projxyzt with gaussian fit
This commit is contained in:
parent
38c617b743
commit
9edc3079ba
203
src/gray.f
203
src/gray.f
@ -507,7 +507,8 @@ c
|
|||||||
write(9,*) ' #istep j k xt yt zt rt psin'
|
write(9,*) ' #istep j k xt yt zt rt psin'
|
||||||
write(17,*) ' #sst Dr_11 Dr_Nr1 Di_Nr1'
|
write(17,*) ' #sst Dr_11 Dr_Nr1 Di_Nr1'
|
||||||
write(33,*) ' #i j k sst x y R z psi tauv Npl alpha index_rt'
|
write(33,*) ' #i j k sst x y R z psi tauv Npl alpha index_rt'
|
||||||
write(12,*) ' #i sst psi w1 w2'
|
write(12,*) ' #i sst w1 w2 phiw rci1 rci2 phir errw errr '//
|
||||||
|
. 'dk1 dk2 dkpar phik dnpar'
|
||||||
write(7,*)'#Icd Pa Jphimx dPdVmx '//
|
write(7,*)'#Icd Pa Jphimx dPdVmx '//
|
||||||
.'rhotj rhotjava rhotp rhotpav '//
|
.'rhotj rhotjava rhotp rhotpav '//
|
||||||
.'drhotjava drhotpav ratjbmx stmx psipol chipol index_rt'
|
.'drhotjava drhotpav ratjbmx stmx psipol chipol index_rt'
|
||||||
@ -5661,25 +5662,44 @@ c gg=F(u)/u with F(u) as in Cohen paper
|
|||||||
|
|
||||||
|
|
||||||
subroutine projxyzt(iproj,nfile)
|
subroutine projxyzt(iproj,nfile)
|
||||||
implicit real*8 (a-h,o-z)
|
implicit real*8 (a-h,o-z)
|
||||||
parameter(jmx=31,kmx=36)
|
parameter(jmx=31,kmx=36,nmx=8000)
|
||||||
|
parameter(pi=3.14159265358979d0)
|
||||||
dimension ywrk(6,jmx,kmx),ypwrk(6,jmx,kmx)
|
dimension ywrk(6,jmx,kmx),ypwrk(6,jmx,kmx)
|
||||||
|
complex*16 ui,aac,bbc,ccc,ddc,aak,bbk,cck
|
||||||
|
parameter(ui=(0.0d0,1.0d0))
|
||||||
|
dimension tauv(jmx,kmx,nmx),alphav(jmx,kmx,nmx)
|
||||||
c
|
c
|
||||||
common/nray/nrayr,nrayth
|
common/nray/nrayr,nrayth
|
||||||
common/wrk/ywrk,ypwrk
|
common/wrk/ywrk,ypwrk
|
||||||
common/psinv11/psinv11
|
common/derip11/dpsi11dr,dpsi11dz,psinv11,bvx11,bvy11,bvz11
|
||||||
common/istep/istep
|
common/istep/istep
|
||||||
|
common/rwmax/rwmax
|
||||||
common/ss/st
|
common/ss/st
|
||||||
|
common/dnpar/dnpara
|
||||||
|
common/atjki/tauv,alphav
|
||||||
c
|
c
|
||||||
rtimn=1.d+30
|
x4m=0.0d0
|
||||||
rtimx=-1.d-30
|
x3ym=0.0d0
|
||||||
|
x2y2m=0.0d0
|
||||||
|
xy3m=0.0d0
|
||||||
|
y4m=0.0d0
|
||||||
|
x2zrm=0.0d0
|
||||||
|
xyzrm=0.0d0
|
||||||
|
y2zrm=0.0d0
|
||||||
|
x2zwm=0.0d0
|
||||||
|
xyzwm=0.0d0
|
||||||
|
y2zwm=0.0d0
|
||||||
|
z2wm=0.0d0
|
||||||
|
z2rm=0.0d0
|
||||||
c
|
c
|
||||||
jd=1
|
do j=1,nrayr
|
||||||
if(iproj.eq.0) jd=nrayr-1
|
kktx=nrayth
|
||||||
do j=1,nrayr,jd
|
if(j.eq.1) kktx=1
|
||||||
kkk=nrayth
|
do k=1,kktx
|
||||||
if(j.eq.1) kkk=1
|
zwj=(dble(j-1)*rwmax/dble(nrayr-1))**2+
|
||||||
do k=1,kkk
|
. 0.5*(tauv(j,k,istep)-tauv(1,1,istep))
|
||||||
|
|
||||||
c
|
c
|
||||||
dx=ywrk(1,j,k)-ywrk(1,1,1)
|
dx=ywrk(1,j,k)-ywrk(1,1,1)
|
||||||
dy=ywrk(2,j,k)-ywrk(2,1,1)
|
dy=ywrk(2,j,k)-ywrk(2,1,1)
|
||||||
@ -5703,39 +5723,172 @@ c
|
|||||||
xti= dx*csps1-dy*snps1
|
xti= dx*csps1-dy*snps1
|
||||||
yti=(dx*snps1+dy*csps1)*csth1-dz*snth1
|
yti=(dx*snps1+dy*csps1)*csth1-dz*snth1
|
||||||
zti=(dx*snps1+dy*csps1)*snth1+dz*csth1
|
zti=(dx*snps1+dy*csps1)*snth1+dz*csth1
|
||||||
rti=sqrt(xti**2+yti**2)
|
rti=sqrt(xti**2+yti**2)
|
||||||
c
|
c
|
||||||
dirxt= (dirx*csps1-diry*snps1)/dir
|
dirxt= (dirx*csps1-diry*snps1)/dir
|
||||||
diryt=((dirx*snps1+diry*csps1)*csth1-dirz*snth1)/dir
|
diryt=((dirx*snps1+diry*csps1)*csth1-dirz*snth1)/dir
|
||||||
dirzt=((dirx*snps1+diry*csps1)*snth1+dirz*csth1)/dir
|
dirzt=((dirx*snps1+diry*csps1)*snth1+dirz*csth1)/dir
|
||||||
|
c
|
||||||
|
bxti= bvx11*csps1-bvy11*snps1
|
||||||
|
byti=(bvx11*snps1+bvy11*csps1)*csth1-bvz11*snth1
|
||||||
|
c bzti=(bvx11*snps1+bvy11*csps1)*snth1+bvz11*csth1
|
||||||
|
c
|
||||||
|
rr11=sqrt(ywrk(1,1,1)**2+ywrk(2,1,1)**2)
|
||||||
|
dpsx=dpsi11dr*ywrk(1,1,1)/rr11
|
||||||
|
dpsy=dpsi11dr*ywrk(2,1,1)/rr11
|
||||||
|
dpsz=dpsi11dz
|
||||||
|
xdpsi=dpsx*csps1-dpsy*snps1
|
||||||
|
ydpsi=(dpsx*snps1+dpsy*csps1)*csth1-dpsz*snth1
|
||||||
|
zdpsi=(dpsx*snps1+dpsy*csps1)*snth1+dpsz*csth1
|
||||||
|
sq=sqrt(xdpsi**2+ydpsi**2+zdpsi**2)
|
||||||
|
if(sq.gt.0.0d0) then
|
||||||
|
xdpsi=dx*xdpsi/sq
|
||||||
|
ydpsi=dx*ydpsi/sq
|
||||||
|
zdpsi=dx*zdpsi/sq
|
||||||
|
end if
|
||||||
c
|
c
|
||||||
if(k.eq.1) then
|
if(k.eq.1) then
|
||||||
xti1=xti
|
xti1=xti
|
||||||
yti1=yti
|
yti1=yti
|
||||||
zti1=zti
|
zti1=zti
|
||||||
rti1=rti
|
rti1=rti
|
||||||
end if
|
xdpsi1=xdpsi
|
||||||
|
ydpsi1=ydpsi
|
||||||
|
zdpsi1=zdpsi
|
||||||
|
end if
|
||||||
|
c
|
||||||
|
if(istep.eq.0)
|
||||||
|
. write(10,111) istep,j,k,xti,yti,zti,dirxt,diryt,dirzt,dir
|
||||||
|
|
||||||
if(.not.(iproj.eq.0.and.j.eq.1))
|
if((iproj.eq.1).or.(iproj.eq.0.and.j.eq.nrayr))
|
||||||
. write(nfile,111) istep,j,k,xti,yti,zti,rti,psinv11
|
. write(nfile,111) istep,j,k,xti,yti,zti,rti,
|
||||||
c
|
. xdpsi,ydpsi,zdpsi
|
||||||
if(rti.ge.rtimx.and.j.eq.nrayr) rtimx=rti
|
|
||||||
if(rti.le.rtimn.and.j.eq.nrayr) rtimn=rti
|
|
||||||
c
|
c
|
||||||
|
x4m=x4m+xti**4
|
||||||
|
x3ym=x3ym+xti**3*yti
|
||||||
|
x2y2m=x2y2m+xti**2*yti**2
|
||||||
|
xy3m=xy3m+xti*yti**3
|
||||||
|
y4m=y4m+yti**4
|
||||||
|
x2zrm=x2zrm+xti**2*zti
|
||||||
|
xyzrm=xyzrm+xti*yti*zti
|
||||||
|
y2zrm=y2zrm+yti**2*zti
|
||||||
|
x2zwm=x2zwm+xti**2*zwj
|
||||||
|
xyzwm=xyzwm+xti*yti*zwj
|
||||||
|
y2zwm=y2zwm+yti**2*zwj
|
||||||
|
z2wm=z2wm+zwj*zwj
|
||||||
|
z2rm=z2rm+zti*zti
|
||||||
end do
|
end do
|
||||||
c
|
c
|
||||||
c if(.not.(iproj.eq.0.and.j.eq.1))
|
if((iproj.eq.1.and.j.gt.1).or.(iproj.eq.0.and.j.eq.nrayr))
|
||||||
c . write(nfile,111) istep,j,k,xti,yti,zti,rti,psinv11
|
. write(nfile,111) istep,j,k,xti1,yti1,zti1,rti1,
|
||||||
|
. xdpsi1,ydpsi1,zdpsi1
|
||||||
if(iproj.eq.1) write(nfile,*) ' '
|
if(iproj.eq.1) write(nfile,*) ' '
|
||||||
end do
|
end do
|
||||||
c
|
c
|
||||||
write(nfile,*) ' '
|
write(nfile,*) ' '
|
||||||
c
|
c
|
||||||
write(12,99) istep,st,psinv11,rtimn,rtimx
|
c computation of the SI paraboloid
|
||||||
|
c
|
||||||
|
denw= x2y2m**3 + x4m*xy3m**2 + x3ym**2*y4m -
|
||||||
|
. x2y2m*(2*x3ym*xy3m + x4m*y4m)
|
||||||
|
aaw= -(x2y2m*xy3m*xyzwm) + x2y2m**2*y2zwm -
|
||||||
|
. x3ym*xy3m*y2zwm + x3ym*xyzwm*y4m +
|
||||||
|
. x2zwm*(xy3m**2 - x2y2m*y4m)
|
||||||
|
ccw= x2y2m**2*xyzwm + x4m*xy3m*y2zwm -
|
||||||
|
. x2y2m*(x2zwm*xy3m + x3ym*y2zwm) + x2zwm*x3ym*y4m -
|
||||||
|
. x4m*xyzwm*y4m
|
||||||
|
bbw= x2y2m**2*x2zwm - x2zwm*x3ym*xy3m + x4m*xy3m*xyzwm +
|
||||||
|
. x3ym**2*y2zwm - x2y2m*(x3ym*xyzwm + x4m*y2zwm)
|
||||||
|
aaw=aaw/denw
|
||||||
|
bbw=bbw/denw
|
||||||
|
ccw=ccw/denw
|
||||||
|
phiw = 0.5d0*atan(ccw/(aaw-bbw+1.0d-32))
|
||||||
|
phiwdeg=phiw*180.d0/pi
|
||||||
|
aaaw = 0.5d0*(aaw+bbw + (aaw-bbw)/cos(2.0d0*phiw))
|
||||||
|
bbbw = aaw+bbw - aaaw
|
||||||
|
errw= 2.0d0*aaw*bbw*x2y2m + ccw**2*x2y2m - 2.0d0*aaw*x2zwm +
|
||||||
|
- 2.0d0*aaw*ccw*x3ym + aaw**2*x4m + 2.0d0*bbw*ccw*xy3m -
|
||||||
|
- 2.0d0*ccw*xyzwm - 2.0d0*bbw*y2zwm + bbw**2*y4m + z2wm
|
||||||
|
errw=sqrt(abs(errw)/dble((nrayr-1)*nrayth))
|
||||||
|
wcsi = 1.0d0/sqrt(aaaw)
|
||||||
|
weta = 1.0d0/sqrt(bbbw)
|
||||||
|
c
|
||||||
|
c computation of paraboloid Sr=z-(ax^2+cxy+by^2)=const
|
||||||
|
c
|
||||||
|
denr= x2y2m**3 + x4m*xy3m**2 + x3ym**2*y4m -
|
||||||
|
. x2y2m*(2*x3ym*xy3m + x4m*y4m)
|
||||||
|
aar= -(x2y2m*xy3m*xyzrm) + x2y2m**2*y2zrm -
|
||||||
|
. x3ym*xy3m*y2zrm + x3ym*xyzrm*y4m +
|
||||||
|
. x2zrm*(xy3m**2 - x2y2m*y4m)
|
||||||
|
ccr= x2y2m**2*xyzrm + x4m*xy3m*y2zrm -
|
||||||
|
. x2y2m*(x2zrm*xy3m + x3ym*y2zrm) + x2zrm*x3ym*y4m -
|
||||||
|
. x4m*xyzrm*y4m
|
||||||
|
bbr= x2y2m**2*x2zrm - x2zrm*x3ym*xy3m + x4m*xy3m*xyzrm +
|
||||||
|
. x3ym**2*y2zrm - x2y2m*(x3ym*xyzrm + x4m*y2zrm)
|
||||||
|
aar=aar/denr
|
||||||
|
bbr=bbr/denr
|
||||||
|
ccr=ccr/denr
|
||||||
|
phir = 0.5d0*atan(ccr/(aar-bbr+1.0d-32))
|
||||||
|
phirdeg=phir*180.d0/pi
|
||||||
|
aaar = 0.5d0*(aar+bbr + (aar-bbr)/cos(2.0d0*phir))
|
||||||
|
bbbr = aar+bbr - aaar
|
||||||
|
errr= 2.0d0*aar*bbr*x2y2m + ccr**2*x2y2m - 2.0d0*aar*x2zrm +
|
||||||
|
- 2.0d0*aar*ccr*x3ym + aar**2*x4m + 2.0d0*bbr*ccr*xy3m -
|
||||||
|
- 2.0d0*ccr*xyzrm - 2.0d0*bbr*y2zrm + bbr**2*y4m + z2rm
|
||||||
|
errr=sqrt(abs(errr)/dble((nrayr-1)*nrayth))
|
||||||
|
rcicsi=-2.0d0*aaar
|
||||||
|
rcieta=-2.0d0*bbbr
|
||||||
|
c
|
||||||
|
c computation of Fourier Transform of exp[i k0 (Sr + i Si)]
|
||||||
|
c k spectrum
|
||||||
|
c
|
||||||
|
aar=-ak0*aar
|
||||||
|
bbr=-ak0*bbr
|
||||||
|
ccr=-ak0*ccr
|
||||||
|
aac=aar+ui*aaw
|
||||||
|
bbc=bbr+ui*bbw
|
||||||
|
ccc=ccr+ui*ccw
|
||||||
|
ddc=ccc*ccc-4.0d0*aac*bbc
|
||||||
|
aak=bbc/ddc
|
||||||
|
bbk=aac/ddc
|
||||||
|
cck=-ccc/ddc
|
||||||
|
akw=dimag(aak)
|
||||||
|
bkw=dimag(bbk)
|
||||||
|
ckw=dimag(cck)
|
||||||
|
dkpar2=4.0d0*(bxti**2*bkw+byti**2*akw-bxti*byti*ckw)/
|
||||||
|
. (4.0d0*akw*bkw-ckw*ckw)
|
||||||
|
phik = 0.5d0*atan(ckw/(akw-bkw+1.0d-32))
|
||||||
|
aakw = 0.5d0*(akw+bkw + (akw-bkw)/cos(2.0d0*phik))
|
||||||
|
bbkw = akw+bkw - aakw
|
||||||
|
dk1 = 1.0d0/sqrt(aakw)
|
||||||
|
dk2 = 1.0d0/sqrt(bbkw)
|
||||||
|
c co = cos(phik)
|
||||||
|
c si = sin(phik)
|
||||||
|
c bxtir= co*bxti+si*byti
|
||||||
|
c bytir=-si*bxti+co*byti
|
||||||
|
c dkpar2=bxtir**2/aakw+bytir**2/bbkw
|
||||||
|
dkpar=sqrt(dkpar2)
|
||||||
|
dnpar=dkpar/ak0
|
||||||
|
dnpara=0.5d0*dnpar
|
||||||
|
c
|
||||||
|
c spectral distribution of electric field E(k):
|
||||||
|
c exp[-(N//-N//0)^2/(DNPAR^2)]
|
||||||
|
c dnpar^2 = 2 (Delta N//)^2 , Maj !!!
|
||||||
|
c
|
||||||
|
c in vacuum dkpar^2 = 4/w0^2
|
||||||
|
c
|
||||||
|
c in common dnpara=dnpar/2 to match westerhof Delta function
|
||||||
|
c Delta -> exp[-(...)^2/(2*DeltaQ)]
|
||||||
|
c
|
||||||
|
write(12,99) istep,st,
|
||||||
|
. wcsi,weta,phiwdeg,rcicsi,rcieta,phirdeg,errw,errr,
|
||||||
|
. dk1,dk2,dkpar,phik*180.0d0/pi,dnpar
|
||||||
|
c
|
||||||
return
|
return
|
||||||
99 format(i5,12(1x,e16.8e3))
|
99 format(i5,22(1x,e16.8e3))
|
||||||
111 format(3i5,12(1x,e16.8e3))
|
111 format(3i5,12(1x,e16.8e3))
|
||||||
end
|
end
|
||||||
|
|
||||||
c
|
c
|
||||||
c
|
c
|
||||||
c
|
c
|
||||||
|
Loading…
Reference in New Issue
Block a user