src/math.f90: use the intrinsic gamma function
- remove the `gamm` function - rewrite `fact` in terms of `gamma`
This commit is contained in:
parent
98599b2b7d
commit
a30cd09e8e
@ -904,7 +904,6 @@ end subroutine antihermitian
|
||||
!
|
||||
!
|
||||
subroutine ssbi(zz,n,l,fsbi)
|
||||
use math, only : gamm
|
||||
implicit none
|
||||
! local constants
|
||||
integer, parameter :: lmx=20,nmx=lmx+2
|
||||
@ -918,7 +917,7 @@ subroutine ssbi(zz,n,l,fsbi)
|
||||
real(wp_) :: c0,c1,sbi
|
||||
!
|
||||
do m=n,l+2
|
||||
c0=one/gamm(dble(m)+1.5_wp_)
|
||||
c0=one/gamma(dble(m)+1.5_wp_)
|
||||
sbi=c0
|
||||
do k=1,50
|
||||
c1=c0*0.25_wp_*zz**2/(dble(m+k)+0.5_wp_)/dble(k)
|
||||
|
39
src/math.f90
39
src/math.f90
@ -84,42 +84,17 @@ contains
|
||||
end if
|
||||
end function catand
|
||||
|
||||
|
||||
function fact(k)
|
||||
! Factorial function k!
|
||||
! Note: the result is real
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: k
|
||||
real(wp_) :: fact
|
||||
integer :: i
|
||||
! Factorial function
|
||||
fact=zero
|
||||
if(k<0) return
|
||||
fact=one
|
||||
if(k==0) return
|
||||
do i=1,k
|
||||
fact=fact*i
|
||||
end do
|
||||
|
||||
fact = gamma(real(1 + k, kind=wp_))
|
||||
|
||||
end function fact
|
||||
|
||||
function gamm(xx)
|
||||
implicit none
|
||||
real(wp_) :: gamm
|
||||
real(wp_), intent(in) :: xx
|
||||
! Returns the value Gamma(xx) for xx > 0.
|
||||
INTEGER :: j
|
||||
real(wp_) :: ser,tmp,x,y
|
||||
real(wp_), parameter :: stp=2.5066282746310005_wp_
|
||||
real(wp_), dimension(6), parameter :: cof=(/76.18009172947146_wp_, &
|
||||
-86.50532032941677_wp_,24.01409824083091_wp_,-1.231739572450155_wp_, &
|
||||
.1208650973866179e-2_wp_,-.5395239384953e-5_wp_/)
|
||||
x=xx
|
||||
y=x
|
||||
tmp=x+5.5_wp_
|
||||
tmp=(x+0.5_wp_)*log(tmp)-tmp
|
||||
ser=1.000000000190015_wp_
|
||||
do j=1,6
|
||||
y=y+1._wp_
|
||||
ser=ser+cof(j)/y
|
||||
end do
|
||||
gamm=exp(tmp)*(stp*ser/x)
|
||||
end function gamm
|
||||
|
||||
end module math
|
Loading…
Reference in New Issue
Block a user