dispersion module added in nocommon branch

This commit is contained in:
Lorenzo Figini 2015-05-25 15:30:00 +00:00
parent 20ce211eef
commit 97c9eff345
5 changed files with 1797 additions and 1589 deletions

View File

@ -3,7 +3,7 @@ EXE=gray
# Objects list
MAINOBJ=gray.o
OTHOBJ=dqagmv.o grayl.o reflections.o green_func_p.o \
OTHOBJ=dispersion.o calcei_mod.o dqagmv.o grayl.o reflections.o green_func_p.o \
const_and_precisions.o
# Alternative search paths
@ -23,9 +23,10 @@ $(EXE): $(MAINOBJ) $(OTHOBJ)
$(FC) $(FFLAGS) -o $@ $^
# Dependencies on modules
gray.o: dqagmv.o green_func_p.o reflections.o const_and_precisions.o
gray.o: dispersion.o dqagmv.o green_func_p.o reflections.o const_and_precisions.o
green_func_p.o: const_and_precisions.o
reflections.o: const_and_precisions.o
dispersion.o: calcei_mod.o dqagmv.o
# General object compilation command
%.o: %.f90

608
src/calcei_mod.f90 Normal file
View File

@ -0,0 +1,608 @@
module calcei_mod
contains
! ======================================================================
! nist guide to available math software.
! fullsource for module ei from package specfun.
! retrieved from netlib on fri mar 26 05:52:39 1999.
! ======================================================================
subroutine calcei(arg,result,int)
!----------------------------------------------------------------------
!
! this fortran 77 packet computes the exponential integrals eint(x),
! e1(x), and exp(-x)*eint(x) for real arguments x where
!
! integral (from t=-infinity to t=x) (exp(t)/t), x > 0,
! eint(x) =
! -integral (from t=-x to t=infinity) (exp(t)/t), x < 0,
!
! and where the first integral is a principal value integral.
! the packet contains three function type subprograms: ei, eone,
! and expei; and one subroutine type subprogram: calcei. the
! calling statements for the primary entries are
!
! y = eint(x), where x .ne. 0,
!
! y = eone(x), where x .gt. 0,
! and
! y = expei(x), where x .ne. 0,
!
! and where the entry points correspond to the functions eint(x),
! e1(x), and exp(-x)*eint(x), respectively. the routine calcei
! is intended for internal packet use only, all computations within
! the packet being concentrated in this routine. the function
! subprograms invoke calcei with the fortran statement
! call calcei(arg,result,int)
! where the parameter usage is as follows
!
! function parameters for calcei
! call arg result int
!
! eint(x) x .ne. 0 eint(x) 1
! eone(x) x .gt. 0 -eint(-x) 2
! expei(x) x .ne. 0 exp(-x)*eint(x) 3
!----------------------------------------------------------------------
integer i,int
double precision&
& a,arg,b,c,d,exp40,e,ei,f,four,fourty,frac,half,one,p,&
& plg,px,p037,p1,p2,q,qlg,qx,q1,q2,r,result,s,six,sump,&
& sumq,t,three,twelve,two,two4,w,x,xbig,xinf,xmax,xmx0,&
& x0,x01,x02,x11,y,ysq,zero
dimension a(7),b(6),c(9),d(9),e(10),f(10),p(10),q(10),r(10),&
& s(9),p1(10),q1(9),p2(10),q2(9),plg(4),qlg(4),px(10),qx(10)
!----------------------------------------------------------------------
! mathematical constants
! exp40 = exp(40)
! x0 = zero of ei
! x01/x11 + x02 = zero of ei to extra precision
!----------------------------------------------------------------------
data zero,p037,half,one,two/0.0d0,0.037d0,0.5d0,1.0d0,2.0d0/,&
& three,four,six,twelve,two4/3.0d0,4.0d0,6.0d0,12.d0,24.0d0/,&
& fourty,exp40/40.0d0,2.3538526683701998541d17/,&
& x01,x11,x02/381.5d0,1024.0d0,-5.1182968633365538008d-5/,&
& x0/3.7250741078136663466d-1/
!----------------------------------------------------------------------
! machine-dependent constants
!----------------------------------------------------------------------
data xinf/1.79d+308/,xmax/716.351d0/,xbig/701.84d0/
!----------------------------------------------------------------------
! coefficients for -1.0 <= x < 0.0
!----------------------------------------------------------------------
data a/1.1669552669734461083368d2, 2.1500672908092918123209d3,&
& 1.5924175980637303639884d4, 8.9904972007457256553251d4,&
& 1.5026059476436982420737d5,-1.4815102102575750838086d5,&
& 5.0196785185439843791020d0/
data b/4.0205465640027706061433d1, 7.5043163907103936624165d2,&
& 8.1258035174768735759855d3, 5.2440529172056355429883d4,&
& 1.8434070063353677359298d5, 2.5666493484897117319268d5/
!----------------------------------------------------------------------
! coefficients for -4.0 <= x < -1.0
!----------------------------------------------------------------------
data c/3.828573121022477169108d-1, 1.107326627786831743809d+1,&
& 7.246689782858597021199d+1, 1.700632978311516129328d+2,&
& 1.698106763764238382705d+2, 7.633628843705946890896d+1,&
& 1.487967702840464066613d+1, 9.999989642347613068437d-1,&
& 1.737331760720576030932d-8/
data d/8.258160008564488034698d-2, 4.344836335509282083360d+0,&
& 4.662179610356861756812d+1, 1.775728186717289799677d+2,&
& 2.953136335677908517423d+2, 2.342573504717625153053d+2,&
& 9.021658450529372642314d+1, 1.587964570758947927903d+1,&
& 1.000000000000000000000d+0/
!----------------------------------------------------------------------
! coefficients for x < -4.0
!----------------------------------------------------------------------
data e/1.3276881505637444622987d+2,3.5846198743996904308695d+4,&
& 1.7283375773777593926828d+5,2.6181454937205639647381d+5,&
& 1.7503273087497081314708d+5,5.9346841538837119172356d+4,&
& 1.0816852399095915622498d+4,1.0611777263550331766871d03,&
& 5.2199632588522572481039d+1,9.9999999999999999087819d-1/
data f/3.9147856245556345627078d+4,2.5989762083608489777411d+5,&
& 5.5903756210022864003380d+5,5.4616842050691155735758d+5,&
& 2.7858134710520842139357d+5,7.9231787945279043698718d+4,&
& 1.2842808586627297365998d+4,1.1635769915320848035459d+3,&
& 5.4199632588522559414924d+1,1.0d0/
!----------------------------------------------------------------------
! coefficients for rational approximation to ln(x/a), |1-x/a| < .1
!----------------------------------------------------------------------
data plg/-2.4562334077563243311d+01,2.3642701335621505212d+02,&
& -5.4989956895857911039d+02,3.5687548468071500413d+02/
data qlg/-3.5553900764052419184d+01,1.9400230218539473193d+02,&
& -3.3442903192607538956d+02,1.7843774234035750207d+02/
!----------------------------------------------------------------------
! coefficients for 0.0 < x < 6.0,
! ratio of chebyshev polynomials
!----------------------------------------------------------------------
data p/-1.2963702602474830028590d01,-1.2831220659262000678155d03,&
& -1.4287072500197005777376d04,-1.4299841572091610380064d06,&
& -3.1398660864247265862050d05,-3.5377809694431133484800d08,&
& 3.1984354235237738511048d08,-2.5301823984599019348858d10,&
& 1.2177698136199594677580d10,-2.0829040666802497120940d11/
data q/ 7.6886718750000000000000d01,-5.5648470543369082846819d03,&
& 1.9418469440759880361415d05,-4.2648434812177161405483d06,&
& 6.4698830956576428587653d07,-7.0108568774215954065376d08,&
& 5.4229617984472955011862d09,-2.8986272696554495342658d10,&
& 9.8900934262481749439886d10,-8.9673749185755048616855d10/
!----------------------------------------------------------------------
! j-fraction coefficients for 6.0 <= x < 12.0
!----------------------------------------------------------------------
data r/-2.645677793077147237806d00,-2.378372882815725244124d00,&
& -2.421106956980653511550d01, 1.052976392459015155422d01,&
& 1.945603779539281810439d01,-3.015761863840593359165d01,&
& 1.120011024227297451523d01,-3.988850730390541057912d00,&
& 9.565134591978630774217d00, 9.981193787537396413219d-1/
data s/ 1.598517957704779356479d-4, 4.644185932583286942650d00,&
& 3.697412299772985940785d02,-8.791401054875438925029d00,&
& 7.608194509086645763123d02, 2.852397548119248700147d01,&
& 4.731097187816050252967d02,-2.369210235636181001661d02,&
& 1.249884822712447891440d00/
!----------------------------------------------------------------------
! j-fraction coefficients for 12.0 <= x < 24.0
!----------------------------------------------------------------------
data p1/-1.647721172463463140042d00,-1.860092121726437582253d01,&
& -1.000641913989284829961d01,-2.105740799548040450394d01,&
& -9.134835699998742552432d-1,-3.323612579343962284333d01,&
& 2.495487730402059440626d01, 2.652575818452799819855d01,&
& -1.845086232391278674524d00, 9.999933106160568739091d-1/
data q1/ 9.792403599217290296840d01, 6.403800405352415551324d01,&
& 5.994932325667407355255d01, 2.538819315630708031713d02,&
& 4.429413178337928401161d01, 1.192832423968601006985d03,&
& 1.991004470817742470726d02,-1.093556195391091143924d01,&
& 1.001533852045342697818d00/
!----------------------------------------------------------------------
! j-fraction coefficients for x .ge. 24.0
!----------------------------------------------------------------------
data p2/ 1.75338801265465972390d02,-2.23127670777632409550d02,&
& -1.81949664929868906455d01,-2.79798528624305389340d01,&
& -7.63147701620253630855d00,-1.52856623636929636839d01,&
& -7.06810977895029358836d00,-5.00006640413131002475d00,&
& -3.00000000320981265753d00, 1.00000000000000485503d00/
data q2/ 3.97845977167414720840d04, 3.97277109100414518365d00,&
& 1.37790390235747998793d02, 1.17179220502086455287d02,&
& 7.04831847180424675988d01,-1.20187763547154743238d01,&
& -7.99243595776339741065d00,-2.99999894040324959612d00,&
& 1.99999999999048104167d00/
!----------------------------------------------------------------------
x = arg
if (x .eq. zero) then
ei = -xinf
if (int .eq. 2) ei = -ei
else if ((x .lt. zero) .or. (int .eq. 2)) then
!----------------------------------------------------------------------
! calculate ei for negative argument or for e1.
!----------------------------------------------------------------------
y = abs(x)
if (y .le. one) then
sump = a(7) * y + a(1)
sumq = y + b(1)
do 110 i = 2, 6
sump = sump * y + a(i)
sumq = sumq * y + b(i)
110 continue
ei = log(y) - sump / sumq
if (int .eq. 3) ei = ei * exp(y)
else if (y .le. four) then
w = one / y
sump = c(1)
sumq = d(1)
do 130 i = 2, 9
sump = sump * w + c(i)
sumq = sumq * w + d(i)
130 continue
ei = - sump / sumq
if (int .ne. 3) ei = ei * exp(-y)
else
if ((y .gt. xbig) .and. (int .lt. 3)) then
ei = zero
else
w = one / y
sump = e(1)
sumq = f(1)
do 150 i = 2, 10
sump = sump * w + e(i)
sumq = sumq * w + f(i)
150 continue
ei = -w * (one - w * sump / sumq )
if (int .ne. 3) ei = ei * exp(-y)
end if
end if
if (int .eq. 2) ei = -ei
else if (x .lt. six) then
!----------------------------------------------------------------------
! to improve conditioning, rational approximations are expressed
! in terms of chebyshev polynomials for 0 <= x < 6, and in
! continued fraction form for larger x.
!----------------------------------------------------------------------
t = x + x
t = t / three - two
px(1) = zero
qx(1) = zero
px(2) = p(1)
qx(2) = q(1)
do 210 i = 2, 9
px(i+1) = t * px(i) - px(i-1) + p(i)
qx(i+1) = t * qx(i) - qx(i-1) + q(i)
210 continue
sump = half * t * px(10) - px(9) + p(10)
sumq = half * t * qx(10) - qx(9) + q(10)
frac = sump / sumq
xmx0 = (x - x01/x11) - x02
if (abs(xmx0) .ge. p037) then
ei = log(x/x0) + xmx0 * frac
if (int .eq. 3) ei = exp(-x) * ei
else
!----------------------------------------------------------------------
! special approximation to ln(x/x0) for x close to x0
!----------------------------------------------------------------------
y = xmx0 / (x + x0)
ysq = y*y
sump = plg(1)
sumq = ysq + qlg(1)
do 220 i = 2, 4
sump = sump*ysq + plg(i)
sumq = sumq*ysq + qlg(i)
220 continue
ei = (sump / (sumq*(x+x0)) + frac) * xmx0
if (int .eq. 3) ei = exp(-x) * ei
end if
else if (x .lt. twelve) then
frac = zero
do 230 i = 1, 9
frac = s(i) / (r(i) + x + frac)
230 continue
ei = (r(10) + frac) / x
if (int .ne. 3) ei = ei * exp(x)
else if (x .le. two4) then
frac = zero
do 240 i = 1, 9
frac = q1(i) / (p1(i) + x + frac)
240 continue
ei = (p1(10) + frac) / x
if (int .ne. 3) ei = ei * exp(x)
else
if ((x .ge. xmax) .and. (int .lt. 3)) then
ei = xinf
else
y = one / x
frac = zero
do 250 i = 1, 9
frac = q2(i) / (p2(i) + x + frac)
250 continue
frac = p2(10) + frac
ei = y + y * y * frac
if (int .ne. 3) then
if (x .le. xmax-two4) then
ei = ei * exp(x)
else
!----------------------------------------------------------------------
! calculation reformulated to avoid premature overflow
!----------------------------------------------------------------------
ei = (ei * exp(x-fourty)) * exp40
end if
end if
end if
end if
result = ei
return
!---------- last line of calcei ----------
end
function eint(x)
!--------------------------------------------------------------------
!
! this function program computes approximate values for the
! exponential integral eint(x), where x is real.
!
! author: w. j. cody
!
! latest modification: january 12, 1988
!
!--------------------------------------------------------------------
integer int
double precision eint, x, result
!--------------------------------------------------------------------
int = 1
call calcei(x,result,int)
eint = result
return
!---------- last line of ei ----------
end
function expei(x)
!--------------------------------------------------------------------
!
! this function program computes approximate values for the
! function exp(-x) * eint(x), where eint(x) is the exponential
! integral, and x is real.
!
! author: w. j. cody
!
! latest modification: january 12, 1988
!
!--------------------------------------------------------------------
integer int
double precision expei, x, result
!--------------------------------------------------------------------
int = 3
call calcei(x,result,int)
expei = result
return
!---------- last line of expei ----------
end
function eone(x)
!--------------------------------------------------------------------
!
! this function program computes approximate values for the
! exponential integral e1(x), where x is real.
!
! author: w. j. cody
!
! latest modification: january 12, 1988
!
!--------------------------------------------------------------------
integer int
double precision eone, x, result
!--------------------------------------------------------------------
int = 2
call calcei(x,result,int)
eone = result
return
!---------- last line of eone ----------
end
!
! calcei3 = calcei for int=3
!
! ======================================================================
subroutine calcei3(arg,result)
!----------------------------------------------------------------------
!
! this fortran 77 packet computes the exponential integrals eint(x),
! e1(x), and exp(-x)*eint(x) for real arguments x where
!
! integral (from t=-infinity to t=x) (exp(t)/t), x > 0,
! eint(x) =
! -integral (from t=-x to t=infinity) (exp(t)/t), x < 0,
!
! and where the first integral is a principal value integral.
! the packet contains three function type subprograms: ei, eone,
! and expei; and one subroutine type subprogram: calcei. the
! calling statements for the primary entries are
!
! y = eint(x), where x .ne. 0,
!
! y = eone(x), where x .gt. 0,
! and
! y = expei(x), where x .ne. 0,
!
! and where the entry points correspond to the functions eint(x),
! e1(x), and exp(-x)*eint(x), respectively. the routine calcei
! is intended for internal packet use only, all computations within
! the packet being concentrated in this routine. the function
! subprograms invoke calcei with the fortran statement
! call calcei(arg,result,int)
! where the parameter usage is as follows
!
! function parameters for calcei
! call arg result int
!
! eint(x) x .ne. 0 eint(x) 1
! eone(x) x .gt. 0 -eint(-x) 2
! expei(x) x .ne. 0 exp(-x)*eint(x) 3
!----------------------------------------------------------------------
integer i,int
double precision&
& a,arg,b,c,d,exp40,e,ei,f,four,fourty,frac,half,one,p,&
& plg,px,p037,p1,p2,q,qlg,qx,q1,q2,r,result,s,six,sump,&
& sumq,t,three,twelve,two,two4,w,x,xbig,xinf,xmax,xmx0,&
& x0,x01,x02,x11,y,ysq,zero
dimension a(7),b(6),c(9),d(9),e(10),f(10),p(10),q(10),r(10),&
& s(9),p1(10),q1(9),p2(10),q2(9),plg(4),qlg(4),px(10),qx(10)
!----------------------------------------------------------------------
! mathematical constants
! exp40 = exp(40)
! x0 = zero of ei
! x01/x11 + x02 = zero of ei to extra precision
!----------------------------------------------------------------------
data zero,p037,half,one,two/0.0d0,0.037d0,0.5d0,1.0d0,2.0d0/,&
& three,four,six,twelve,two4/3.0d0,4.0d0,6.0d0,12.d0,24.0d0/,&
& fourty,exp40/40.0d0,2.3538526683701998541d17/,&
& x01,x11,x02/381.5d0,1024.0d0,-5.1182968633365538008d-5/,&
& x0/3.7250741078136663466d-1/
!----------------------------------------------------------------------
! machine-dependent constants
!----------------------------------------------------------------------
data xinf/1.79d+308/,xmax/716.351d0/,xbig/701.84d0/
!----------------------------------------------------------------------
! coefficients for -1.0 <= x < 0.0
!----------------------------------------------------------------------
data a/1.1669552669734461083368d2, 2.1500672908092918123209d3,&
& 1.5924175980637303639884d4, 8.9904972007457256553251d4,&
& 1.5026059476436982420737d5,-1.4815102102575750838086d5,&
& 5.0196785185439843791020d0/
data b/4.0205465640027706061433d1, 7.5043163907103936624165d2,&
& 8.1258035174768735759855d3, 5.2440529172056355429883d4,&
& 1.8434070063353677359298d5, 2.5666493484897117319268d5/
!----------------------------------------------------------------------
! coefficients for -4.0 <= x < -1.0
!----------------------------------------------------------------------
data c/3.828573121022477169108d-1, 1.107326627786831743809d+1,&
& 7.246689782858597021199d+1, 1.700632978311516129328d+2,&
& 1.698106763764238382705d+2, 7.633628843705946890896d+1,&
& 1.487967702840464066613d+1, 9.999989642347613068437d-1,&
& 1.737331760720576030932d-8/
data d/8.258160008564488034698d-2, 4.344836335509282083360d+0,&
& 4.662179610356861756812d+1, 1.775728186717289799677d+2,&
& 2.953136335677908517423d+2, 2.342573504717625153053d+2,&
& 9.021658450529372642314d+1, 1.587964570758947927903d+1,&
& 1.000000000000000000000d+0/
!----------------------------------------------------------------------
! coefficients for x < -4.0
!----------------------------------------------------------------------
data e/1.3276881505637444622987d+2,3.5846198743996904308695d+4,&
& 1.7283375773777593926828d+5,2.6181454937205639647381d+5,&
& 1.7503273087497081314708d+5,5.9346841538837119172356d+4,&
& 1.0816852399095915622498d+4,1.0611777263550331766871d03,&
& 5.2199632588522572481039d+1,9.9999999999999999087819d-1/
data f/3.9147856245556345627078d+4,2.5989762083608489777411d+5,&
& 5.5903756210022864003380d+5,5.4616842050691155735758d+5,&
& 2.7858134710520842139357d+5,7.9231787945279043698718d+4,&
& 1.2842808586627297365998d+4,1.1635769915320848035459d+3,&
& 5.4199632588522559414924d+1,1.0d0/
!----------------------------------------------------------------------
! coefficients for rational approximation to ln(x/a), |1-x/a| < .1
!----------------------------------------------------------------------
data plg/-2.4562334077563243311d+01,2.3642701335621505212d+02,&
& -5.4989956895857911039d+02,3.5687548468071500413d+02/
data qlg/-3.5553900764052419184d+01,1.9400230218539473193d+02,&
& -3.3442903192607538956d+02,1.7843774234035750207d+02/
!----------------------------------------------------------------------
! coefficients for 0.0 < x < 6.0,
! ratio of chebyshev polynomials
!----------------------------------------------------------------------
data p/-1.2963702602474830028590d01,-1.2831220659262000678155d03,&
& -1.4287072500197005777376d04,-1.4299841572091610380064d06,&
& -3.1398660864247265862050d05,-3.5377809694431133484800d08,&
& 3.1984354235237738511048d08,-2.5301823984599019348858d10,&
& 1.2177698136199594677580d10,-2.0829040666802497120940d11/
data q/ 7.6886718750000000000000d01,-5.5648470543369082846819d03,&
& 1.9418469440759880361415d05,-4.2648434812177161405483d06,&
& 6.4698830956576428587653d07,-7.0108568774215954065376d08,&
& 5.4229617984472955011862d09,-2.8986272696554495342658d10,&
& 9.8900934262481749439886d10,-8.9673749185755048616855d10/
!----------------------------------------------------------------------
! j-fraction coefficients for 6.0 <= x < 12.0
!----------------------------------------------------------------------
data r/-2.645677793077147237806d00,-2.378372882815725244124d00,&
& -2.421106956980653511550d01, 1.052976392459015155422d01,&
& 1.945603779539281810439d01,-3.015761863840593359165d01,&
& 1.120011024227297451523d01,-3.988850730390541057912d00,&
& 9.565134591978630774217d00, 9.981193787537396413219d-1/
data s/ 1.598517957704779356479d-4, 4.644185932583286942650d00,&
& 3.697412299772985940785d02,-8.791401054875438925029d00,&
& 7.608194509086645763123d02, 2.852397548119248700147d01,&
& 4.731097187816050252967d02,-2.369210235636181001661d02,&
& 1.249884822712447891440d00/
!----------------------------------------------------------------------
! j-fraction coefficients for 12.0 <= x < 24.0
!----------------------------------------------------------------------
data p1/-1.647721172463463140042d00,-1.860092121726437582253d01,&
& -1.000641913989284829961d01,-2.105740799548040450394d01,&
& -9.134835699998742552432d-1,-3.323612579343962284333d01,&
& 2.495487730402059440626d01, 2.652575818452799819855d01,&
& -1.845086232391278674524d00, 9.999933106160568739091d-1/
data q1/ 9.792403599217290296840d01, 6.403800405352415551324d01,&
& 5.994932325667407355255d01, 2.538819315630708031713d02,&
& 4.429413178337928401161d01, 1.192832423968601006985d03,&
& 1.991004470817742470726d02,-1.093556195391091143924d01,&
& 1.001533852045342697818d00/
!----------------------------------------------------------------------
! j-fraction coefficients for x .ge. 24.0
!----------------------------------------------------------------------
data p2/ 1.75338801265465972390d02,-2.23127670777632409550d02,&
& -1.81949664929868906455d01,-2.79798528624305389340d01,&
& -7.63147701620253630855d00,-1.52856623636929636839d01,&
& -7.06810977895029358836d00,-5.00006640413131002475d00,&
& -3.00000000320981265753d00, 1.00000000000000485503d00/
data q2/ 3.97845977167414720840d04, 3.97277109100414518365d00,&
& 1.37790390235747998793d02, 1.17179220502086455287d02,&
& 7.04831847180424675988d01,-1.20187763547154743238d01,&
& -7.99243595776339741065d00,-2.99999894040324959612d00,&
& 1.99999999999048104167d00/
!----------------------------------------------------------------------
data int/ 3/
x = arg
if (x .eq. zero) then
ei = -xinf
else if ((x .lt. zero)) then
!----------------------------------------------------------------------
! calculate ei for negative argument or for e1.
!----------------------------------------------------------------------
y = abs(x)
if (y .le. one) then
sump = a(7) * y + a(1)
sumq = y + b(1)
do 110 i = 2, 6
sump = sump * y + a(i)
sumq = sumq * y + b(i)
110 continue
ei = (log(y) - sump / sumq ) * exp(y)
else if (y .le. four) then
w = one / y
sump = c(1)
sumq = d(1)
do 130 i = 2, 9
sump = sump * w + c(i)
sumq = sumq * w + d(i)
130 continue
ei = - sump / sumq
else
w = one / y
sump = e(1)
sumq = f(1)
do 150 i = 2, 10
sump = sump * w + e(i)
sumq = sumq * w + f(i)
150 continue
ei = -w * (one - w * sump / sumq )
end if
else if (x .lt. six) then
!----------------------------------------------------------------------
! to improve conditioning, rational approximations are expressed
! in terms of chebyshev polynomials for 0 <= x < 6, and in
! continued fraction form for larger x.
!----------------------------------------------------------------------
t = x + x
t = t / three - two
px(1) = zero
qx(1) = zero
px(2) = p(1)
qx(2) = q(1)
do 210 i = 2, 9
px(i+1) = t * px(i) - px(i-1) + p(i)
qx(i+1) = t * qx(i) - qx(i-1) + q(i)
210 continue
sump = half * t * px(10) - px(9) + p(10)
sumq = half * t * qx(10) - qx(9) + q(10)
frac = sump / sumq
xmx0 = (x - x01/x11) - x02
if (abs(xmx0) .ge. p037) then
ei = exp(-x) * ( log(x/x0) + xmx0 * frac )
else
!----------------------------------------------------------------------
! special approximation to ln(x/x0) for x close to x0
!----------------------------------------------------------------------
y = xmx0 / (x + x0)
ysq = y*y
sump = plg(1)
sumq = ysq + qlg(1)
do 220 i = 2, 4
sump = sump*ysq + plg(i)
sumq = sumq*ysq + qlg(i)
220 continue
ei = exp(-x) * (sump / (sumq*(x+x0)) + frac) * xmx0
end if
else if (x .lt. twelve) then
frac = zero
do 230 i = 1, 9
frac = s(i) / (r(i) + x + frac)
230 continue
ei = (r(10) + frac) / x
else if (x .le. two4) then
frac = zero
do 240 i = 1, 9
frac = q1(i) / (p1(i) + x + frac)
240 continue
ei = (p1(10) + frac) / x
else
y = one / x
frac = zero
do 250 i = 1, 9
frac = q2(i) / (p2(i) + x + frac)
250 continue
frac = p2(10) + frac
ei = y + y * y * frac
end if
result = ei
return
!---------- last line of calcei ----------
end
end module calcei_mod

1146
src/dispersion.f90 Normal file

File diff suppressed because it is too large Load Diff

1006
src/gray.f

File diff suppressed because it is too large Load Diff

View File

@ -257,6 +257,25 @@ c
end subroutine simpson
c
c
c
subroutine trapezoid(n,xi,fi,s)
c subroutine for integration with the trapezoidal rule.
c fi: integrand f(x); xi: abscissa x;
c s: integral Int_{xi(1)}^{xi(n)} f(x)dx
implicit none
integer n
real*8 xi(n),fi(n)
real*8 s
integer i
c
s = 0.0d0
do i = 1, n-1
s = s+(xi(i+1)-xi(i))*(fi(i+1)-fi(i))
end do
s = 0.5d0*s
end subroutine trapezoid
c
c
c spline routines: begin
c
c
@ -1633,608 +1652,6 @@ c
c
c
c
* ======================================================================
* nist guide to available math software.
* fullsource for module ei from package specfun.
* retrieved from netlib on fri mar 26 05:52:39 1999.
* ======================================================================
subroutine calcei(arg,result,int)
c----------------------------------------------------------------------
c
c this fortran 77 packet computes the exponential integrals ei(x),
c e1(x), and exp(-x)*ei(x) for real arguments x where
c
c integral (from t=-infinity to t=x) (exp(t)/t), x > 0,
c ei(x) =
c -integral (from t=-x to t=infinity) (exp(t)/t), x < 0,
c
c and where the first integral is a principal value integral.
c the packet contains three function type subprograms: ei, eone,
c and expei; and one subroutine type subprogram: calcei. the
c calling statements for the primary entries are
c
c y = ei(x), where x .ne. 0,
c
c y = eone(x), where x .gt. 0,
c and
c y = expei(x), where x .ne. 0,
c
c and where the entry points correspond to the functions ei(x),
c e1(x), and exp(-x)*ei(x), respectively. the routine calcei
c is intended for internal packet use only, all computations within
c the packet being concentrated in this routine. the function
c subprograms invoke calcei with the fortran statement
c call calcei(arg,result,int)
c where the parameter usage is as follows
c
c function parameters for calcei
c call arg result int
c
c ei(x) x .ne. 0 ei(x) 1
c eone(x) x .gt. 0 -ei(-x) 2
c expei(x) x .ne. 0 exp(-x)*ei(x) 3
c----------------------------------------------------------------------
integer i,int
double precision
1 a,arg,b,c,d,exp40,e,ei,f,four,fourty,frac,half,one,p,
2 plg,px,p037,p1,p2,q,qlg,qx,q1,q2,r,result,s,six,sump,
3 sumq,t,three,twelve,two,two4,w,x,xbig,xinf,xmax,xmx0,
4 x0,x01,x02,x11,y,ysq,zero
dimension a(7),b(6),c(9),d(9),e(10),f(10),p(10),q(10),r(10),
1 s(9),p1(10),q1(9),p2(10),q2(9),plg(4),qlg(4),px(10),qx(10)
c----------------------------------------------------------------------
c mathematical constants
c exp40 = exp(40)
c x0 = zero of ei
c x01/x11 + x02 = zero of ei to extra precision
c----------------------------------------------------------------------
data zero,p037,half,one,two/0.0d0,0.037d0,0.5d0,1.0d0,2.0d0/,
1 three,four,six,twelve,two4/3.0d0,4.0d0,6.0d0,12.d0,24.0d0/,
2 fourty,exp40/40.0d0,2.3538526683701998541d17/,
3 x01,x11,x02/381.5d0,1024.0d0,-5.1182968633365538008d-5/,
4 x0/3.7250741078136663466d-1/
c----------------------------------------------------------------------
c machine-dependent constants
c----------------------------------------------------------------------
data xinf/1.79d+308/,xmax/716.351d0/,xbig/701.84d0/
c----------------------------------------------------------------------
c coefficients for -1.0 <= x < 0.0
c----------------------------------------------------------------------
data a/1.1669552669734461083368d2, 2.1500672908092918123209d3,
1 1.5924175980637303639884d4, 8.9904972007457256553251d4,
2 1.5026059476436982420737d5,-1.4815102102575750838086d5,
3 5.0196785185439843791020d0/
data b/4.0205465640027706061433d1, 7.5043163907103936624165d2,
1 8.1258035174768735759855d3, 5.2440529172056355429883d4,
2 1.8434070063353677359298d5, 2.5666493484897117319268d5/
c----------------------------------------------------------------------
c coefficients for -4.0 <= x < -1.0
c----------------------------------------------------------------------
data c/3.828573121022477169108d-1, 1.107326627786831743809d+1,
1 7.246689782858597021199d+1, 1.700632978311516129328d+2,
2 1.698106763764238382705d+2, 7.633628843705946890896d+1,
3 1.487967702840464066613d+1, 9.999989642347613068437d-1,
4 1.737331760720576030932d-8/
data d/8.258160008564488034698d-2, 4.344836335509282083360d+0,
1 4.662179610356861756812d+1, 1.775728186717289799677d+2,
2 2.953136335677908517423d+2, 2.342573504717625153053d+2,
3 9.021658450529372642314d+1, 1.587964570758947927903d+1,
4 1.000000000000000000000d+0/
c----------------------------------------------------------------------
c coefficients for x < -4.0
c----------------------------------------------------------------------
data e/1.3276881505637444622987d+2,3.5846198743996904308695d+4,
1 1.7283375773777593926828d+5,2.6181454937205639647381d+5,
2 1.7503273087497081314708d+5,5.9346841538837119172356d+4,
3 1.0816852399095915622498d+4,1.0611777263550331766871d03,
4 5.2199632588522572481039d+1,9.9999999999999999087819d-1/
data f/3.9147856245556345627078d+4,2.5989762083608489777411d+5,
1 5.5903756210022864003380d+5,5.4616842050691155735758d+5,
2 2.7858134710520842139357d+5,7.9231787945279043698718d+4,
3 1.2842808586627297365998d+4,1.1635769915320848035459d+3,
4 5.4199632588522559414924d+1,1.0d0/
c----------------------------------------------------------------------
c coefficients for rational approximation to ln(x/a), |1-x/a| < .1
c----------------------------------------------------------------------
data plg/-2.4562334077563243311d+01,2.3642701335621505212d+02,
1 -5.4989956895857911039d+02,3.5687548468071500413d+02/
data qlg/-3.5553900764052419184d+01,1.9400230218539473193d+02,
1 -3.3442903192607538956d+02,1.7843774234035750207d+02/
c----------------------------------------------------------------------
c coefficients for 0.0 < x < 6.0,
c ratio of chebyshev polynomials
c----------------------------------------------------------------------
data p/-1.2963702602474830028590d01,-1.2831220659262000678155d03,
1 -1.4287072500197005777376d04,-1.4299841572091610380064d06,
2 -3.1398660864247265862050d05,-3.5377809694431133484800d08,
3 3.1984354235237738511048d08,-2.5301823984599019348858d10,
4 1.2177698136199594677580d10,-2.0829040666802497120940d11/
data q/ 7.6886718750000000000000d01,-5.5648470543369082846819d03,
1 1.9418469440759880361415d05,-4.2648434812177161405483d06,
2 6.4698830956576428587653d07,-7.0108568774215954065376d08,
3 5.4229617984472955011862d09,-2.8986272696554495342658d10,
4 9.8900934262481749439886d10,-8.9673749185755048616855d10/
c----------------------------------------------------------------------
c j-fraction coefficients for 6.0 <= x < 12.0
c----------------------------------------------------------------------
data r/-2.645677793077147237806d00,-2.378372882815725244124d00,
1 -2.421106956980653511550d01, 1.052976392459015155422d01,
2 1.945603779539281810439d01,-3.015761863840593359165d01,
3 1.120011024227297451523d01,-3.988850730390541057912d00,
4 9.565134591978630774217d00, 9.981193787537396413219d-1/
data s/ 1.598517957704779356479d-4, 4.644185932583286942650d00,
1 3.697412299772985940785d02,-8.791401054875438925029d00,
2 7.608194509086645763123d02, 2.852397548119248700147d01,
3 4.731097187816050252967d02,-2.369210235636181001661d02,
4 1.249884822712447891440d00/
c----------------------------------------------------------------------
c j-fraction coefficients for 12.0 <= x < 24.0
c----------------------------------------------------------------------
data p1/-1.647721172463463140042d00,-1.860092121726437582253d01,
1 -1.000641913989284829961d01,-2.105740799548040450394d01,
2 -9.134835699998742552432d-1,-3.323612579343962284333d01,
3 2.495487730402059440626d01, 2.652575818452799819855d01,
4 -1.845086232391278674524d00, 9.999933106160568739091d-1/
data q1/ 9.792403599217290296840d01, 6.403800405352415551324d01,
1 5.994932325667407355255d01, 2.538819315630708031713d02,
2 4.429413178337928401161d01, 1.192832423968601006985d03,
3 1.991004470817742470726d02,-1.093556195391091143924d01,
4 1.001533852045342697818d00/
c----------------------------------------------------------------------
c j-fraction coefficients for x .ge. 24.0
c----------------------------------------------------------------------
data p2/ 1.75338801265465972390d02,-2.23127670777632409550d02,
1 -1.81949664929868906455d01,-2.79798528624305389340d01,
2 -7.63147701620253630855d00,-1.52856623636929636839d01,
3 -7.06810977895029358836d00,-5.00006640413131002475d00,
4 -3.00000000320981265753d00, 1.00000000000000485503d00/
data q2/ 3.97845977167414720840d04, 3.97277109100414518365d00,
1 1.37790390235747998793d02, 1.17179220502086455287d02,
2 7.04831847180424675988d01,-1.20187763547154743238d01,
3 -7.99243595776339741065d00,-2.99999894040324959612d00,
4 1.99999999999048104167d00/
c----------------------------------------------------------------------
x = arg
if (x .eq. zero) then
ei = -xinf
if (int .eq. 2) ei = -ei
else if ((x .lt. zero) .or. (int .eq. 2)) then
c----------------------------------------------------------------------
c calculate ei for negative argument or for e1.
c----------------------------------------------------------------------
y = abs(x)
if (y .le. one) then
sump = a(7) * y + a(1)
sumq = y + b(1)
do 110 i = 2, 6
sump = sump * y + a(i)
sumq = sumq * y + b(i)
110 continue
ei = log(y) - sump / sumq
if (int .eq. 3) ei = ei * exp(y)
else if (y .le. four) then
w = one / y
sump = c(1)
sumq = d(1)
do 130 i = 2, 9
sump = sump * w + c(i)
sumq = sumq * w + d(i)
130 continue
ei = - sump / sumq
if (int .ne. 3) ei = ei * exp(-y)
else
if ((y .gt. xbig) .and. (int .lt. 3)) then
ei = zero
else
w = one / y
sump = e(1)
sumq = f(1)
do 150 i = 2, 10
sump = sump * w + e(i)
sumq = sumq * w + f(i)
150 continue
ei = -w * (one - w * sump / sumq )
if (int .ne. 3) ei = ei * exp(-y)
end if
end if
if (int .eq. 2) ei = -ei
else if (x .lt. six) then
c----------------------------------------------------------------------
c to improve conditioning, rational approximations are expressed
c in terms of chebyshev polynomials for 0 <= x < 6, and in
c continued fraction form for larger x.
c----------------------------------------------------------------------
t = x + x
t = t / three - two
px(1) = zero
qx(1) = zero
px(2) = p(1)
qx(2) = q(1)
do 210 i = 2, 9
px(i+1) = t * px(i) - px(i-1) + p(i)
qx(i+1) = t * qx(i) - qx(i-1) + q(i)
210 continue
sump = half * t * px(10) - px(9) + p(10)
sumq = half * t * qx(10) - qx(9) + q(10)
frac = sump / sumq
xmx0 = (x - x01/x11) - x02
if (abs(xmx0) .ge. p037) then
ei = log(x/x0) + xmx0 * frac
if (int .eq. 3) ei = exp(-x) * ei
else
c----------------------------------------------------------------------
c special approximation to ln(x/x0) for x close to x0
c----------------------------------------------------------------------
y = xmx0 / (x + x0)
ysq = y*y
sump = plg(1)
sumq = ysq + qlg(1)
do 220 i = 2, 4
sump = sump*ysq + plg(i)
sumq = sumq*ysq + qlg(i)
220 continue
ei = (sump / (sumq*(x+x0)) + frac) * xmx0
if (int .eq. 3) ei = exp(-x) * ei
end if
else if (x .lt. twelve) then
frac = zero
do 230 i = 1, 9
frac = s(i) / (r(i) + x + frac)
230 continue
ei = (r(10) + frac) / x
if (int .ne. 3) ei = ei * exp(x)
else if (x .le. two4) then
frac = zero
do 240 i = 1, 9
frac = q1(i) / (p1(i) + x + frac)
240 continue
ei = (p1(10) + frac) / x
if (int .ne. 3) ei = ei * exp(x)
else
if ((x .ge. xmax) .and. (int .lt. 3)) then
ei = xinf
else
y = one / x
frac = zero
do 250 i = 1, 9
frac = q2(i) / (p2(i) + x + frac)
250 continue
frac = p2(10) + frac
ei = y + y * y * frac
if (int .ne. 3) then
if (x .le. xmax-two4) then
ei = ei * exp(x)
else
c----------------------------------------------------------------------
c calculation reformulated to avoid premature overflow
c----------------------------------------------------------------------
ei = (ei * exp(x-fourty)) * exp40
end if
end if
end if
end if
result = ei
return
c---------- last line of calcei ----------
end
function ei(x)
c--------------------------------------------------------------------
c
c this function program computes approximate values for the
c exponential integral ei(x), where x is real.
c
c author: w. j. cody
c
c latest modification: january 12, 1988
c
c--------------------------------------------------------------------
integer int
double precision ei, x, result
c--------------------------------------------------------------------
int = 1
call calcei(x,result,int)
ei = result
return
c---------- last line of ei ----------
end
function expei(x)
c--------------------------------------------------------------------
c
c this function program computes approximate values for the
c function exp(-x) * ei(x), where ei(x) is the exponential
c integral, and x is real.
c
c author: w. j. cody
c
c latest modification: january 12, 1988
c
c--------------------------------------------------------------------
integer int
double precision expei, x, result
c--------------------------------------------------------------------
int = 3
call calcei(x,result,int)
expei = result
return
c---------- last line of expei ----------
end
function eone(x)
c--------------------------------------------------------------------
c
c this function program computes approximate values for the
c exponential integral e1(x), where x is real.
c
c author: w. j. cody
c
c latest modification: january 12, 1988
c
c--------------------------------------------------------------------
integer int
double precision eone, x, result
c--------------------------------------------------------------------
int = 2
call calcei(x,result,int)
eone = result
return
c---------- last line of eone ----------
end
c
c calcei3 = calcei for int=3
c
* ======================================================================
subroutine calcei3(arg,result)
c----------------------------------------------------------------------
c
c this fortran 77 packet computes the exponential integrals ei(x),
c e1(x), and exp(-x)*ei(x) for real arguments x where
c
c integral (from t=-infinity to t=x) (exp(t)/t), x > 0,
c ei(x) =
c -integral (from t=-x to t=infinity) (exp(t)/t), x < 0,
c
c and where the first integral is a principal value integral.
c the packet contains three function type subprograms: ei, eone,
c and expei; and one subroutine type subprogram: calcei. the
c calling statements for the primary entries are
c
c y = ei(x), where x .ne. 0,
c
c y = eone(x), where x .gt. 0,
c and
c y = expei(x), where x .ne. 0,
c
c and where the entry points correspond to the functions ei(x),
c e1(x), and exp(-x)*ei(x), respectively. the routine calcei
c is intended for internal packet use only, all computations within
c the packet being concentrated in this routine. the function
c subprograms invoke calcei with the fortran statement
c call calcei(arg,result,int)
c where the parameter usage is as follows
c
c function parameters for calcei
c call arg result int
c
c ei(x) x .ne. 0 ei(x) 1
c eone(x) x .gt. 0 -ei(-x) 2
c expei(x) x .ne. 0 exp(-x)*ei(x) 3
c----------------------------------------------------------------------
integer i,int
double precision
1 a,arg,b,c,d,exp40,e,ei,f,four,fourty,frac,half,one,p,
2 plg,px,p037,p1,p2,q,qlg,qx,q1,q2,r,result,s,six,sump,
3 sumq,t,three,twelve,two,two4,w,x,xbig,xinf,xmax,xmx0,
4 x0,x01,x02,x11,y,ysq,zero
dimension a(7),b(6),c(9),d(9),e(10),f(10),p(10),q(10),r(10),
1 s(9),p1(10),q1(9),p2(10),q2(9),plg(4),qlg(4),px(10),qx(10)
c----------------------------------------------------------------------
c mathematical constants
c exp40 = exp(40)
c x0 = zero of ei
c x01/x11 + x02 = zero of ei to extra precision
c----------------------------------------------------------------------
data zero,p037,half,one,two/0.0d0,0.037d0,0.5d0,1.0d0,2.0d0/,
1 three,four,six,twelve,two4/3.0d0,4.0d0,6.0d0,12.d0,24.0d0/,
2 fourty,exp40/40.0d0,2.3538526683701998541d17/,
3 x01,x11,x02/381.5d0,1024.0d0,-5.1182968633365538008d-5/,
4 x0/3.7250741078136663466d-1/
c----------------------------------------------------------------------
c machine-dependent constants
c----------------------------------------------------------------------
data xinf/1.79d+308/,xmax/716.351d0/,xbig/701.84d0/
c----------------------------------------------------------------------
c coefficients for -1.0 <= x < 0.0
c----------------------------------------------------------------------
data a/1.1669552669734461083368d2, 2.1500672908092918123209d3,
1 1.5924175980637303639884d4, 8.9904972007457256553251d4,
2 1.5026059476436982420737d5,-1.4815102102575750838086d5,
3 5.0196785185439843791020d0/
data b/4.0205465640027706061433d1, 7.5043163907103936624165d2,
1 8.1258035174768735759855d3, 5.2440529172056355429883d4,
2 1.8434070063353677359298d5, 2.5666493484897117319268d5/
c----------------------------------------------------------------------
c coefficients for -4.0 <= x < -1.0
c----------------------------------------------------------------------
data c/3.828573121022477169108d-1, 1.107326627786831743809d+1,
1 7.246689782858597021199d+1, 1.700632978311516129328d+2,
2 1.698106763764238382705d+2, 7.633628843705946890896d+1,
3 1.487967702840464066613d+1, 9.999989642347613068437d-1,
4 1.737331760720576030932d-8/
data d/8.258160008564488034698d-2, 4.344836335509282083360d+0,
1 4.662179610356861756812d+1, 1.775728186717289799677d+2,
2 2.953136335677908517423d+2, 2.342573504717625153053d+2,
3 9.021658450529372642314d+1, 1.587964570758947927903d+1,
4 1.000000000000000000000d+0/
c----------------------------------------------------------------------
c coefficients for x < -4.0
c----------------------------------------------------------------------
data e/1.3276881505637444622987d+2,3.5846198743996904308695d+4,
1 1.7283375773777593926828d+5,2.6181454937205639647381d+5,
2 1.7503273087497081314708d+5,5.9346841538837119172356d+4,
3 1.0816852399095915622498d+4,1.0611777263550331766871d03,
4 5.2199632588522572481039d+1,9.9999999999999999087819d-1/
data f/3.9147856245556345627078d+4,2.5989762083608489777411d+5,
1 5.5903756210022864003380d+5,5.4616842050691155735758d+5,
2 2.7858134710520842139357d+5,7.9231787945279043698718d+4,
3 1.2842808586627297365998d+4,1.1635769915320848035459d+3,
4 5.4199632588522559414924d+1,1.0d0/
c----------------------------------------------------------------------
c coefficients for rational approximation to ln(x/a), |1-x/a| < .1
c----------------------------------------------------------------------
data plg/-2.4562334077563243311d+01,2.3642701335621505212d+02,
1 -5.4989956895857911039d+02,3.5687548468071500413d+02/
data qlg/-3.5553900764052419184d+01,1.9400230218539473193d+02,
1 -3.3442903192607538956d+02,1.7843774234035750207d+02/
c----------------------------------------------------------------------
c coefficients for 0.0 < x < 6.0,
c ratio of chebyshev polynomials
c----------------------------------------------------------------------
data p/-1.2963702602474830028590d01,-1.2831220659262000678155d03,
1 -1.4287072500197005777376d04,-1.4299841572091610380064d06,
2 -3.1398660864247265862050d05,-3.5377809694431133484800d08,
3 3.1984354235237738511048d08,-2.5301823984599019348858d10,
4 1.2177698136199594677580d10,-2.0829040666802497120940d11/
data q/ 7.6886718750000000000000d01,-5.5648470543369082846819d03,
1 1.9418469440759880361415d05,-4.2648434812177161405483d06,
2 6.4698830956576428587653d07,-7.0108568774215954065376d08,
3 5.4229617984472955011862d09,-2.8986272696554495342658d10,
4 9.8900934262481749439886d10,-8.9673749185755048616855d10/
c----------------------------------------------------------------------
c j-fraction coefficients for 6.0 <= x < 12.0
c----------------------------------------------------------------------
data r/-2.645677793077147237806d00,-2.378372882815725244124d00,
1 -2.421106956980653511550d01, 1.052976392459015155422d01,
2 1.945603779539281810439d01,-3.015761863840593359165d01,
3 1.120011024227297451523d01,-3.988850730390541057912d00,
4 9.565134591978630774217d00, 9.981193787537396413219d-1/
data s/ 1.598517957704779356479d-4, 4.644185932583286942650d00,
1 3.697412299772985940785d02,-8.791401054875438925029d00,
2 7.608194509086645763123d02, 2.852397548119248700147d01,
3 4.731097187816050252967d02,-2.369210235636181001661d02,
4 1.249884822712447891440d00/
c----------------------------------------------------------------------
c j-fraction coefficients for 12.0 <= x < 24.0
c----------------------------------------------------------------------
data p1/-1.647721172463463140042d00,-1.860092121726437582253d01,
1 -1.000641913989284829961d01,-2.105740799548040450394d01,
2 -9.134835699998742552432d-1,-3.323612579343962284333d01,
3 2.495487730402059440626d01, 2.652575818452799819855d01,
4 -1.845086232391278674524d00, 9.999933106160568739091d-1/
data q1/ 9.792403599217290296840d01, 6.403800405352415551324d01,
1 5.994932325667407355255d01, 2.538819315630708031713d02,
2 4.429413178337928401161d01, 1.192832423968601006985d03,
3 1.991004470817742470726d02,-1.093556195391091143924d01,
4 1.001533852045342697818d00/
c----------------------------------------------------------------------
c j-fraction coefficients for x .ge. 24.0
c----------------------------------------------------------------------
data p2/ 1.75338801265465972390d02,-2.23127670777632409550d02,
1 -1.81949664929868906455d01,-2.79798528624305389340d01,
2 -7.63147701620253630855d00,-1.52856623636929636839d01,
3 -7.06810977895029358836d00,-5.00006640413131002475d00,
4 -3.00000000320981265753d00, 1.00000000000000485503d00/
data q2/ 3.97845977167414720840d04, 3.97277109100414518365d00,
1 1.37790390235747998793d02, 1.17179220502086455287d02,
2 7.04831847180424675988d01,-1.20187763547154743238d01,
3 -7.99243595776339741065d00,-2.99999894040324959612d00,
4 1.99999999999048104167d00/
c----------------------------------------------------------------------
data int/ 3/
x = arg
if (x .eq. zero) then
ei = -xinf
else if ((x .lt. zero)) then
c----------------------------------------------------------------------
c calculate ei for negative argument or for e1.
c----------------------------------------------------------------------
y = abs(x)
if (y .le. one) then
sump = a(7) * y + a(1)
sumq = y + b(1)
do 110 i = 2, 6
sump = sump * y + a(i)
sumq = sumq * y + b(i)
110 continue
ei = (log(y) - sump / sumq ) * exp(y)
else if (y .le. four) then
w = one / y
sump = c(1)
sumq = d(1)
do 130 i = 2, 9
sump = sump * w + c(i)
sumq = sumq * w + d(i)
130 continue
ei = - sump / sumq
else
w = one / y
sump = e(1)
sumq = f(1)
do 150 i = 2, 10
sump = sump * w + e(i)
sumq = sumq * w + f(i)
150 continue
ei = -w * (one - w * sump / sumq )
end if
else if (x .lt. six) then
c----------------------------------------------------------------------
c to improve conditioning, rational approximations are expressed
c in terms of chebyshev polynomials for 0 <= x < 6, and in
c continued fraction form for larger x.
c----------------------------------------------------------------------
t = x + x
t = t / three - two
px(1) = zero
qx(1) = zero
px(2) = p(1)
qx(2) = q(1)
do 210 i = 2, 9
px(i+1) = t * px(i) - px(i-1) + p(i)
qx(i+1) = t * qx(i) - qx(i-1) + q(i)
210 continue
sump = half * t * px(10) - px(9) + p(10)
sumq = half * t * qx(10) - qx(9) + q(10)
frac = sump / sumq
xmx0 = (x - x01/x11) - x02
if (abs(xmx0) .ge. p037) then
ei = exp(-x) * ( log(x/x0) + xmx0 * frac )
else
c----------------------------------------------------------------------
c special approximation to ln(x/x0) for x close to x0
c----------------------------------------------------------------------
y = xmx0 / (x + x0)
ysq = y*y
sump = plg(1)
sumq = ysq + qlg(1)
do 220 i = 2, 4
sump = sump*ysq + plg(i)
sumq = sumq*ysq + qlg(i)
220 continue
ei = exp(-x) * (sump / (sumq*(x+x0)) + frac) * xmx0
end if
else if (x .lt. twelve) then
frac = zero
do 230 i = 1, 9
frac = s(i) / (r(i) + x + frac)
230 continue
ei = (r(10) + frac) / x
else if (x .le. two4) then
frac = zero
do 240 i = 1, 9
frac = q1(i) / (p1(i) + x + frac)
240 continue
ei = (p1(10) + frac) / x
else
y = one / x
frac = zero
do 250 i = 1, 9
frac = q2(i) / (p2(i) + x + frac)
250 continue
frac = p2(10) + frac
ei = y + y * y * frac
end if
result = ei
return
c---------- last line of calcei ----------
end
c
c
c