
||||
u = get_free_unit(unit)
|
||||
@ -131,10 +132,7 @@ contains
|
||||
allocate(alphastv(nisteer), betastv(nisteer), waist1v(nisteer), &
|
||||
waist2v(nisteer), rci1v(nisteer), rci2v(nisteer), &
|
||||
phi1v(nisteer), phi2v(nisteer), x00v(nisteer), &
|
||||
y00v(nisteer), z00v(nisteer), cbeta(4*nisteer), &
|
||||
cx0(4*nisteer), cy0(4*nisteer), cz0(4*nisteer), &
|
||||
cwaist1(4*nisteer), cwaist2(4*nisteer), crci1(4*nisteer), &
|
||||
crci2(4*nisteer), cphi1(4*nisteer), cphi2(4*nisteer))
|
||||
y00v(nisteer), z00v(nisteer))
|
||||
|
||||
do i=1,nisteer
|
||||
read(u, *) steer, alphastv(i), betastv(i), &
|
||||
@ -151,34 +149,33 @@ contains
|
||||
z00v = 0.1_wp_ * z00v
|
||||
waist1v = 0.1_wp_ * waist1v
|
||||
waist2v = 0.1_wp_ * waist2v
|
||||
rci1v = 10._wp_ * rci1v
|
||||
rci2v = 10._wp_ * rci2v
|
||||
rci1v = 10 * rci1v
|
||||
rci2v = 10 * rci2v
|
||||
|
||||
iopt = 0
|
||||
call difcs(alphastv, betastv, nisteer, iopt, cbeta, ier)
|
||||
call difcs(alphastv, waist1v, nisteer, iopt, cwaist1, ier)
|
||||
call difcs(alphastv, rci1v, nisteer, iopt, crci1, ier)
|
||||
call difcs(alphastv, waist2v, nisteer, iopt, cwaist2, ier)
|
||||
call difcs(alphastv, rci2v, nisteer, iopt, crci2, ier)
|
||||
call difcs(alphastv, phi1v, nisteer, iopt, cphi1, ier)
|
||||
call difcs(alphastv, phi2v, nisteer, iopt, cphi2, ier)
|
||||
call difcs(alphastv, x00v, nisteer, iopt, cx0, ier)
|
||||
call difcs(alphastv, y00v, nisteer, iopt, cy0, ier)
|
||||
call difcs(alphastv, z00v, nisteer, iopt, cz0, ier)
|
||||
call beta%init(alphastv, betastv, nisteer)
|
||||
call waist1%init(alphastv, waist1v, nisteer)
|
||||
call waist2%init(alphastv, waist2v, nisteer)
|
||||
call rci1%init(alphastv, rci1v, nisteer)
|
||||
call rci2%init(alphastv, rci2v, nisteer)
|
||||
call phi1%init(alphastv, phi1v, nisteer)
|
||||
call phi2%init(alphastv, phi2v, nisteer)
|
||||
call x0%init(alphastv, x00v, nisteer)
|
||||
call y0%init(alphastv, y00v, nisteer)
|
||||
call z0%init(alphastv, z00v, nisteer)
|
||||
|
||||
if((params%alpha > alphastv(1)) .and. (params%alpha < alphastv(nisteer))) then
|
||||
call locate(alphastv, nisteer, params%alpha , k)
|
||||
dal = params%alpha - alphastv(k)
|
||||
params%beta = spli(cbeta, nisteer, k, dal)
|
||||
params%pos(1) = spli(cx0, nisteer, k, dal)
|
||||
params%pos(2) = spli(cy0, nisteer, k, dal)
|
||||
params%pos(3) = spli(cz0, nisteer, k, dal)
|
||||
params%w(1) = spli(cwaist1, nisteer, k, dal)
|
||||
params%w(2) = spli(cwaist2, nisteer, k, dal)
|
||||
params%ri(1) = spli(crci1, nisteer, k, dal)
|
||||
params%ri(2) = spli(crci2, nisteer, k, dal)
|
||||
params%phi(1) = spli(cphi1, nisteer, k, dal)
|
||||
params%phi(2) = spli(cphi2, nisteer, k, dal)
|
||||
params%beta = beta%raw_eval(k, dal)
|
||||
params%pos(1) = x0%raw_eval(k, dal)
|
||||
params%pos(2) = y0%raw_eval(k, dal)
|
||||
params%pos(3) = z0%raw_eval(k, dal)
|
||||
params%w(1) = waist1%raw_eval(k, dal)
|
||||
params%w(2) = waist2%raw_eval(k, dal)
|
||||
params%ri(1) = rci1%raw_eval(k, dal)
|
||||
params%ri(2) = rci2%raw_eval(k, dal)
|
||||
params%phi(1) = phi1%raw_eval(k, dal)
|
||||
params%phi(2) = phi2%raw_eval(k, dal)
|
||||
else
|
||||
! params%alpha outside table range
|
||||
if(params%alpha >= alphastv(nisteer)) ii=nisteer
|
||||
@ -196,10 +193,20 @@ contains
|
||||
params%phi(2) = phi2v(ii)
|
||||
end if
|
||||
|
||||
deallocate(alphastv, betastv, waist1v, waist2v, rci1v, rci2v, &
|
||||
phi1v, phi2v, x00v, y00v, z00v, cbeta, &
|
||||
cx0, cy0, cz0, cwaist1, cwaist2, &
|
||||
crci1, crci2, cphi1, cphi2)
|
||||
deallocate(alphastv, betastv, waist1v, waist2v, &
|
||||
rci1v, rci2v, phi1v, phi2v, &
|
||||
x00v, y00v, z00v)
|
||||
|
||||
call beta%deinit
|
||||
call waist1%deinit
|
||||
call waist2%deinit
|
||||
call rci1%deinit
|
||||
call rci2%deinit
|
||||
call phi1%deinit
|
||||
call phi2%deinit
|
||||
call x0%deinit
|
||||
call y0%deinit
|
||||
call z0%deinit
|
||||
|
||||
end subroutine read_beam1
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
! This modules handles the loading, interpolation and evaluation of the
|
||||
! This module handles the loading, interpolation and evaluation of the
|
||||
! plasma profiles (density, temperature, effective charge)
|
||||
!
|
||||
! Two kinds of profiles are supported: analytical (suffix `_an` in the
|
||||
@ -6,20 +6,10 @@
|
||||
! the data is interpolated using splines.
|
||||
module coreprofiles
|
||||
use const_and_precisions, only : wp_, zero, one
|
||||
use splines, only : spline_simple, spline_1d
|
||||
|
||||
implicit none
|
||||
|
||||
! Parameters of the plasma profiles splines
|
||||
type spline_parameters
|
||||
integer :: ndata ! Number of data points
|
||||
integer :: nknots ! Number of spline knots
|
||||
! Density spline (ψ, knots, B-spline coefficients)
|
||||
real(wp_), dimension(:), allocatable :: knots, coeffs
|
||||
! Temperature and effective charge arrays (ψ, T(ψ), Zeff(ψ))
|
||||
real(wp_), dimension(:), allocatable :: psi
|
||||
real(wp_), dimension(:, :), allocatable :: temp, zeff
|
||||
end type
|
||||
|
||||
! Parameters of the C² polynomial tail of the density spline
|
||||
type density_tail
|
||||
real(wp_) :: start ! ψ₀, start of the tail
|
||||
@ -38,8 +28,10 @@ module coreprofiles
|
||||
real(wp_) :: zeff ! Effective charge
|
||||
end type
|
||||
|
||||
! Global variable storing the state of the module
|
||||
type(spline_parameters), save :: spline
|
||||
! Global variables storing the state of the module
|
||||
type(spline_1d), save :: dens_spline
|
||||
type(spline_simple), save :: temp_spline
|
||||
type(spline_simple), save :: zeff_spline
|
||||
type(density_tail), save :: tail
|
||||
type(analytic_model), save :: model
|
||||
|
||||
@ -58,7 +50,6 @@ contains
|
||||
!
|
||||
! Note: density has units of 10¹⁹ m⁻³.
|
||||
use gray_params, only : iprof
|
||||
use dierckx, only : splev, splder
|
||||
use logger, only : log_error
|
||||
|
||||
implicit none
|
||||
@ -68,14 +59,11 @@ contains
|
||||
real(wp_), intent(out) :: dens, ddens ! density and first derivative
|
||||
|
||||
! local variables
|
||||
integer :: ier ! dierck error code
|
||||
real(wp_) :: f(1) ! dierck output (must be an array)
|
||||
real(wp_) :: wrkfd(spline%ndata+4) ! dierck working space array
|
||||
character(256) :: msg ! for log messages formatting
|
||||
|
||||
! Initialise both to zero
|
||||
dens = zero
|
||||
ddens = zero
|
||||
dens = 0
|
||||
ddens = 0
|
||||
|
||||
! Outside the tail end both density and its
|
||||
! derivatives are identically zero
|
||||
@ -97,16 +85,10 @@ contains
|
||||
! Use the interpolating spline when in range
|
||||
|
||||
! Evaluate the spline
|
||||
ier = 0
|
||||
call splev(spline%knots, spline%nknots, spline%coeffs, &
|
||||
3, [psin], f, 1, ier)
|
||||
dens = f(1)
|
||||
dens = dens_spline%eval(psin)
|
||||
ddens = dens_spline%deriv(psin)
|
||||
|
||||
! Evaluate the spline 1st derivative
|
||||
ier = 0
|
||||
call splder(spline%knots, spline%nknots, spline%coeffs, &
|
||||
3, 1, [psin], f, 1, wrkfd, ier)
|
||||
ddens = f(1)
|
||||
if (abs(dens) < 1.0e-10_wp_) dens = zero
|
||||
else
|
||||
! Use a C² polynomial extension outside (ψ > ψ₀)
|
||||
@ -159,8 +141,6 @@ contains
|
||||
!
|
||||
! Note: temperature has units of keV.
|
||||
use gray_params, only : iprof
|
||||
use utils, only : locate
|
||||
use simplespline, only : spli
|
||||
|
||||
implicit none
|
||||
|
||||
@ -169,10 +149,9 @@ contains
|
||||
real(wp_) :: temp
|
||||
|
||||
! local variables
|
||||
integer :: k
|
||||
real(wp_) :: proft, dps
|
||||
real(wp_) :: proft
|
||||
|
||||
temp = zero
|
||||
temp = 0
|
||||
if (psin >= 1 .or. psin < 0) return
|
||||
if (iprof == 0) then
|
||||
! Use the analytical model
|
||||
@ -183,10 +162,7 @@ contains
|
||||
temp = (model%te0 - model%te1)*proft + model%te1
|
||||
else
|
||||
! Use the interpolated numerical data
|
||||
call locate(spline%psi, spline%ndata, psin, k)
|
||||
k = max(1, min(k, spline%ndata - 1))
|
||||
dps = psin - spline%psi(k)
|
||||
temp = spli(spline%temp, spline%ndata, k, dps)
|
||||
temp = temp_spline%eval(psin)
|
||||
endif
|
||||
end function temp
|
||||
|
||||
@ -195,8 +171,6 @@ contains
|
||||
! Computes the effective charge Zeff as a
|
||||
! function of the normalised poloidal flux.
|
||||
use gray_params, only : iprof
|
||||
use utils, only : locate
|
||||
use simplespline, only : spli
|
||||
|
||||
implicit none
|
||||
|
||||
@ -204,10 +178,6 @@ contains
|
||||
real(wp_), intent(in) :: psin
|
||||
real(wp_) :: fzeff
|
||||
|
||||
! local variables
|
||||
integer :: k
|
||||
real(wp_) :: dps
|
||||
|
||||
fzeff = one
|
||||
if (psin >= 1 .or. psin < 0) return
|
||||
if (iprof == 0) then
|
||||
@ -215,10 +185,7 @@ contains
|
||||
fzeff = model%zeff
|
||||
else
|
||||
! Use the interpolated numerical data
|
||||
call locate(spline%psi, spline%ndata, psin, k)
|
||||
k = max(1, min(k, spline%ndata - 1))
|
||||
dps = psin - spline%psi(k)
|
||||
fzeff = spli(spline%zeff, spline%ndata, k, dps)
|
||||
fzeff = zeff_spline%eval(psin)
|
||||
endif
|
||||
end function fzeff
|
||||
|
||||
@ -378,8 +345,6 @@ contains
|
||||
! When `launch_pos` (cartesian launch coordinates in cm) is present,
|
||||
! the subroutine will also check that the wave launcher is strictly
|
||||
! outside the reconstructed plasma density boundary.
|
||||
use simplespline, only : difcs
|
||||
use dierckx, only : curfit, splev, splder
|
||||
use gray_params, only : profiles_parameters, profiles_data
|
||||
use logger, only : log_debug, log_info, log_warning, log_error
|
||||
|
||||
@ -390,68 +355,28 @@ contains
|
||||
type(profiles_data), intent(inout) :: data
|
||||
real(wp_), optional, intent(in) :: launch_pos(3)
|
||||
|
||||
! curfit parameters
|
||||
integer, parameter :: iopt = 0 ! smoothing spline mode
|
||||
integer, parameter :: kspl = 3 ! order of spline (cubic)
|
||||
|
||||
! local variables
|
||||
integer :: n, npest, ier
|
||||
real(wp_) :: xb, xe, fp, ssplne_loc
|
||||
|
||||
! working space arrays for the dierckx functions
|
||||
integer :: lwrkf
|
||||
real(wp_), dimension(:), allocatable :: wf, wrkf
|
||||
integer, dimension(:), allocatable :: iwrkf
|
||||
integer :: n, err
|
||||
|
||||
! for log messages formatting
|
||||
character(256) :: msg
|
||||
|
||||
n = size(data%psrad)
|
||||
npest = n + 4
|
||||
lwrkf = n*4 + npest*16
|
||||
allocate(wrkf(lwrkf), iwrkf(npest), wf(n))
|
||||
|
||||
ssplne_loc=params%sspld
|
||||
|
||||
! If necessary, reallocate the spline arrays
|
||||
if (.not. allocated(spline%psi)) then
|
||||
allocate(spline%psi(n), spline%temp(n, 4), spline%zeff(n, 4))
|
||||
else
|
||||
if (size(spline%psi) < n) then
|
||||
deallocate(spline%psi, spline%temp, spline%zeff)
|
||||
allocate(spline%psi(n), spline%temp(n, 4), spline%zeff(n, 4))
|
||||
end if
|
||||
end if
|
||||
if (.not. allocated(spline%coeffs)) then
|
||||
allocate(spline%knots(npest), spline%coeffs(npest))
|
||||
else
|
||||
if (size(spline%coeffs) < npest) then
|
||||
deallocate(spline%knots, spline%coeffs)
|
||||
allocate(spline%knots(npest), spline%coeffs(npest))
|
||||
end if
|
||||
end if
|
||||
|
||||
! Spline interpolation of temperature and effective charge
|
||||
call difcs(data%psrad, data%terad, n, iopt, spline%temp, ier)
|
||||
call difcs(data%psrad, data%zfc, n, iopt, spline%zeff, ier)
|
||||
spline%psi = data%psrad
|
||||
spline%ndata = n
|
||||
call temp_spline%init(data%psrad, data%terad, n)
|
||||
call zeff_spline%init(data%psrad, data%zfc, n)
|
||||
|
||||
! Spline interpolation of density
|
||||
xb = zero
|
||||
xe = data%psrad(n)
|
||||
wf(:) = one
|
||||
call curfit(iopt, n, data%psrad, data%derad, wf, xb, xe, kspl, &
|
||||
ssplne_loc, npest, spline%nknots, spline%knots, &
|
||||
spline%coeffs, fp, wrkf, lwrkf, iwrkf, ier)
|
||||
! if ier=-1 data are re-fitted using sspl=0
|
||||
if (ier == -1) then
|
||||
call log_warning('curfit failed with error -1: re-fitting with '// &
|
||||
's=0', mod='coreprofiles', proc='density')
|
||||
ssplne_loc = zero
|
||||
call curfit(iopt, n, data%psrad, data%derad, wf, xb, xe, kspl, &
|
||||
ssplne_loc, npest, spline%nknots, spline%knots, &
|
||||
spline%coeffs, fp, wrkf, lwrkf, iwrkf, ier)
|
||||
! Spline interpolation of density (smooth spline)
|
||||
call dens_spline%init(data%psrad, data%derad, n, range=[zero, data%psrad(n)], &
|
||||
tension=params%sspld, err=err)
|
||||
|
||||
! if failed, re-fit with an interpolating spline (zero tension)
|
||||
if (err == -1) then
|
||||
call log_warning('density fit failed with error -1: re-fitting with '// &
|
||||
'zero tension', mod='coreprofiles', proc='density')
|
||||
call dens_spline%init(data%psrad, data%derad, n, &
|
||||
range=[zero, data%psrad(n)], tension=zero)
|
||||
end if
|
||||
|
||||
! Computation of the polynomial tail parameters
|
||||
@ -460,9 +385,9 @@ contains
|
||||
! at the edge. The spline thus has to be extended to transition
|
||||
! smoothly from the last profile point to 0 outside the plasma.
|
||||
block
|
||||
real(wp_), dimension(1) :: s0, s1, s2 ! spline, 1st, 2nd derivative
|
||||
real(wp_), dimension(1) :: delta4 ! discriminant Δ/4 of q(x)
|
||||
real(wp_), dimension(1) :: x0, x1 ! vertex of q(x), solution
|
||||
real(wp_) :: s0, s1, s2 ! spline, 1st, 2nd derivative
|
||||
real(wp_) :: delta4 ! discriminant Δ/4 of q(x)
|
||||
real(wp_) :: x0, x1 ! vertex of q(x), solution
|
||||
|
||||
! Compute the coefficients of a 2nd order Taylor polinomial to
|
||||
! extend the spline beyond the last point:
|
||||
@ -471,12 +396,9 @@ contains
|
||||
!
|
||||
! where s(ψ) is the spline and ψ₀ the last point.
|
||||
!
|
||||
call splev(spline%knots, spline%nknots, spline%coeffs, kspl, &
|
||||
data%psrad(n:n), s0, 1, ier)
|
||||
call splder(spline%knots, spline%nknots, spline%coeffs, kspl, 1, &
|
||||
data%psrad(n:n), s1, 1, wrkf(1:spline%nknots), ier)
|
||||
call splder(spline%knots, spline%nknots, spline%coeffs, kspl, 2, &
|
||||
data%psrad(n:n), s2, 1, wrkf(1:spline%nknots), ier)
|
||||
s0 = dens_spline%eval(data%psrad(n))
|
||||
s1 = dens_spline%deriv(data%psrad(n), order=1)
|
||||
s2 = dens_spline%deriv(data%psrad(n), order=2)
|
||||
|
||||
! Determine where to end the tail (to ensure the density remains
|
||||
! positive) from the zeros of the Taylor polynomial p(ψ)
|
||||
@ -491,7 +413,7 @@ contains
|
||||
x0 = -s1 / s2 ! vertex of parabola y=q(x)
|
||||
delta4 = (s1 / s2)**2 - 2*s0/s2 ! Δ/4 of q(x)
|
||||
|
||||
if (delta4(1) > 0) then
|
||||
if (delta4 > 0) then
|
||||
! Pick the smallest positive zero (implying >ψ₀)
|
||||
x1 = x0 + sign(sqrt(delta4), sqrt(delta4) - x0)
|
||||
else
|
||||
@ -503,10 +425,10 @@ contains
|
||||
|
||||
! Store the tail parameters
|
||||
tail%start = data%psrad(n)
|
||||
tail%end = tail%start + x1(1)
|
||||
tail%value = s0(1)
|
||||
tail%deriv1 = s1(1)
|
||||
tail%deriv2 = s2(1)
|
||||
tail%end = tail%start + x1
|
||||
tail%value = s0
|
||||
tail%deriv1 = s1
|
||||
tail%deriv2 = s2
|
||||
end block
|
||||
|
||||
! Make sure the wave launcher does not fall inside the tail
|
||||
@ -550,8 +472,6 @@ contains
|
||||
|
||||
write (msg, '(a,g0.4)') 'density boundary: ψ=', tail%end
|
||||
call log_info(msg, mod='coreprofiles', proc='set_profiles_spline')
|
||||
|
||||
deallocate(iwrkf, wrkf, wf)
|
||||
end subroutine set_profiles_spline
|
||||
|
||||
|
||||
@ -560,11 +480,9 @@ contains
|
||||
|
||||
implicit none
|
||||
|
||||
if (allocated(spline%psi)) deallocate(spline%psi)
|
||||
if (allocated(spline%temp)) deallocate(spline%temp)
|
||||
if (allocated(spline%zeff)) deallocate(spline%zeff)
|
||||
if (allocated(spline%knots)) deallocate(spline%knots)
|
||||
if (allocated(spline%coeffs)) deallocate(spline%coeffs)
|
||||
call dens_spline%deinit
|
||||
call temp_spline%deinit
|
||||
call zeff_spline%deinit
|
||||
end subroutine unset_profiles_spline
|
||||
|
||||
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -2187,7 +2187,7 @@ bb: do
|
||||
subroutine print_prof
|
||||
! Prints the (input) plasma kinetic profiles (unit 98)
|
||||
|
||||
use equilibrium, only : psinr, nq, fq, frhotor, tor_curr_psi
|
||||
use equilibrium, only : q_spline, fq, frhotor, tor_curr_psi
|
||||
use coreprofiles, only : density, temp
|
||||
use units, only : uprfin, unit_active
|
||||
|
||||
@ -2198,19 +2198,19 @@ bb: do
|
||||
|
||||
! local variables
|
||||
integer :: i
|
||||
real(wp_) :: psin, rhot, ajphi, dens, ddens
|
||||
real(wp_) :: psin, rhot, jphi, dens, ddens
|
||||
|
||||
if (.not. unit_active(uprfin)) return
|
||||
|
||||
write (uprfin, *) '#psi rhot ne Te q Jphi'
|
||||
do i=1,nq
|
||||
psin = psinr(i)
|
||||
do i = 1, q_spline%ndata
|
||||
psin = q_spline%data(i)
|
||||
rhot = frhotor(sqrt(psin))
|
||||
call density(psin, dens, ddens)
|
||||
call tor_curr_psi(max(eps, psin), ajphi)
|
||||
jphi = tor_curr_psi(max(eps, psin))
|
||||
|
||||
write (uprfin, '(12(1x,e12.5))') &
|
||||
psin, rhot, dens, temp(psin), fq(psin), ajphi*1.e-6_wp_
|
||||
psin, rhot, dens, temp(psin), fq(psin), jphi*1.e-6_wp_
|
||||
end do
|
||||
end subroutine print_prof
|
||||
|
||||
@ -2218,7 +2218,7 @@ bb: do
|
||||
subroutine print_bres(bres)
|
||||
! Prints the EC resonance surface table (unit 70)
|
||||
|
||||
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, bfield, nq
|
||||
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, bfield, q_spline
|
||||
use units, only : ubres, unit_active
|
||||
|
||||
implicit none
|
||||
@ -2234,14 +2234,14 @@ bb: do
|
||||
integer, dimension(10) :: ncpts
|
||||
real(wp_) :: dr,dz,btmx,btmn,zzk,rrj,bbphi,bbr,bbz,bbb
|
||||
real(wp_), dimension(icmx) :: rrcb,zzcb
|
||||
real(wp_) :: rv(nq), zv(nq)
|
||||
real(wp_), dimension(nq,nq) :: btotal
|
||||
real(wp_) :: rv(q_spline%ndata), zv(q_spline%ndata)
|
||||
real(wp_), dimension(q_spline%ndata,q_spline%ndata) :: btotal
|
||||
|
||||
if (.not. unit_active(ubres)) return
|
||||
|
||||
dr = (rmxm - rmnm)/(nq - 1)
|
||||
dz = (zmxm - zmnm)/(nq - 1)
|
||||
do j=1,nq
|
||||
dr = (rmxm - rmnm)/(q_spline%ndata - 1)
|
||||
dz = (zmxm - zmnm)/(q_spline%ndata - 1)
|
||||
do j=1,q_spline%ndata
|
||||
rv(j) = rmnm + dr*(j - 1)
|
||||
zv(j) = zmnm + dz*(j - 1)
|
||||
end do
|
||||
@ -2249,9 +2249,9 @@ bb: do
|
||||
! Btotal on psi grid
|
||||
btmx = -1.0e30_wp_
|
||||
btmn = 1.0e30_wp_
|
||||
do k=1,nq
|
||||
do k = 1, q_spline%ndata
|
||||
zzk = zv(k)
|
||||
do j=1,nq
|
||||
do j = 1, q_spline%ndata
|
||||
rrj = rv(j)
|
||||
call bfield(rrj, zzk, bbphi, bbr, bbz)
|
||||
btotal(j,k) = sqrt(bbr**2 + bbz**2 + bbphi**2)
|
||||
@ -2267,7 +2267,7 @@ bb: do
|
||||
if (bbb >= btmn .and. bbb <= btmx) then
|
||||
nconts = size(ncpts)
|
||||
nctot = size(rrcb)
|
||||
call cniteq(rv, zv, btotal, nq, nq, bbb, &
|
||||
call cniteq(rv, zv, btotal, q_spline%ndata, q_spline%ndata, bbb, &
|
||||
nconts, ncpts, nctot, rrcb, zzcb)
|
||||
do j = 1, nctot
|
||||
write (ubres, '(i6,12(1x,e12.5))') j, bbb, rrcb(j), zzcb(j)
|
||||
@ -2284,7 +2284,7 @@ bb: do
|
||||
|
||||
use gray_params, only : iequil
|
||||
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, equian, equinum_psi, &
|
||||
equinum_fpol, nq
|
||||
equinum_fpol, q_spline
|
||||
use coreprofiles, only : density, temp
|
||||
use units, only : umaps, unit_active
|
||||
|
||||
@ -2297,28 +2297,28 @@ bb: do
|
||||
integer :: j,k
|
||||
real(wp_) :: dr, dz, zk, rj, bphi, br, bz, btot, &
|
||||
psin, ne, dne, te, xg, yg, anpl
|
||||
real(wp_), dimension(nq) :: r, z
|
||||
real(wp_), dimension(q_spline%ndata) :: r, z
|
||||
|
||||
if (.not. unit_active(umaps)) return
|
||||
|
||||
dr = (rmxm-rmnm)/(nq - 1)
|
||||
dz = (zmxm-zmnm)/(nq - 1)
|
||||
do j=1,nq
|
||||
dr = (rmxm-rmnm)/(q_spline%ndata - 1)
|
||||
dz = (zmxm-zmnm)/(q_spline%ndata - 1)
|
||||
do j=1,q_spline%ndata
|
||||
r(j) = rmnm + dr*(j - 1)
|
||||
z(j) = zmnm + dz*(j - 1)
|
||||
end do
|
||||
|
||||
write (umaps, *) '#R z psin Br Bphi Bz Btot ne Te X Y Npl'
|
||||
do j=1,nq
|
||||
do j = 1, q_spline%ndata
|
||||
rj = r(j)
|
||||
anpl = anpl0 * r0/rj
|
||||
do k=1,nq
|
||||
do k = 1, q_spline%ndata
|
||||
zk = z(k)
|
||||
if (iequil < 2) then
|
||||
call equian(rj, zk, psinv=psin, fpolv=bphi, dpsidr=bz, dpsidz=br)
|
||||
call equian(rj, zk, psi=psin, fpolv=bphi, dpsidr=bz, dpsidz=br)
|
||||
else
|
||||
call equinum_psi(rj, zk, psinv=psin, dpsidr=bz, dpsidz=br)
|
||||
call equinum_fpol(psin, fpolv=bphi)
|
||||
call equinum_psi(rj, zk, psi=psin, dpsidr=bz, dpsidz=br)
|
||||
call equinum_fpol(psin, fpol=bphi)
|
||||
end if
|
||||
br = -br/rj
|
||||
bphi = bphi/rj
|
||||
@ -2340,7 +2340,7 @@ bb: do
|
||||
subroutine print_surfq(qval)
|
||||
! Print constant ψ surfaces for a given `q` value
|
||||
|
||||
use equilibrium, only : psinr, nq, fq, frhotor, &
|
||||
use equilibrium, only : q_spline, fq, frhotor, &
|
||||
rmaxis, zmaxis, zbsup, zbinf
|
||||
use magsurf_data, only : contours_psi, npoints, print_contour
|
||||
use utils, only : locate, intlin
|
||||
@ -2355,12 +2355,12 @@ bb: do
|
||||
integer :: i1,i
|
||||
real(wp_) :: rup,zup,rlw,zlw,rhot,psival
|
||||
real(wp_), dimension(npoints) :: rcn,zcn
|
||||
real(wp_), dimension(nq) :: qpsi
|
||||
real(wp_), dimension(q_spline%ndata) :: qpsi
|
||||
character(256) :: msg ! for log messages formatting
|
||||
|
||||
! build q profile on psin grid
|
||||
do i=1,nq
|
||||
qpsi(i) = fq(psinr(i))
|
||||
! build the q profile on the ψ grid
|
||||
do i = 1, q_spline%ndata
|
||||
qpsi(i) = fq(q_spline%data(i))
|
||||
end do
|
||||
|
||||
! locate ψ surface for q=qval
|
||||
@ -2368,10 +2368,10 @@ bb: do
|
||||
mod='gray_core', proc='print_surfq')
|
||||
do i=1, size(qval)
|
||||
! FIXME: check for non monotonous q profile
|
||||
call locate(abs(qpsi),nq,qval(i),i1)
|
||||
if (i1>0 .and. i1<nq) then
|
||||
call intlin(abs(qpsi(i1)), psinr(i1), abs(qpsi(i1+1)), psinr(i1+1), &
|
||||
qval(i),psival)
|
||||
call locate(abs(qpsi), q_spline%ndata, qval(i), i1)
|
||||
if (i1 > 0 .and. i1 < q_spline%ndata) then
|
||||
call intlin(abs(qpsi(i1)), q_spline%data(i1), abs(qpsi(i1+1)), &
|
||||
q_spline%data(i1+1), qval(i), psival)
|
||||
rup = rmaxis
|
||||
rlw = rmaxis
|
||||
zup = (zbsup + zmaxis)/2.0_wp_
|
||||
|
@ -127,13 +127,11 @@ subroutine gray_jetto1beam(ijetto, mr, mz, r, z, psin, psia, rax, zax, &
|
||||
|
||||
! Free memory
|
||||
free_memory: block
|
||||
use equilibrium, only : unset_equil_spline, unset_rho_spline, unset_q
|
||||
use equilibrium, only : unset_equil_spline
|
||||
use coreprofiles, only : unset_profiles_spline
|
||||
|
||||
! Unset global variables of the `equilibrium` module
|
||||
call unset_equil_spline
|
||||
call unset_rho_spline
|
||||
call unset_q
|
||||
|
||||
! Unset global variables of the `coreprofiles` module
|
||||
call unset_profiles_spline
|
||||
|
@ -1,5 +1,7 @@
|
||||
module magsurf_data
|
||||
use const_and_precisions, only : wp_
|
||||
use splines, only : spline_simple
|
||||
|
||||
implicit none
|
||||
|
||||
integer, save :: npsi, npoints !# sup mag, # punti per sup
|
||||
@ -14,12 +16,11 @@ module magsurf_data
|
||||
real(wp_), dimension(:), allocatable, save :: tjp,tlm,ch,ch01
|
||||
|
||||
real(wp_), dimension(:,:), allocatable, save :: rcon,zcon
|
||||
real(wp_), dimension(:,:), allocatable, save :: cdadrhot,cdvdrhot
|
||||
|
||||
real(wp_), dimension(:,:), allocatable, save :: cvol,crri,crbav,cbmx,cbmn,carea,cfc
|
||||
real(wp_), dimension(:,:), allocatable, save :: crhotq
|
||||
real(wp_), dimension(:,:), allocatable, save :: cratja,cratjb,cratjpl
|
||||
|
||||
type(spline_simple), save :: cvol, crri, crbav, cbmx, cbmn, carea, cfc
|
||||
type(spline_simple), save :: crhotq
|
||||
type(spline_simple), save :: cratja, cratjb, cratjpl
|
||||
type(spline_simple), save :: cdadrhot, cdvdrhot
|
||||
|
||||
contains
|
||||
|
||||
@ -58,10 +59,7 @@ contains
|
||||
allocate(pstab(npsi), &
|
||||
rhot_eq(npsi),rhotqv(npsi),bav(npsi),bmxpsi(npsi),bmnpsi(npsi),varea(npsi), &
|
||||
vvol(npsi),vcurrp(npsi),vajphiav(npsi),qqv(npsi),ffc(npsi),vratja(npsi), &
|
||||
vratjb(npsi),rpstab(npsi),rri(npsi),rbav(npsi),cdadrhot(npsi,4), &
|
||||
cdvdrhot(npsi,4),cbmx(npsi,4),cbmn(npsi,4),crbav(npsi,4),cvol(npsi,4), &
|
||||
crri(npsi,4),carea(npsi,4),cfc(npsi,4),crhotq(npsi,4),cratjpl(npsi,4), &
|
||||
cratja(npsi,4),cratjb(npsi,4))
|
||||
vratjb(npsi),rpstab(npsi),rri(npsi),rbav(npsi))
|
||||
end subroutine alloc_surfvec
|
||||
|
||||
subroutine dealloc_surfvec
|
||||
@ -84,20 +82,20 @@ contains
|
||||
if(allocated(rpstab)) deallocate(rpstab)
|
||||
if(allocated(rri)) deallocate(rri)
|
||||
if(allocated(rbav)) deallocate(rbav)
|
||||
if(allocated(cdadrhot)) deallocate(cdadrhot)
|
||||
if(allocated(cdvdrhot)) deallocate(cdvdrhot)
|
||||
if(allocated(cbmx)) deallocate(cbmx)
|
||||
if(allocated(cbmn)) deallocate(cbmn)
|
||||
if(allocated(crbav)) deallocate(crbav)
|
||||
if(allocated(cvol)) deallocate(cvol)
|
||||
if(allocated(crri)) deallocate(crri)
|
||||
if(allocated(carea)) deallocate(carea)
|
||||
if(allocated(cfc)) deallocate(cfc)
|
||||
if(allocated(crhotq)) deallocate(crhotq)
|
||||
if(allocated(cratjpl)) deallocate(cratjpl)
|
||||
if(allocated(cratja)) deallocate(cratja)
|
||||
if(allocated(cratjb)) deallocate(cratjb)
|
||||
if(allocated(tjp)) deallocate(tjp,tlm,ch)
|
||||
|
||||
call cvol%deinit
|
||||
call crbav%deinit
|
||||
call crri%deinit
|
||||
call cbmx%deinit
|
||||
call cbmn%deinit
|
||||
call cratja%deinit
|
||||
call cratjb%deinit
|
||||
call cratjpl%deinit
|
||||
call carea%deinit
|
||||
call cfc%deinit
|
||||
call cdadrhot%deinit
|
||||
call cdvdrhot%deinit
|
||||
end subroutine dealloc_surfvec
|
||||
|
||||
|
||||
@ -106,7 +104,6 @@ contains
|
||||
use gray_params, only : iequil
|
||||
use equilibrium, only : btrcen,btaxis,rmaxis,zmaxis,phitedge,zbsup,zbinf, &
|
||||
equian,equinum_psi,bfield,frhotor,fq,tor_curr
|
||||
use simplespline, only : difcs
|
||||
use dierckx, only : regrid,coeff_parder
|
||||
implicit none
|
||||
|
||||
@ -232,7 +229,7 @@ contains
|
||||
bmmx=-1.0e+30_wp_
|
||||
bmmn=1.0e+30_wp_
|
||||
|
||||
call tor_curr(rctemp(1),zctemp(1),ajphi0)
|
||||
ajphi0 = tor_curr(rctemp(1),zctemp(1))
|
||||
call bfield(rctemp(1),zctemp(1),bphi,br=brr,bz=bzz)
|
||||
fpolv=bphi*rctemp(1)
|
||||
btot0=sqrt(bphi**2+brr**2+bzz**2)
|
||||
@ -260,7 +257,7 @@ contains
|
||||
rpsim=rctemp(inc1)
|
||||
zpsim=zctemp(inc1)
|
||||
call bfield(rpsim,zpsim,br=brr,bz=bzz)
|
||||
call tor_curr(rpsim,zpsim,ajphi)
|
||||
ajphi = tor_curr(rpsim,zpsim)
|
||||
bphi=fpolv/rpsim
|
||||
btot=sqrt(bphi**2+brr**2+bzz**2)
|
||||
bpoloid=sqrt(brr**2+bzz**2)
|
||||
@ -374,32 +371,18 @@ contains
|
||||
|
||||
! spline coefficients of area,vol,rbav,rri,bmxpsi,bmnpsi,fc,dadrhot,dvdrhot,ratioJs
|
||||
! used for computations of dP/dV and J_cd
|
||||
iopt=0
|
||||
call difcs(rpstab,vvol,npsi,iopt,cvol,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,rbav,npsi,iopt,crbav,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,rri,npsi,iopt,crri,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,bmxpsi,npsi,iopt,cbmx,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,bmnpsi,npsi,iopt,cbmn,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,vratja,npsi,iopt,cratja,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,vratjb,npsi,iopt,cratjb,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,vratjpl,npsi,iopt,cratjpl,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,varea,npsi,iopt,carea,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,ffc,npsi,iopt,cfc,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,dadrhotv,npsi,iopt,cdadrhot,ier)
|
||||
iopt=0
|
||||
call difcs(rpstab,dvdrhotv,npsi,iopt,cdvdrhot,ier)
|
||||
! iopt=0
|
||||
! call difcs(rpstab,qqv,npsi,iopt,cqq,ier)
|
||||
call cvol%init(rpstab, vvol, npsi)
|
||||
call crbav%init(rpstab, rbav, npsi)
|
||||
call crri%init(rpstab, rri, npsi)
|
||||
call cbmx%init(rpstab, bmxpsi, npsi)
|
||||
call cbmn%init(rpstab, bmnpsi, npsi)
|
||||
call cratja%init(rpstab, vratja, npsi)
|
||||
call cratjb%init(rpstab, vratjb, npsi)
|
||||
call cratjpl%init(rpstab, vratjpl, npsi)
|
||||
call carea%init(rpstab, varea, npsi)
|
||||
call cfc%init(rpstab, ffc, npsi)
|
||||
call cdadrhot%init(rpstab, dadrhotv, npsi)
|
||||
call cdvdrhot%init(rpstab, dvdrhotv, npsi)
|
||||
|
||||
! spline interpolation of H(lambda,rhop) and dH/dlambda
|
||||
iopt=0
|
||||
@ -430,37 +413,30 @@ contains
|
||||
subroutine fluxval(rhop,area,vol,dervol,dadrhot,dvdrhot, &
|
||||
rri,rbav,bmn,bmx,fc,ratja,ratjb,ratjpl)
|
||||
use const_and_precisions, only : wp_
|
||||
use utils, only : locate
|
||||
use simplespline, only :spli,splid
|
||||
implicit none
|
||||
! arguments
|
||||
|
||||
! subroutine arguments
|
||||
real(wp_), intent(in) :: rhop
|
||||
real(wp_), intent(out), optional :: vol,area,rri,rbav,dervol,bmn,bmx,fc, &
|
||||
real(wp_), intent(out), optional :: &
|
||||
vol, area, rri, rbav, dervol, bmn, bmx, fc, &
|
||||
ratja, ratjb, ratjpl, dadrhot, dvdrhot
|
||||
! local variables
|
||||
integer :: ip
|
||||
real(wp_) :: drh
|
||||
|
||||
call locate(rpstab,npsi,rhop,ip)
|
||||
ip=min(max(1,ip),npsi-1)
|
||||
drh=rhop-rpstab(ip)
|
||||
if (present(area)) area = carea%eval(rhop)
|
||||
if (present(vol)) vol = cvol%eval(rhop)
|
||||
|
||||
if (present(area)) area=spli(carea,npsi,ip,drh)
|
||||
if (present(vol)) vol=spli(cvol,npsi,ip,drh)
|
||||
if (present(dervol)) dervol = cvol%deriv(rhop)
|
||||
if (present(dadrhot)) dadrhot = cdadrhot%eval(rhop)
|
||||
if (present(dvdrhot)) dvdrhot = cdvdrhot%eval(rhop)
|
||||
|
||||
if (present(dervol)) dervol=splid(cvol,npsi,ip,drh)
|
||||
if (present(dadrhot)) dadrhot=spli(cdadrhot,npsi,ip,drh)
|
||||
if (present(dvdrhot)) dvdrhot=spli(cdvdrhot,npsi,ip,drh)
|
||||
if (present(rri)) rri = crri%eval(rhop)
|
||||
if (present(rbav)) rbav = crbav%eval(rhop)
|
||||
if (present(bmn)) bmn = cbmn%eval(rhop)
|
||||
if (present(bmx)) bmx = cbmx%eval(rhop)
|
||||
if (present(fc)) fc = cfc%eval(rhop)
|
||||
|
||||
if (present(rri)) rri=spli(crri,npsi,ip,drh)
|
||||
if (present(rbav)) rbav=spli(crbav,npsi,ip,drh)
|
||||
if (present(bmn)) bmn=spli(cbmn,npsi,ip,drh)
|
||||
if (present(bmx)) bmx=spli(cbmx,npsi,ip,drh)
|
||||
if (present(fc)) fc=spli(cfc,npsi,ip,drh)
|
||||
|
||||
if (present(ratja)) ratja=spli(cratja,npsi,ip,drh)
|
||||
if (present(ratjb)) ratjb=spli(cratjb,npsi,ip,drh)
|
||||
if (present(ratjpl)) ratjpl=spli(cratjpl,npsi,ip,drh)
|
||||
if (present(ratja)) ratja = cratja%eval(rhop)
|
||||
if (present(ratjb)) ratjb = cratjb%eval(rhop)
|
||||
if (present(ratjpl)) ratjpl = cratjpl%eval(rhop)
|
||||
|
||||
end subroutine fluxval
|
||||
|
||||
@ -471,21 +447,25 @@ contains
|
||||
use gray_params, only : iequil
|
||||
use logger, only : log_warning
|
||||
use dierckx, only : profil, sproota
|
||||
use equilibrium, only : rmaxis,zmaxis,aminor,frhotor,tr,nsr,tz,nsz,cceq, &
|
||||
use equilibrium, only : rmaxis, zmaxis, aminor, frhotor, psi_spline, &
|
||||
kspl, psiant, psinop, points_tgo
|
||||
use limiter, only : rwallm
|
||||
|
||||
implicit none
|
||||
|
||||
! local constants
|
||||
integer, parameter :: mest=4
|
||||
! arguments
|
||||
|
||||
! subroutine arguments
|
||||
real(wp_), intent(in) :: h
|
||||
real(wp_), dimension(:), intent(out) :: rcn,zcn
|
||||
real(wp_), intent(inout) :: rup,zup,rlw,zlw
|
||||
|
||||
! local variables
|
||||
integer :: npoints,np,info,ic,ier,iopt,m
|
||||
real(wp_) :: ra,rb,za,zb,rn,th,zc,val
|
||||
real(wp_), dimension(mest) :: zeroc
|
||||
real(wp_), dimension(nsr) :: czc
|
||||
real(wp_), dimension(psi_spline%nknots_x) :: czc
|
||||
|
||||
npoints=size(rcn)
|
||||
np=(npoints-1)/2
|
||||
@ -517,7 +497,10 @@ contains
|
||||
do ic=2,np
|
||||
zc=zlw+(zup-zlw)*(1.0_wp_-cos(th*(ic-1)))/2.0_wp_
|
||||
iopt=1
|
||||
call profil(iopt,tr,nsr,tz,nsz,cceq,kspl,kspl,zc,nsr,czc,ier)
|
||||
call profil(iopt, psi_spline%knots_x, psi_spline%nknots_x, &
|
||||
psi_spline%knots_y, psi_spline%nknots_y, &
|
||||
psi_spline%coeffs, kspl, kspl, zc, &
|
||||
psi_spline%nknots_x, czc, ier)
|
||||
if (ier > 0) then
|
||||
block
|
||||
character(256) :: msg
|
||||
@ -527,7 +510,8 @@ contains
|
||||
end block
|
||||
end if
|
||||
val=h*psiant+psinop
|
||||
call sproota(val,tr,nsr,czc,zeroc,mest,m,ier)
|
||||
call sproota(val, psi_spline%knots_x, psi_spline%nknots_x, &
|
||||
czc, zeroc, mest, m, ier)
|
||||
if (zeroc(1).gt.rwallm) then
|
||||
rcn(ic)=zeroc(1)
|
||||
rcn(npoints+1-ic)=zeroc(2)
|
||||
|
@ -193,7 +193,7 @@ contains
|
||||
! or an analytical description) and initialises the respective
|
||||
! GRAY parameters and data.
|
||||
use equilibrium, only : read_equil_an, read_eqdsk, change_cocos, &
|
||||
set_equil_an, set_equil_spline, eq_scal
|
||||
set_equil_an, set_equil_spline, scale_equil
|
||||
use logger, only : log_debug
|
||||
|
||||
implicit none
|
||||
@ -223,7 +223,7 @@ contains
|
||||
end if
|
||||
|
||||
! Rescale B, I and/or force their signs
|
||||
call eq_scal(params%equilibrium, data%equilibrium)
|
||||
call scale_equil(params%equilibrium, data%equilibrium)
|
||||
|
||||
! Set global variables (for splines)
|
||||
if (params%equilibrium%iequil < 2) then
|
||||
@ -239,7 +239,7 @@ contains
|
||||
subroutine deinit_equilibrium(data)
|
||||
! Free all memory allocated by the init_equilibrium subroutine.
|
||||
use gray_params, only : equilibrium_data
|
||||
use equilibrium, only : unset_equil_spline, unset_rho_spline, unset_q
|
||||
use equilibrium, only : unset_equil_spline
|
||||
|
||||
implicit none
|
||||
|
||||
@ -254,8 +254,6 @@ contains
|
||||
|
||||
! Unset global variables of the `equilibrium` module
|
||||
call unset_equil_spline
|
||||
call unset_rho_spline
|
||||
call unset_q
|
||||
end subroutine deinit_equilibrium
|
||||
|
||||
|
||||
|
@ -1,273 +0,0 @@
|
||||
module simplespline
|
||||
|
||||
use const_and_precisions, only : wp_
|
||||
implicit none
|
||||
|
||||
contains
|
||||
|
||||
function spli(cspli,n,k,dx)
|
||||
implicit none
|
||||
integer, intent(in) :: n, k
|
||||
real(wp_), intent(in) :: cspli(n,4), dx
|
||||
real(wp_) :: spli
|
||||
spli=cspli(k,1)+dx*(cspli(k,2)+dx*(cspli(k,3)+dx*cspli(k,4)))
|
||||
end function spli
|
||||
|
||||
function splid(cspli,n,k,dx)
|
||||
implicit none
|
||||
integer, intent(in) :: n, k
|
||||
real(wp_), intent(in) :: cspli(n,4), dx
|
||||
real(wp_) :: splid
|
||||
splid=cspli(k,2)+dx*(2.0_wp_*cspli(k,3)+3.0_wp_*dx*cspli(k,4))
|
||||
end function splid
|
||||
|
||||
subroutine difcs(x,y,n,iopt,c,ier)
|
||||
implicit none
|
||||
integer, intent(in) :: n, iopt
|
||||
real(wp_), intent(in) :: x(n), y(n)
|
||||
real(wp_), intent(inout) :: c(n*4)
|
||||
integer :: ier
|
||||
integer :: jmp,iol,ioh,i,ii,j,j1,j2,j3
|
||||
real(wp_) :: xb,xc,ya,yb,h,a,r,dya,dyb,dy2
|
||||
jmp =1
|
||||
if (n <= 1) return
|
||||
!
|
||||
! initialization
|
||||
!
|
||||
xc =x(1)
|
||||
yb =y(1)
|
||||
h =0.0_wp_
|
||||
a =0.0_wp_
|
||||
r =0.0_wp_
|
||||
dyb =0.0_wp_
|
||||
!
|
||||
! iol=0 - given derivative at first point
|
||||
! ioh=0 - given derivative at last point
|
||||
!
|
||||
iol =iopt-1
|
||||
ioh =iopt-2
|
||||
if (ioh == 1) then
|
||||
iol =0
|
||||
ioh =0
|
||||
end if
|
||||
dy2 =c(2)
|
||||
!
|
||||
! form the system of linear equations
|
||||
! and eliminate subsequentially
|
||||
!
|
||||
j =1
|
||||
do i=1,n
|
||||
j2 =n+i
|
||||
j3 =j2+n
|
||||
a =h*(2.0_wp_-a)
|
||||
dya =dyb+h*r
|
||||
if (i>=n) then
|
||||
!
|
||||
! set derivative dy2 at last point
|
||||
!
|
||||
dyb =dy2
|
||||
h =0.0_wp_
|
||||
if (ioh/=0) then
|
||||
dyb =dya
|
||||
goto 13
|
||||
end if
|
||||
else
|
||||
j =j+jmp
|
||||
xb =xc
|
||||
xc =x(j)
|
||||
h =xc-xb
|
||||
!
|
||||
! ii=0 - increasing abscissae
|
||||
! ii=1 - decreasing abscissae
|
||||
!
|
||||
ii =0
|
||||
if (h==0) return
|
||||
if (h<0) ii =1
|
||||
ya =yb
|
||||
yb =y(j)
|
||||
dyb =(yb-ya)/h
|
||||
if (i<=1) then
|
||||
j1 =ii
|
||||
if (iol/=0) goto 13
|
||||
dya =c(1)
|
||||
end if
|
||||
end if
|
||||
if (j1-ii /= 0) return
|
||||
a =1.0_wp_/(h+h+a)
|
||||
13 continue
|
||||
r =a*(dyb-dya)
|
||||
c(j3)=r
|
||||
a =h*a
|
||||
c(j2)=a
|
||||
c(i) =dyb
|
||||
end do
|
||||
!
|
||||
! back substitution of the system of linear equations
|
||||
! and computation of the other coefficients
|
||||
!
|
||||
a =1.0_wp_
|
||||
j1 =j3+n+ii-ii*n
|
||||
i =n
|
||||
do iol=1,n
|
||||
xb =x(j)
|
||||
h =xc-xb
|
||||
xc =xb
|
||||
a =a+h
|
||||
yb =r
|
||||
r =c(j3)-r*c(j2)
|
||||
ya =r+r
|
||||
c(j3)=ya+r
|
||||
c(j2)=c(i)-h*(ya+yb)
|
||||
c(j1)=(yb-r)/a
|
||||
c(i) =y(j)
|
||||
a =0.0_wp_
|
||||
j =j-jmp
|
||||
i =i-1
|
||||
j2 =j2-1
|
||||
j3 =j3-1
|
||||
j1 =j3+n+ii
|
||||
end do
|
||||
ier =0
|
||||
end subroutine difcs
|
||||
|
||||
subroutine difcsn(xx,yy,nmx,n,iopt,cc,ier)
|
||||
!
|
||||
! same as difcs but with dimension(xx,yy) = nmx > n
|
||||
!
|
||||
implicit none
|
||||
integer, intent(in) :: nmx, n, iopt
|
||||
real(wp_), intent(in) :: xx(nmx), yy(nmx)
|
||||
real(wp_), intent(inout) :: cc(nmx,4)
|
||||
integer :: ier
|
||||
integer :: jmp,iol,ioh,i,ii,j,j1,j2,j3
|
||||
real(wp_) :: x(n),y(n),c(n*4),xb,xc,ya,yb,h,a,r,dya,dyb,dy2
|
||||
!
|
||||
do i=1,n
|
||||
x(i)=xx(i)
|
||||
y(i)=yy(i)
|
||||
end do
|
||||
ii=0
|
||||
do j=1,4
|
||||
do i=1,n
|
||||
ii=ii+1
|
||||
c(ii)=cc(i,j)
|
||||
end do
|
||||
end do
|
||||
!
|
||||
jmp =1
|
||||
if (n>1) then
|
||||
!
|
||||
! initialization
|
||||
!
|
||||
xc =x(1)
|
||||
yb =y(1)
|
||||
h =0.0_wp_
|
||||
a =0.0_wp_
|
||||
r =0.0_wp_
|
||||
dyb =0.0_wp_
|
||||
!
|
||||
! iol=0 - given derivative at first point
|
||||
! ioh=0 - given derivative at last point
|
||||
!
|
||||
iol =iopt-1
|
||||
ioh =iopt-2
|
||||
if (ioh==1) then
|
||||
iol =0
|
||||
ioh =0
|
||||
end if
|
||||
dy2 =c(2)
|
||||
!
|
||||
! form the system of linear equations
|
||||
! and eliminate subsequentially
|
||||
!
|
||||
j =1
|
||||
do i=1,n
|
||||
j2 =n+i
|
||||
j3 =j2+n
|
||||
a =h*(2.0_wp_-a)
|
||||
dya =dyb+h*r
|
||||
if (i>=n) then
|
||||
!
|
||||
! set derivative dy2 at last point
|
||||
!
|
||||
dyb =dy2
|
||||
h =0.0_wp_
|
||||
if (ioh/=0) then
|
||||
dyb =dya
|
||||
goto 13
|
||||
end if
|
||||
else
|
||||
j =j+jmp
|
||||
xb =xc
|
||||
xc =x(j)
|
||||
h =xc-xb
|
||||
!
|
||||
! ii=0 - increasing abscissae
|
||||
! ii=1 - decreasing abscissae
|
||||
!
|
||||
ii =0
|
||||
if (h==0) goto 16
|
||||
if (h<0) ii =1
|
||||
ya =yb
|
||||
yb =y(j)
|
||||
dyb =(yb-ya)/h
|
||||
if (i<=1) then
|
||||
j1 =ii
|
||||
if (iol/=0) goto 13
|
||||
dya =c(1)
|
||||
end if
|
||||
end if
|
||||
if (j1/=ii) goto 16
|
||||
a =1.0_wp_/(h+h+a)
|
||||
13 continue
|
||||
r =a*(dyb-dya)
|
||||
c(j3)=r
|
||||
a =h*a
|
||||
c(j2)=a
|
||||
c(i) =dyb
|
||||
end do
|
||||
!
|
||||
! back substitution of the system of linear equations
|
||||
! and computation of the other coefficients
|
||||
!
|
||||
a =1.0_wp_
|
||||
j1 =j3+n+ii-ii*n
|
||||
i =n
|
||||
do iol=1,n
|
||||
xb =x(j)
|
||||
h =xc-xb
|
||||
xc =xb
|
||||
a =a+h
|
||||
yb =r
|
||||
r =c(j3)-r*c(j2)
|
||||
ya =r+r
|
||||
c(j3)=ya+r
|
||||
c(j2)=c(i)-h*(ya+yb)
|
||||
c(j1)=(yb-r)/a
|
||||
c(i) =y(j)
|
||||
a =0.0_wp_
|
||||
j =j-jmp
|
||||
i =i-1
|
||||
j2 =j2-1
|
||||
j3 =j3-1
|
||||
j1 =j3+n+ii
|
||||
end do
|
||||
ier =0
|
||||
end if
|
||||
!
|
||||
16 continue
|
||||
ii=0
|
||||
do j=1,4
|
||||
do i=1,nmx
|
||||
if(i<=n) then
|
||||
ii=ii+1
|
||||
cc(i,j)=c(ii)
|
||||
else
|
||||
cc(i,j)=0.0_wp_
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
!
|
||||
end subroutine difcsn
|
||||
|
||||
end module simplespline
|
546
src/splines.f90
Normal file
546
src/splines.f90
Normal file
@ -0,0 +1,546 @@
|
||||
! This module provides a high-level interface for creating and evaluating
|
||||
! several kind of splines:
|
||||
!
|
||||
! `spline_simple` is a simple interpolating cubic spline,
|
||||
! `spline_1d` and `spline_2d` are wrapper around the DIERCKX cubic splines.
|
||||
module splines
|
||||
use const_and_precisions, only : wp_
|
||||
|
||||
implicit none
|
||||
|
||||
! A 1D interpolating cubic spline
|
||||
type spline_simple
|
||||
integer :: ndata ! Number of data points
|
||||
real(wp_), allocatable :: data(:) ! Data points (ndata)
|
||||
real(wp_), allocatable :: coeffs(:,:) ! Spline coefficients (ndata, 4)
|
||||
contains
|
||||
procedure :: init => spline_simple_init
|
||||
procedure :: deinit => spline_simple_deinit
|
||||
procedure :: eval => spline_simple_eval
|
||||
procedure :: raw_eval => spline_simple_raw_eval
|
||||
procedure :: deriv => spline_simple_deriv
|
||||
end type
|
||||
|
||||
! A 1D smoothing/interpolating cubic spline
|
||||
type spline_1d
|
||||
integer :: nknots ! Number of spline knots
|
||||
real(wp_), allocatable :: knots(:) ! Knots positions
|
||||
real(wp_), allocatable :: coeffs(:) ! B-spline coefficients
|
||||
contains
|
||||
procedure :: init => spline_1d_init
|
||||
procedure :: deinit => spline_1d_deinit
|
||||
procedure :: eval => spline_1d_eval
|
||||
procedure :: deriv => spline_1d_deriv
|
||||
end type
|
||||
|
||||
! A 2D smoothing/interpolating cubic spline s(x, y)
|
||||
type spline_2d
|
||||
integer :: nknots_x ! Number of x knots
|
||||
integer :: nknots_y ! Number of y knots
|
||||
real(wp_), allocatable :: knots_x(:) ! Knots x positions
|
||||
real(wp_), allocatable :: knots_y(:) ! Knots y positions
|
||||
real(wp_), allocatable :: coeffs(:) ! B-spline coefficients
|
||||
|
||||
! B-spline coefficients of the partial derivatives
|
||||
type(pointer), allocatable :: partial(:,:)
|
||||
|
||||
contains
|
||||
procedure :: init => spline_2d_init
|
||||
procedure :: deinit => spline_2d_deinit
|
||||
procedure :: eval => spline_2d_eval
|
||||
procedure :: init_deriv => spline_2d_init_deriv
|
||||
procedure :: deriv => spline_2d_deriv
|
||||
end type
|
||||
|
||||
! Wrapper to store pointers in an array
|
||||
type pointer
|
||||
real(wp_), pointer :: ptr(:) => null()
|
||||
end type
|
||||
|
||||
private
|
||||
public spline_simple, spline_1d, spline_2d
|
||||
|
||||
contains
|
||||
|
||||
subroutine spline_simple_init(self, x, y, n)
|
||||
! Initialises the spline
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_simple), intent(inout) :: self
|
||||
integer, intent(in) :: n
|
||||
real(wp_), dimension(n), intent(in) :: x, y
|
||||
|
||||
call self%deinit
|
||||
self%ndata = n
|
||||
allocate(self%data(n))
|
||||
allocate(self%coeffs(n, 4))
|
||||
|
||||
self%data = x
|
||||
call spline_simple_coeffs(x, y, n, self%coeffs)
|
||||
end subroutine spline_simple_init
|
||||
|
||||
|
||||
subroutine spline_simple_deinit(self)
|
||||
! Deinitialises a simple_spline
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_simple), intent(inout) :: self
|
||||
|
||||
if (allocated(self%data)) deallocate(self%data)
|
||||
if (allocated(self%coeffs)) deallocate(self%coeffs)
|
||||
self%ndata = 0
|
||||
end subroutine spline_simple_deinit
|
||||
|
||||
|
||||
function spline_simple_eval(self, x) result(y)
|
||||
! Evaluates the spline at x
|
||||
use utils, only : locate
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_simple), intent(in) :: self
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: y
|
||||
|
||||
! local variables
|
||||
integer :: i
|
||||
real(wp_) :: dx
|
||||
|
||||
call locate(self%data, self%ndata, x, i)
|
||||
i = min(max(1, i), self%ndata - 1)
|
||||
dx = x - self%data(i)
|
||||
y = self%raw_eval(i, dx)
|
||||
end function spline_simple_eval
|
||||
|
||||
|
||||
function spline_simple_raw_eval(self, i, dx) result(y)
|
||||
! Evaluates the i-th polynomial of the spline at dx
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_simple), intent(in) :: self
|
||||
integer, intent(in) :: i
|
||||
real(wp_), intent(in) :: dx
|
||||
real(wp_) :: y
|
||||
|
||||
y = self%coeffs(i,1) + dx*(self%coeffs(i,2) &
|
||||
+ dx*(self%coeffs(i,3) + dx*self%coeffs(i,4)))
|
||||
end function spline_simple_raw_eval
|
||||
|
||||
|
||||
function spline_simple_deriv(self, x) result(y)
|
||||
! Computes the derivative of the spline at x
|
||||
use utils, only : locate
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_simple), intent(in) :: self
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: y
|
||||
|
||||
! local variables
|
||||
integer :: i
|
||||
real(wp_) :: dx
|
||||
|
||||
call locate(self%data, self%ndata, x, i)
|
||||
i = min(max(1, i), self%ndata - 1)
|
||||
dx = x - self%data(i)
|
||||
y = self%coeffs(i,2) + dx*(2*self%coeffs(i,3) + 3*dx*self%coeffs(i,4))
|
||||
end function spline_simple_deriv
|
||||
|
||||
|
||||
subroutine spline_simple_coeffs(x, y, n, c)
|
||||
! Computes the cubic coefficients of all n polynomials
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n), y(n)
|
||||
real(wp_), intent(inout) :: c(n*4)
|
||||
|
||||
! local variables
|
||||
integer :: jmp, i, ii, j, j1, j2, j3, k
|
||||
real(wp_) :: xb, xc, ya, yb, h, a, r, dya, dyb, dy2
|
||||
jmp = 1
|
||||
|
||||
if (n <= 1) return
|
||||
|
||||
! initialisation
|
||||
xc = x(1)
|
||||
yb = y(1)
|
||||
h = 0
|
||||
a = 0
|
||||
r = 0
|
||||
dyb = 0
|
||||
dy2 = c(2)
|
||||
|
||||
! form the system of linear equations
|
||||
! and eliminate subsequentially
|
||||
j = 1
|
||||
do i = 1, n
|
||||
j2 = n + i
|
||||
j3 = j2 + n
|
||||
a = h*(2 - a)
|
||||
dya = dyb + h*r
|
||||
if (i >= n) then
|
||||
! set derivative dy2 at last point
|
||||
dyb = dy2
|
||||
h = 0
|
||||
dyb = dya
|
||||
goto 13
|
||||
else
|
||||
j = j+jmp
|
||||
xb = xc
|
||||
xc = x(j)
|
||||
h = xc-xb
|
||||
|
||||
! ii=0 - increasing abscissae
|
||||
! ii=1 - decreasing abscissae
|
||||
ii = 0
|
||||
if (h == 0) return
|
||||
if (h < 0) ii = 1
|
||||
ya = yb
|
||||
yb = y(j)
|
||||
dyb = (yb - ya)/h
|
||||
|
||||
if (i <= 1) then
|
||||
j1 = ii
|
||||
goto 13
|
||||
end if
|
||||
end if
|
||||
|
||||
if (j1-ii /= 0) return
|
||||
a = 1 / (2*h + a)
|
||||
13 continue
|
||||
r = a*(dyb - dya)
|
||||
c(j3) = r
|
||||
a = h*a
|
||||
c(j2) = a
|
||||
c(i) = dyb
|
||||
end do
|
||||
|
||||
! back substitution of the system of linear equations
|
||||
! and computation of the other coefficients
|
||||
a = 1
|
||||
j1 = j3+n+ii-ii*n
|
||||
i = n
|
||||
do k = 1, n
|
||||
xb = x(j)
|
||||
h = xc - xb
|
||||
xc = xb
|
||||
a = a+h
|
||||
yb = r
|
||||
r = c(j3)-r*c(j2)
|
||||
ya = 2*r
|
||||
c(j3) = ya + r
|
||||
c(j2) = c(i) - h*(ya+yb)
|
||||
c(j1) = (yb - r)/a
|
||||
c(i) = y(j)
|
||||
a = 0
|
||||
j = j-jmp
|
||||
i = i-1
|
||||
j2 = j2-1
|
||||
j3 = j3-1
|
||||
j1 = j3+n+ii
|
||||
end do
|
||||
end subroutine spline_simple_coeffs
|
||||
|
||||
|
||||
subroutine spline_1d_init(self, x, y, n, range, weights, tension, err)
|
||||
! Initialises a spline_1d.
|
||||
! Takes:
|
||||
! x: x data points
|
||||
! y: y data points
|
||||
! n: number of data points
|
||||
! range: interpolation range as [x_min, x_max]
|
||||
! weights: factors weighting the data points (default: all 1)
|
||||
! tension: parameter controlling the amount of smoothing (default: 0)
|
||||
! Returns:
|
||||
! err: error code of `curfit`
|
||||
use dierckx, only : curfit
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_1d), intent(inout) :: self
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(in) :: y(n)
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: range(2)
|
||||
real(wp_), intent(in), optional :: weights(n)
|
||||
real(wp_), intent(in), optional :: tension
|
||||
integer, intent(out), optional :: err
|
||||
|
||||
! local variables
|
||||
integer :: nknots_est ! over-estimate of the number of knots
|
||||
real(wp_) :: residuals ! sum of the residuals
|
||||
integer :: work_int(n + 4) ! integer working space
|
||||
real(wp_) :: work_real(4*n + 16*(n + 4)) ! real working space
|
||||
|
||||
! default values
|
||||
integer :: err_def
|
||||
real(wp_) :: weights_def(n), tension_def
|
||||
|
||||
weights_def = 1
|
||||
tension_def = 0
|
||||
if (present(weights)) weights_def = weights
|
||||
if (present(tension)) tension_def = tension
|
||||
|
||||
! clear memory, if necessary
|
||||
call self%deinit
|
||||
|
||||
! allocate the spline arrays
|
||||
nknots_est = n + 4
|
||||
allocate(self%knots(nknots_est), self%coeffs(nknots_est))
|
||||
|
||||
call curfit(0, n, x, y, weights_def, range(1), range(2), 3, tension_def, &
|
||||
nknots_est, self%nknots, self%knots, self%coeffs, residuals, &
|
||||
work_real, size(work_real), work_int, err_def)
|
||||
|
||||
if (present(err)) err = err_def
|
||||
end subroutine spline_1d_init
|
||||
|
||||
|
||||
subroutine spline_1d_deinit(self)
|
||||
! Deinitialises a spline_1d
|
||||
implicit none
|
||||
|
||||
class(spline_1d), intent(inout) :: self
|
||||
|
||||
if (allocated(self%knots)) deallocate(self%knots)
|
||||
if (allocated(self%coeffs)) deallocate(self%coeffs)
|
||||
self%nknots = 0
|
||||
end subroutine spline_1d_deinit
|
||||
|
||||
|
||||
function spline_1d_eval(self, x) result(y)
|
||||
! Evaluates the spline at x
|
||||
use dierckx, only : splev
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_1d), intent(in) :: self
|
||||
real(wp_), intent(in) :: x
|
||||
real(wp_) :: y
|
||||
|
||||
! local variables
|
||||
integer :: err
|
||||
real(wp_) :: yv(1) ! because splev returns a vector
|
||||
|
||||
call splev(self%knots, self%nknots, self%coeffs, 3, [x], yv, 1, err)
|
||||
y = yv(1)
|
||||
end function spline_1d_eval
|
||||
|
||||
|
||||
function spline_1d_deriv(self, x, order) result(y)
|
||||
! Evaluates the spline n-th order derivative at x
|
||||
use dierckx, only : splder
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_1d), intent(in) :: self
|
||||
real(wp_), intent(in) :: x
|
||||
integer, intent(in), optional :: order
|
||||
real(wp_) :: y
|
||||
|
||||
! local variables
|
||||
integer :: err, n
|
||||
real(wp_) :: yv(1) ! because splev returns a vector
|
||||
real(wp_) :: work(self%nknots) ! working space array
|
||||
|
||||
n = 1
|
||||
if (present(order)) n = order
|
||||
|
||||
call splder(self%knots, self%nknots, self%coeffs, &
|
||||
3, n, [x], yv, 1, work, err)
|
||||
y = yv(1)
|
||||
end function spline_1d_deriv
|
||||
|
||||
|
||||
subroutine spline_2d_init(self, x, y, z, nx, ny, range, tension, err)
|
||||
! Initialises a spline_2d.
|
||||
! Takes:
|
||||
! x, y: data points on a regular grid
|
||||
! z: data points of z(x, y)
|
||||
! n: number of data points
|
||||
! range: interpolation range as [x_min, x_max, y_min, y_max]
|
||||
! weights: factors weighting the data points (default: all 1)
|
||||
! tension: parameter controlling the amount of smoothing (default: 0)
|
||||
! Returns:
|
||||
! err: error code of `curfit`
|
||||
use dierckx, only : regrid
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_2d), intent(inout) :: self
|
||||
real(wp_), intent(in) :: x(nx)
|
||||
real(wp_), intent(in) :: y(ny)
|
||||
real(wp_), intent(in) :: z(nx * ny)
|
||||
integer, intent(in) :: nx, ny
|
||||
real(wp_), intent(in) :: range(4)
|
||||
real(wp_), intent(in), optional :: tension
|
||||
integer, intent(out), optional :: err
|
||||
|
||||
! local variables
|
||||
integer :: nknots_x_est ! over-estimate of the number of knots
|
||||
integer :: nknots_y_est !
|
||||
real(wp_) :: residuals ! sum of the residuals
|
||||
|
||||
! working space arrays
|
||||
integer :: work_int(2*(ny + nx) + 11)
|
||||
real(wp_) :: work_real(15*(nx + ny) + ny*(nx + 4) + 92 + max(ny, nx + 4))
|
||||
|
||||
! default values
|
||||
integer :: err_def
|
||||
real(wp_) :: tension_def
|
||||
|
||||
tension_def = 0
|
||||
if (present(tension)) tension_def = tension
|
||||
|
||||
! clear memory, if necessary
|
||||
call self%deinit
|
||||
|
||||
! allocate the spline arrays
|
||||
nknots_x_est = nx + 4
|
||||
nknots_y_est = ny + 4
|
||||
allocate(self%knots_x(nknots_x_est), self%knots_y(nknots_y_est))
|
||||
allocate(self%coeffs(nx * ny))
|
||||
|
||||
call regrid(0, nx, x, ny, y, z, range(1), range(2), range(3), range(4), &
|
||||
3, 3, tension_def, nknots_x_est, nknots_y_est, &
|
||||
self%nknots_x, self%knots_x, self%nknots_y, self%knots_y, &
|
||||
self%coeffs, residuals, work_real, size(work_real), &
|
||||
work_int, size(work_int), err_def)
|
||||
|
||||
if (present(err)) err = err_def
|
||||
end subroutine spline_2d_init
|
||||
|
||||
|
||||
subroutine spline_2d_deinit(self)
|
||||
! Deinitialises a spline_2d
|
||||
implicit none
|
||||
|
||||
class(spline_2d), intent(inout) :: self
|
||||
|
||||
if (allocated(self%knots_x)) deallocate(self%knots_x)
|
||||
if (allocated(self%knots_y)) deallocate(self%knots_y)
|
||||
if (allocated(self%coeffs)) deallocate(self%coeffs)
|
||||
|
||||
! Note: partial derivatives coeff. are pointers
|
||||
if (allocated(self%partial)) then
|
||||
deallocate(self%partial(1, 0)%ptr)
|
||||
deallocate(self%partial(0, 1)%ptr)
|
||||
deallocate(self%partial(1, 1)%ptr)
|
||||
deallocate(self%partial(2, 0)%ptr)
|
||||
deallocate(self%partial(0, 2)%ptr)
|
||||
deallocate(self%partial)
|
||||
end if
|
||||
|
||||
self%nknots_x = 0
|
||||
self%nknots_y = 0
|
||||
end subroutine spline_2d_deinit
|
||||
|
||||
|
||||
function spline_2d_eval(self, x, y) result(z)
|
||||
! Evaluates the spline at (x, y)
|
||||
use dierckx, only : fpbisp
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_2d), intent(in) :: self
|
||||
real(wp_), intent(in) :: x, y
|
||||
real(wp_) :: z
|
||||
|
||||
! local variables
|
||||
real(wp_) :: zv(1) ! because fpbisp returns a vector
|
||||
|
||||
integer :: work_int(8) ! integer working space
|
||||
real(wp_) :: work_real(8) ! real working space
|
||||
|
||||
! Note: see https://netlib.org/dierckx/bispev.f for
|
||||
! this apparently nonsensical invocation
|
||||
call fpbisp(self%knots_x, self%nknots_x, &
|
||||
self%knots_y, self%nknots_y, &
|
||||
self%coeffs, 3, 3, [x], 1, [y], 1, &
|
||||
zv, work_real(1), work_real(5), &
|
||||
work_int(1), work_int(2))
|
||||
z = zv(1)
|
||||
end function spline_2d_eval
|
||||
|
||||
|
||||
subroutine spline_2d_init_deriv(self, p, q, n, m)
|
||||
! Computes the spline coefficients of n-th partial derivative
|
||||
! w.r.t x and m-th partial derivative w.r.t y on a grid of
|
||||
! p×q points.
|
||||
!
|
||||
! Note: for simplicity, only up to second-order is supported.
|
||||
use dierckx, only : coeff_parder
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_2d), intent(inout) :: self
|
||||
integer, intent(in) :: p, q ! grid dimensions
|
||||
integer, intent(in) :: n, m ! derivative order
|
||||
|
||||
! local variables
|
||||
integer :: coeff_size
|
||||
integer :: err
|
||||
|
||||
! coeff. array (actually, the working space) size
|
||||
coeff_size = p*(4 - n) + q*(4 - m) + p*q
|
||||
|
||||
! allocate slots for storing the derivatives (first call only)
|
||||
if (.not. allocated(self%partial)) allocate(self%partial(0:2, 0:2))
|
||||
|
||||
! allocate the coefficients array
|
||||
allocate(self%partial(n, m)%ptr(coeff_size))
|
||||
|
||||
! compute the coefficients
|
||||
call coeff_parder(self%knots_x, self%nknots_x, &
|
||||
self%knots_y, self%nknots_y, &
|
||||
self%coeffs, 3, 3, n, m, &
|
||||
self%partial(n, m)%ptr, coeff_size, err)
|
||||
end subroutine spline_2d_init_deriv
|
||||
|
||||
|
||||
function spline_2d_deriv(self, x, y, n, m) result(z)
|
||||
! Evaluates the spline n-th partial derivative w.r.t x
|
||||
! and m-th partial derivative w.r.t y at (x, y)
|
||||
!
|
||||
! Note: the coefficients of the derivative must have been
|
||||
! initialised with init_deriv before calling this method.
|
||||
use dierckx, only : fpbisp
|
||||
|
||||
implicit none
|
||||
|
||||
! subroutine arguments
|
||||
class(spline_2d), intent(in) :: self
|
||||
real(wp_), intent(in) :: x, y
|
||||
integer, intent(in) :: n, m
|
||||
real(wp_) :: z
|
||||
|
||||
! local variables
|
||||
real(wp_), dimension(1) :: zv ! because splev returns a vector
|
||||
integer, dimension(1) :: work_int_x, work_int_y ! integer working space
|
||||
real(wp_), dimension(1,4) :: work_real_x, work_real_y ! real working space
|
||||
|
||||
call fpbisp(self%knots_x(1 + n), self%nknots_x - 2*n, &
|
||||
self%knots_y(1 + m), self%nknots_y - 2*m, &
|
||||
self%partial(n, m)%ptr, &
|
||||
3 - n, 3 - m, [x], 1, [y], 1, zv, &
|
||||
work_real_x, work_real_y, work_int_x, work_int_y)
|
||||
z = zv(1)
|
||||
end function spline_2d_deriv
|
||||
|
||||
end module splines
|
Loading…
Reference in New Issue
Block a user