src/equilibrium.f90: use the exact toroidal flux

To improve the analytical model correctness this changes the formula
of the toroidal flux to lift the large aspect ratio approximation (a << R₀).
In fact, Φ(r) = B₀πr² is technically inconsistent with the field varying
as B₀R₀/R. The exact expression is:

  Φ(r) = B₀πr² 2/[1 + √(1 - r²/R₀²)],

which is approximately equal to the former for r << R₀.

Note that this change introduces a divergence in the poloidal field at
r=R₀ (since ∂Φ/∂r → +∞), so the domain of the equilibrium has been
restricted to r<R₀, as expected.
This should not be a concern because the field outside the plasma
boundary is never directly, particularly not by the integrator.
This commit is contained in:
Michele Guerini Rocco 2023-12-12 18:25:24 +01:00
parent 9a301f5799
commit 95d398d503
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450

View File

@ -766,7 +766,7 @@ contains
implicit none
real(wp_) :: dq
real(wp_) :: dq, gamma
btaxis = model%B0
rmaxis = model%R0
@ -782,9 +782,14 @@ contains
zmxm = zbsup
zmnm = zbinf
! FIXME: it should be that Φ(r) = Bπr² 1/(1-ε²)
! where ε=r/R is the tokamak aspect ratio
phitedge = model%B0 * pi * model%a**2
! Toroidal flux at r=a:
!
! Φ(a) = Bπa² 2γ/(γ + 1)
!
! where γ=1/(1-ε²),
! ε=a/R is the tokamak aspect ratio
gamma = 1/sqrt(1 - (model%a/model%R0)**2)
phitedge = model%B0 * pi * model%a**2 * 2*gamma/(gamma + 1)
! In cocos=3 the safety factor is
!
@ -829,6 +834,7 @@ contains
!
! Note: all output arguments are optional.
use gray_params, only : iequil
use const_and_precisions, only : one, pi
implicit none
@ -838,21 +844,75 @@ contains
ddpsidrr, ddpsidzz, ddpsidrz
! local variables
real(wp_) :: rho_t, rho_p ! Φ_n, ψ_n
real(wp_) :: r_g, rho_t, rho_p ! geometric radius, Φ_n, ψ_n
real(wp_) :: gamma ! γ = 1/(1 - r²/R²)
real(wp_) :: dpsidphi ! (ψ_n/Φ_n)
real(wp_) :: ddpsidphidr, ddpsidphidz ! (ψ_n/Φ_n)
real(wp_) :: phi_n ! Φ_n
real(wp_) :: dphidr, dphidz ! Φ_n
real(wp_) :: ddphidrdr, ddphidzdz ! Φ_n
real(wp_) :: ddphidrdz !
real(wp_) :: q, dq ! q(ρ_p), Δq=(q-q)/(α/2 + 1)
real(wp_) :: dqdr, dqdz ! q
real(wp_) :: dphidr2, ddphidr2dr2 ! dΦ_n/d(r²), d²Φ_n/d(r²)²
if (iequil < 2) then
! Analytical model
!
! The normalised poloidal flux ψ_n(R, z) is computed as follows:
! 1. ψ_n = ρ_p²
! 2. ρ_p = ρ_p(ρ_t), using `frhopol`, which in turns uses q(ψ)
! 3. ρ_t = Φ_n
! 4. Φ_n = Φ(r)/Φ(a), where Φ(r) is the flux of B_φ=BR/R
! through a circular surface
! 5. r = [(R-R)²+(z-z)²] is the geometric minor radius
r_g = hypot(R - model%R0, z - model%z0)
! ρ_t is mapped to the normalised geometrical radius,
! so ρ_t = [(R-R)² + (z-z)²]/a and ρ_p(ρ_t)
rho_t = hypot(R - model%R0, z - model%z0)/model%a
! The exact flux of the toroidal field B_φ = BR/R is:
!
! Φ(r) = Bπr² 2γ/(γ + 1) where γ=1/(1 - r²/R²).
!
! Notes:
! 1. the function Φ(r) is defined for rR only.
! 2. as r 0, γ 1, so Φ ~ Bπr².
! 3. as r 1, Φ 2Bπr² but /dr -.
! 4. |B_R|, |B_z| +-.
!
if (r_g > model%R0) then
if (present(psi_n)) psi_n = -1
if (present(dpsidr)) dpsidr = 0
if (present(dpsidz)) dpsidz = 0
if (present(ddpsidrr)) ddpsidrr = 0
if (present(ddpsidzz)) ddpsidzz = 0
if (present(ddpsidrz)) ddpsidrz = 0
return
end if
gamma = 1 / sqrt(1 - (r_g/model%R0)**2)
phi_n = model%B0 * pi*r_g**2 * 2*gamma/(gamma + 1) / phitedge
rho_t = sqrt(phi_n)
rho_p = frhopol(rho_t)
! For Φ_n and Φ_n we also need:
!
! Φ(r²) = Bπ γ(r)
! ²Φ(r²)² = Bπ γ³(r) / (2 R²)
!
dphidr2 = model%B0 * pi * gamma / phitedge
ddphidr2dr2 = model%B0 * pi * gamma**3/(2 * model%R0**2) / phitedge
! Φ_n = Φ_n/(r²) (r²)
! where (r²) = 2[(R-R), (z-z)]
dphidr = dphidr2 * 2*(R - model%R0)
dphidz = dphidr2 * 2*(z - model%z0)
! Φ_n = [Φ_n/(r²)] (r²) + Φ_n/(r²) (r²)
! = ²Φ_n/(r²)² (r²)(r²) + Φ_n/(r²) (r²)
! where (r²) = 2I
ddphidrdr = ddphidr2dr2 * 4*(R - model%R0)*(R - model%R0) + dphidr2*2
ddphidzdz = ddphidr2dr2 * 4*(z - model%z0)*(z - model%z0) + dphidr2*2
ddphidrdz = ddphidr2dr2 * 4*(R - model%R0)*(z - model%z0)
! ψ_n = ρ_p(ρ_t)²
if (present(psi_n)) psi_n = rho_p**2
@ -871,10 +931,6 @@ contains
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
dpsidphi = (model%q0 + dq) / q
! Since Φ_n = ρ_t²(R,z): Φ_n = 2/a² [R-R, z-z]
dphidr = 2*(R - model%R0)/model%a**2
dphidz = 2*(z - model%z0)/model%a**2
! Using the above, ψ_n = ψ_n/Φ_n Φ_n
if (present(dpsidr)) dpsidr = dpsidphi * dphidr
if (present(dpsidz)) dpsidz = dpsidphi * dphidz
@ -890,18 +946,18 @@ contains
! q = α/2 (q-q) ψ_n/ψ_n
! = α/2 (q-q)/ψ_n (ψ_n/Φ_n) Φ_n.
!
dqdr = model%alpha/2 * (q - model%q0)/rho_p**2 * dpsidphi * dphidr
dqdz = model%alpha/2 * (q - model%q0)/rho_p**2 * dpsidphi * dphidz
dqdr = model%alpha/2 * (model%q1 - model%q0)*rho_p**(model%alpha-2) * dpsidphi * dphidr
dqdz = model%alpha/2 * (model%q1 - model%q0)*rho_p**(model%alpha-2) * dpsidphi * dphidz
ddpsidphidr = - dpsidphi * dqdr/q
ddpsidphidz = - dpsidphi * dqdz/q
! Finally, Φ_n = ρ_t²(R,z) = 2/a² I, so:
! Combining all of the above:
!
! ψ_n = (ψ_n/Φ_n) Φ_n + (ψ_n/Φ_n) 2/a² I
! ψ_n = (ψ_n/Φ_n) Φ_n + (ψ_n/Φ_n) Φ_n
!
if (present(ddpsidrr)) ddpsidrr = ddpsidphidr * dphidr + dpsidphi * 2/model%a**2
if (present(ddpsidzz)) ddpsidzz = ddpsidphidz * dphidz + dpsidphi * 2/model%a**2
if (present(ddpsidrz)) ddpsidrz = ddpsidphidr * dphidz
if (present(ddpsidrr)) ddpsidrr = ddpsidphidr * dphidr + dpsidphi * ddphidrdr
if (present(ddpsidzz)) ddpsidzz = ddpsidphidz * dphidz + dpsidphi * ddphidzdz
if (present(ddpsidrz)) ddpsidrz = ddpsidphidr * dphidz + dpsidphi * ddphidrdz
else
! Numerical data
if (R <= rmxm .and. R >= rmnm .and. &