diff --git a/src/pec.f90 b/src/pec.f90 deleted file mode 100644 index 24fbcc3..0000000 --- a/src/pec.f90 +++ /dev/null @@ -1,335 +0,0 @@ -! This module provides the ray_projector object that is used to -! compute the final ECCD power and current density radial profiles -module gray_ec_profiles - - use const_and_precisions, only : wp_ - - implicit none - - type ray_projector - ! Projects the volumetric rays data onto a radial grid to - ! obtain the ECCD power and current density profiles - real(wp_), public, allocatable :: rho_p(:) ! radial bin edges (ρ_p) - real(wp_), public, allocatable :: rho_t(:) ! radial bin edges (ρ_t) - real(wp_), private, allocatable :: psi_mid(:) ! radial bin midpoints (ψ_n) - real(wp_), private, allocatable :: dA(:), dV(:) ! area, volume elements - real(wp_), private, allocatable :: ratio_J_cd_phi(:) ! J_cd_jintrac / J_φ - contains - procedure :: init ! Initialises the grids etc. - procedure :: project ! Projects rays to radial profile - procedure :: statistics ! Compute statistics of a profile - end type - - private - -contains - - subroutine init(self, params, equil) - ! Initialises the radial grid and other quantities needed to - ! compute the radial profiles (dP/dV, J_φ, J_cd) - use const_and_precisions, only : one - use gray_params, only : output_parameters, RHO_POL - use gray_equil, only : abstract_equil - - ! subroutine arguments - class(ray_projector), intent(inout) :: self - type(output_parameters), intent(in) :: params - class(abstract_equil), intent(in) :: equil - - ! local variables - integer :: i - real(wp_) :: drho, rho, rho_mid - real(wp_) :: V0, V1, A0, A1 - - associate (n => params%nrho) - - allocate(self%rho_p(n), self%rho_t(n), self%psi_mid(n)) - allocate(self%dV(n), self%dA(n), self%ratio_J_cd_phi(n)) - - V0 = 0 - A0 = 0 - - do i = 1, n - if(allocated(params%grid)) then - ! Read points from the input grid - rho = params%grid(i) - if (i < n) drho = params%grid(i + 1) - rho - else - ! Build a uniform grid - drho = one/(n - 1) - rho = (i - 1)*drho - end if - - ! Switch between uniform grid in ρ_p or ρ_t - if (params%ipec == RHO_POL) then - self%rho_p(i) = rho - self%rho_t(i) = equil%pol2tor(rho) - rho_mid = rho + drho/2 - else - self%rho_t(i) = rho - self%rho_p(i) = equil%tor2pol(rho) - rho_mid = equil%tor2pol(rho + drho/2) - end if - - ! ψ_n at the midpoint of the bin - ! - ! Note: each bin is associated with a volume element ΔV₁=V₁-V₀, - ! with V₁,₀ computed at the bin midpoint. For consistency the ΔP - ! is also computed at the midpoint: ΔP₁ = P_in(ψ₁) - P_in(ψ₀), - ! where ψ₁,₀ are shifted by Δρ/2 w.r.t ρ₁. - self%psi_mid(i) = rho_mid**2 - - ! Compute ΔV, ΔA for each bin - call equil%flux_average(rho_mid, area=A1, volume=V1) - self%dA(i) = abs(A1 - A0) - self%dV(i) = abs(V1 - V0) - V0 = V1 - A0 = A1 - - ! Compute conversion factors between J_φ and J_cd - call equil%flux_average(self%rho_p(i), ratio_jintrac_tor=self%ratio_J_cd_phi(i)) - end do - - end associate - end subroutine init - - - subroutine project(self, psi_n, P_abs, I_cd, last_step, & - dPdV, J_phi, J_cd, P_in, I_in) - ! Projects the volumetric rays data ψ_n, P_abs, I_cd onto a radial grid - ! to obtain the density profiles dP/dV, J_φ, J_cd and the cumulatives - ! P_in and I_in - use const_and_precisions, only : zero - use utils, only : locate_unord, linear_interp - - ! subroutine arguments - class(ray_projector), intent(in) :: self - real(wp_), intent(in) :: psi_n(:, :) ! normalised flux (ray,step) - real(wp_), intent(in) :: P_abs(:, :) ! absorbed power (ray,step) - real(wp_), intent(in) :: I_cd(:, :) ! driven current (ray,step) - integer, intent(in) :: last_step(:) ! last step absorption took place - real(wp_), intent(out) :: dPdV(:), J_phi(:) ! power, toroidal current density - real(wp_), intent(out) :: J_cd(:) ! current drive density, JINTRAC def. - real(wp_), intent(out) :: P_in(:), I_in(:) ! power, current within ρ - - ! local variables - integer :: i, ray, bin - integer :: cross(maxval(last_step)+1), ncross - real(wp_) :: I_entry, I_exit, P_entry, P_exit - - ! We start by computing the cumulatives first, and obtain the densities - ! as finite differences later. This should avoid precision losses. - P_in = 0 - I_in = 0 - - ! For each bin in the radial grid - bins: do concurrent (bin = 1 : size(self%rho_t)) - ! For each ray - rays: do ray = 1, size(psi_n, dim=1) - ! Skip rays with no absorption - if (last_step(ray) == 1) cycle - - ! Find where the ray crosses the flux surface of the current bin - call locate_unord(psi_n(ray, :), self%psi_mid(bin), cross, last_step(ray), ncross) - - if (psi_n(ray, 1) < 0) then - ! Skip unphysical crossing from -1 (ψ undefined) - cross = cross(2:ncross) - ncross = ncross - 1 - else if (psi_n(ray, 1) < self%psi_mid(bin)) then - ! Add a crossing when starting within ψ (reflections!) - cross = [1, cross(1:ncross)] - end if - - ! For each crossing - crossings: do i = 1, ncross, 2 - ! Interpolate P_abs(ψ) and I_cd(ψ) at the entry - P_entry = interp(psi_n(ray,:), P_abs(ray,:), cross(i), self%psi_mid(bin)) - I_entry = interp(psi_n(ray,:), I_cd(ray,:), cross(i), self%psi_mid(bin)) - - if (i+1 <= ncross) then - ! Interpolate P_abs(ψ) and I_cd(ψ) at the exit - P_exit = interp(psi_n(ray,:), P_abs(ray,:), cross(i+1), self%psi_mid(bin)) - I_exit = interp(psi_n(ray,:), I_cd(ray,:), cross(i+1), self%psi_mid(bin)) - else - ! The ray never left, use last_step as exit point - P_exit = P_abs(ray, last_step(ray)) - I_exit = I_cd(ray, last_step(ray)) - end if - - ! Accumulate the deposition from this crossing - P_in(bin) = P_in(bin) + (P_exit - P_entry) - I_in(bin) = I_in(bin) + (I_exit - I_entry) - end do crossings - end do rays - end do bins - - ! Compute densities - dPdV(1) = P_in(1) / self%dV(1) - J_phi(1) = I_in(1) / self%dA(1) - - do concurrent (bin = 2 : size(self%rho_t)) - dPdV(bin) = max(P_in(bin) - P_in(bin-1), zero) / self%dV(bin) - J_phi(bin) = (I_in(bin) - I_in(bin-1)) / self%dA(bin) - end do - - J_cd = J_phi * self%ratio_J_cd_phi - - contains - - pure real(wp_) function interp(x, y, i, x1) - ! Interpolate linearly y(x) at x=x(i) - real(wp_), intent(in) :: x(:), y(:), x1 - integer, intent(in) :: i - interp = linear_interp(x(i), y(i), x(i+1), y(i+1), x1) - end function interp - - end subroutine project - - - subroutine statistics(self, equil, dPdV, J_phi, rho_avg_P, drho_avg_P, & - rho_avg_J, drho_avg_J, dPdV_peak, J_phi_peak, & - rho_max_P, drho_max_P, rho_max_J, drho_max_J, & - dPdV_max, J_phi_max, ratio_Ja_max, ratio_Jb_max) - ! Given the radial profiles dP/dV and J_φ computes the following statics: - - use const_and_precisions, only : pi - use gray_equil, only : abstract_equil - - class(ray_projector), intent(in) :: self - class(abstract_equil), intent(in) :: equil - - real(wp_), intent(in) :: dPdV(:), J_phi(:) ! dP/dV(ρ), J_φ(ρ) profiles - real(wp_), intent(out) :: rho_avg_P, drho_avg_P, dPdV_peak ! ⟨ρ_t⟩, Δρ_t, max dP/dV using dP/dV⋅dV as a PDF - real(wp_), intent(out) :: rho_avg_J, drho_avg_J, J_phi_peak ! ⟨ρ_t⟩, Δρ_t, max |J_φ| using |J_φ|⋅dA as a PDF - real(wp_), intent(out) :: rho_max_P, drho_max_P, dPdV_max ! argmax, FWHM and max of dPdV - real(wp_), intent(out) :: rho_max_J, drho_max_J, J_phi_max ! argmax, FWHM and max of |J_φ| - real(wp_), intent(out) :: ratio_Ja_max, ratio_Jb_max ! max of J_cd_astra/J_φ, J_cd_jintrac/J_φ - - ! local variables - real(wp_) :: P_tot, I_tot - real(wp_) :: dVdrho_t, dAdrho_t - - ! ⟨ρ_t⟩, Δρ_t using dP/dV⋅dV as a PDF - ! Note: the factor √8 is to match the FWHM of a Gaussian - P_tot = sum(dPdV*self%dV) - if (P_tot > 0) then - rho_avg_P = sum(self%rho_t * dPdV*self%dV)/P_tot - drho_avg_P = sqrt(8 * sum((self%rho_t - rho_avg_P)**2 * dPdV*self%dV)/P_tot) - else - rho_avg_P = 0 - drho_avg_P = 0 - end if - - ! ⟨ρ_t⟩, Δρ_t using |J_φ|⋅dA as a PDF - I_tot = sum(abs(J_phi)*self%dA) - if (I_tot > 0) then - rho_avg_J = sum(self%rho_t * abs(J_phi)*self%dA)/I_tot - drho_avg_J = sqrt(8* sum((self%rho_t - rho_avg_J)**2 * abs(J_phi)*self%dA)/I_tot) - else - rho_avg_J = 0 - drho_avg_J = 0 - end if - - if (P_tot > 0) then - ! Compute max of dP/dV as if it were a Gaussian - call equil%flux_average(equil%tor2pol(rho_avg_P), dVdrho_t=dVdrho_t) - dPdV_peak = P_tot * 2/(sqrt(pi) * drho_avg_P * dVdrho_t) - - ! Compute numerically argmax, max and FWHM of dP/dV - call profwidth(self%rho_t, dPdV, rho_max_P, dPdV_max, drho_max_P) - else - dPdV_peak = 0 - rho_max_P = 0 - dPdV_max = 0 - drho_max_P = 0 - end if - - if (I_tot > 0) then - ! Compute max of J_φ as if it were a Gaussian - call equil%flux_average(equil%tor2pol(rho_avg_J), dAdrho_t=dAdrho_t, & - ratio_astra_tor=ratio_Ja_max, ratio_jintrac_tor=ratio_Jb_max) - J_phi_peak = I_tot * 2/(sqrt(pi)*drho_avg_J*dAdrho_t) - - ! Compute numerically argmax, max and FWHM of dP/dV - call profwidth(self%rho_t, J_phi, rho_max_J, J_phi_max, drho_max_J) - else - J_phi_peak = 0 - rho_max_J = 0 - J_phi_max = 0 - drho_max_J = 0 - ratio_Ja_max = 0 - ratio_Jb_max = 0 - end if - end subroutine statistics - - - subroutine profwidth(x, y, x_max, y_max, fwhm) - ! Computes the argmax, max, and FWHM of the curve y(x) - - use const_and_precisions, only : emn1 - use utils, only : locate, linear_interp, vmaxmin - - ! subroutine arguments - real(wp_), intent(in) :: x(:), y(:) - real(wp_), intent(out) :: x_max, y_max, fwhm - - ! local variables - integer :: imn, imx, ipk, ie - real(wp_) :: xmn, xmx, ymn, ymx, xpkp, xpkm, yye, rte1, rte2 - real(wp_) :: ypkp, ypkm - - call vmaxmin(y, ymn, ymx, imn, imx) - y_max = 0 - xmx = x(imx) - xmn = x(imn) - if (abs(ymx) > abs(ymn)) then - ipk = imx - ypkp = ymx - xpkp = xmx - if(abs(ymn/ymx) < 1.0e-2_wp_) ymn = 0.0_wp_ - ypkm = ymn - xpkm = xmn - else - ipk = imn - ypkp = ymn - xpkp = xmn - if(abs(ymx/ymn) < 1.0e-2_wp_) ymx = 0.0_wp_ - ypkm = ymx - xpkm = xmx - end if - if(xpkp > 0) then - x_max = xpkp - y_max = ypkp - yye = y_max*emn1 - call locate(y(1:ipk), yye, ie) - if(ie > 0 .and. ie < size(y)) then - rte1 = linear_interp(y(ie), x(ie), y(ie+1), x(ie+1), yye) - else - rte1 = 0 - end if - call locate(y(ipk:size(y)), yye, ie) - if(ie > 0 .and. ie < size(y)) then - ie = ie + (ipk - 1) - rte2 = linear_interp(y(ie), x(ie), y(ie+1), x(ie+1), yye) - else - rte2 = 0 - end if - else - ipk=2 - x_max=x(2) - y_max=y(2) - rte1=0.0_wp_ - yye=y_max*emn1 - call locate(y, yye, ie) - if(ie > 0 .and. ie < size(y)) then - rte2 = linear_interp(y(ie), x(ie), y(ie+1), x(ie+1), yye) - else - rte2 = 0 - end if - end if - fwhm = rte2 - rte1 - if(ymx /= 0 .and. ymn /= 0) fwhm = -fwhm - end subroutine profwidth - -end module gray_ec_profiles