src/equilibrium.f90: use the exact toroidal flux
To improve the analytical model correctness this changes the formula of the toroidal flux to lift the large aspect ratio approximation (a << R₀). In fact, Φ(r) = B₀πr² is technically inconsistent with the field varying as B₀R₀/R. The exact expression is: Φ(r) = B₀πr² 2/[1 + √(1 - r²/R₀²)], which is approximately equal to the former for r << R₀. Note that this change introduces a divergence in the poloidal field at r=R₀ (since ∂Φ/∂r → +∞), so the domain of the equilibrium has been restricted to r<R₀, as expected. This should not be a concern because the field outside the plasma boundary is never directly, particularly not by the integrator.
This commit is contained in:
parent
9a301f5799
commit
95d398d503
@ -766,7 +766,7 @@ contains
|
|||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
|
|
||||||
real(wp_) :: dq
|
real(wp_) :: dq, gamma
|
||||||
|
|
||||||
btaxis = model%B0
|
btaxis = model%B0
|
||||||
rmaxis = model%R0
|
rmaxis = model%R0
|
||||||
@ -782,9 +782,14 @@ contains
|
|||||||
zmxm = zbsup
|
zmxm = zbsup
|
||||||
zmnm = zbinf
|
zmnm = zbinf
|
||||||
|
|
||||||
! FIXME: it should be that Φ(r) = B₀πr² 1/√(1-ε²)
|
! Toroidal flux at r=a:
|
||||||
! where ε=r/R₀ is the tokamak aspect ratio
|
!
|
||||||
phitedge = model%B0 * pi * model%a**2
|
! Φ(a) = B₀πa² 2γ/(γ + 1)
|
||||||
|
!
|
||||||
|
! where γ=1/√(1-ε²),
|
||||||
|
! ε=a/R₀ is the tokamak aspect ratio
|
||||||
|
gamma = 1/sqrt(1 - (model%a/model%R0)**2)
|
||||||
|
phitedge = model%B0 * pi * model%a**2 * 2*gamma/(gamma + 1)
|
||||||
|
|
||||||
! In cocos=3 the safety factor is
|
! In cocos=3 the safety factor is
|
||||||
!
|
!
|
||||||
@ -829,6 +834,7 @@ contains
|
|||||||
!
|
!
|
||||||
! Note: all output arguments are optional.
|
! Note: all output arguments are optional.
|
||||||
use gray_params, only : iequil
|
use gray_params, only : iequil
|
||||||
|
use const_and_precisions, only : one, pi
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
|
|
||||||
@ -838,21 +844,75 @@ contains
|
|||||||
ddpsidrr, ddpsidzz, ddpsidrz
|
ddpsidrr, ddpsidzz, ddpsidrz
|
||||||
|
|
||||||
! local variables
|
! local variables
|
||||||
real(wp_) :: rho_t, rho_p ! √Φ_n, √ψ_n
|
real(wp_) :: r_g, rho_t, rho_p ! geometric radius, √Φ_n, √ψ_n
|
||||||
|
real(wp_) :: gamma ! γ = 1/√(1 - r²/R₀²)
|
||||||
real(wp_) :: dpsidphi ! (∂ψ_n/∂Φ_n)
|
real(wp_) :: dpsidphi ! (∂ψ_n/∂Φ_n)
|
||||||
real(wp_) :: ddpsidphidr, ddpsidphidz ! ∇(∂ψ_n/∂Φ_n)
|
real(wp_) :: ddpsidphidr, ddpsidphidz ! ∇(∂ψ_n/∂Φ_n)
|
||||||
|
real(wp_) :: phi_n ! Φ_n
|
||||||
real(wp_) :: dphidr, dphidz ! ∇Φ_n
|
real(wp_) :: dphidr, dphidz ! ∇Φ_n
|
||||||
|
real(wp_) :: ddphidrdr, ddphidzdz ! ∇∇Φ_n
|
||||||
|
real(wp_) :: ddphidrdz !
|
||||||
real(wp_) :: q, dq ! q(ρ_p), Δq=(q₁-q₀)/(α/2 + 1)
|
real(wp_) :: q, dq ! q(ρ_p), Δq=(q₁-q₀)/(α/2 + 1)
|
||||||
real(wp_) :: dqdr, dqdz ! ∇q
|
real(wp_) :: dqdr, dqdz ! ∇q
|
||||||
|
real(wp_) :: dphidr2, ddphidr2dr2 ! dΦ_n/d(r²), d²Φ_n/d(r²)²
|
||||||
|
|
||||||
if (iequil < 2) then
|
if (iequil < 2) then
|
||||||
! Analytical model
|
! Analytical model
|
||||||
|
!
|
||||||
|
! The normalised poloidal flux ψ_n(R, z) is computed as follows:
|
||||||
|
! 1. ψ_n = ρ_p²
|
||||||
|
! 2. ρ_p = ρ_p(ρ_t), using `frhopol`, which in turns uses q(ψ)
|
||||||
|
! 3. ρ_t = √Φ_n
|
||||||
|
! 4. Φ_n = Φ(r)/Φ(a), where Φ(r) is the flux of B_φ=B₀R₀/R
|
||||||
|
! through a circular surface
|
||||||
|
! 5. r = √[(R-R₀)²+(z-z₀)²] is the geometric minor radius
|
||||||
|
r_g = hypot(R - model%R0, z - model%z0)
|
||||||
|
|
||||||
! ρ_t is mapped to the normalised geometrical radius,
|
! The exact flux of the toroidal field B_φ = B₀R₀/R is:
|
||||||
! so ρ_t = √[(R-R₀)² + (z-z₀)²]/a and ρ_p(ρ_t)
|
!
|
||||||
rho_t = hypot(R - model%R0, z - model%z0)/model%a
|
! Φ(r) = B₀πr² 2γ/(γ + 1) where γ=1/√(1 - r²/R₀²).
|
||||||
|
!
|
||||||
|
! Notes:
|
||||||
|
! 1. the function Φ(r) is defined for r≤R₀ only.
|
||||||
|
! 2. as r → 0, γ → 1, so Φ ~ B₀πr².
|
||||||
|
! 3. as r → 1⁻, Φ → 2B₀πr² but dΦ/dr → -∞.
|
||||||
|
! 4. |B_R|, |B_z| → +-∞.
|
||||||
|
!
|
||||||
|
if (r_g > model%R0) then
|
||||||
|
if (present(psi_n)) psi_n = -1
|
||||||
|
if (present(dpsidr)) dpsidr = 0
|
||||||
|
if (present(dpsidz)) dpsidz = 0
|
||||||
|
if (present(ddpsidrr)) ddpsidrr = 0
|
||||||
|
if (present(ddpsidzz)) ddpsidzz = 0
|
||||||
|
if (present(ddpsidrz)) ddpsidrz = 0
|
||||||
|
return
|
||||||
|
end if
|
||||||
|
|
||||||
|
gamma = 1 / sqrt(1 - (r_g/model%R0)**2)
|
||||||
|
phi_n = model%B0 * pi*r_g**2 * 2*gamma/(gamma + 1) / phitedge
|
||||||
|
rho_t = sqrt(phi_n)
|
||||||
rho_p = frhopol(rho_t)
|
rho_p = frhopol(rho_t)
|
||||||
|
|
||||||
|
! For ∇Φ_n and ∇∇Φ_n we also need:
|
||||||
|
!
|
||||||
|
! ∂Φ∂(r²) = B₀π γ(r)
|
||||||
|
! ∂²Φ∂(r²)² = B₀π γ³(r) / (2 R₀²)
|
||||||
|
!
|
||||||
|
dphidr2 = model%B0 * pi * gamma / phitedge
|
||||||
|
ddphidr2dr2 = model%B0 * pi * gamma**3/(2 * model%R0**2) / phitedge
|
||||||
|
|
||||||
|
! ∇Φ_n = ∂Φ_n/∂(r²) ∇(r²)
|
||||||
|
! where ∇(r²) = 2[(R-R₀), (z-z₀)]
|
||||||
|
dphidr = dphidr2 * 2*(R - model%R0)
|
||||||
|
dphidz = dphidr2 * 2*(z - model%z0)
|
||||||
|
|
||||||
|
! ∇∇Φ_n = ∇[∂Φ_n/∂(r²)] ∇(r²) + ∂Φ_n/∂(r²) ∇∇(r²)
|
||||||
|
! = ∂²Φ_n/∂(r²)² ∇(r²)∇(r²) + ∂Φ_n/∂(r²) ∇∇(r²)
|
||||||
|
! where ∇∇(r²) = 2I
|
||||||
|
ddphidrdr = ddphidr2dr2 * 4*(R - model%R0)*(R - model%R0) + dphidr2*2
|
||||||
|
ddphidzdz = ddphidr2dr2 * 4*(z - model%z0)*(z - model%z0) + dphidr2*2
|
||||||
|
ddphidrdz = ddphidr2dr2 * 4*(R - model%R0)*(z - model%z0)
|
||||||
|
|
||||||
! ψ_n = ρ_p(ρ_t)²
|
! ψ_n = ρ_p(ρ_t)²
|
||||||
if (present(psi_n)) psi_n = rho_p**2
|
if (present(psi_n)) psi_n = rho_p**2
|
||||||
|
|
||||||
@ -871,10 +931,6 @@ contains
|
|||||||
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
|
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
|
||||||
dpsidphi = (model%q0 + dq) / q
|
dpsidphi = (model%q0 + dq) / q
|
||||||
|
|
||||||
! Since Φ_n = ρ_t²(R,z): ∇Φ_n = 2/a² [R-R₀, z-z₀]
|
|
||||||
dphidr = 2*(R - model%R0)/model%a**2
|
|
||||||
dphidz = 2*(z - model%z0)/model%a**2
|
|
||||||
|
|
||||||
! Using the above, ∇ψ_n = ∂ψ_n/∂Φ_n ∇Φ_n
|
! Using the above, ∇ψ_n = ∂ψ_n/∂Φ_n ∇Φ_n
|
||||||
if (present(dpsidr)) dpsidr = dpsidphi * dphidr
|
if (present(dpsidr)) dpsidr = dpsidphi * dphidr
|
||||||
if (present(dpsidz)) dpsidz = dpsidphi * dphidz
|
if (present(dpsidz)) dpsidz = dpsidphi * dphidz
|
||||||
@ -890,18 +946,18 @@ contains
|
|||||||
! ∇q = α/2 (q-q₀) ∇ψ_n/ψ_n
|
! ∇q = α/2 (q-q₀) ∇ψ_n/ψ_n
|
||||||
! = α/2 (q-q₀)/ψ_n (∂ψ_n/∂Φ_n) ∇Φ_n.
|
! = α/2 (q-q₀)/ψ_n (∂ψ_n/∂Φ_n) ∇Φ_n.
|
||||||
!
|
!
|
||||||
dqdr = model%alpha/2 * (q - model%q0)/rho_p**2 * dpsidphi * dphidr
|
dqdr = model%alpha/2 * (model%q1 - model%q0)*rho_p**(model%alpha-2) * dpsidphi * dphidr
|
||||||
dqdz = model%alpha/2 * (q - model%q0)/rho_p**2 * dpsidphi * dphidz
|
dqdz = model%alpha/2 * (model%q1 - model%q0)*rho_p**(model%alpha-2) * dpsidphi * dphidz
|
||||||
ddpsidphidr = - dpsidphi * dqdr/q
|
ddpsidphidr = - dpsidphi * dqdr/q
|
||||||
ddpsidphidz = - dpsidphi * dqdz/q
|
ddpsidphidz = - dpsidphi * dqdz/q
|
||||||
|
|
||||||
! Finally, ∇∇Φ_n = ∇∇ ρ_t²(R,z) = 2/a² I, so:
|
! Combining all of the above:
|
||||||
!
|
!
|
||||||
! ∇∇ψ_n = ∇(∂ψ_n/∂Φ_n) ∇Φ_n + (∂ψ_n/∂Φ_n) 2/a² I
|
! ∇∇ψ_n = ∇(∂ψ_n/∂Φ_n) ∇Φ_n + (∂ψ_n/∂Φ_n) ∇∇Φ_n
|
||||||
!
|
!
|
||||||
if (present(ddpsidrr)) ddpsidrr = ddpsidphidr * dphidr + dpsidphi * 2/model%a**2
|
if (present(ddpsidrr)) ddpsidrr = ddpsidphidr * dphidr + dpsidphi * ddphidrdr
|
||||||
if (present(ddpsidzz)) ddpsidzz = ddpsidphidz * dphidz + dpsidphi * 2/model%a**2
|
if (present(ddpsidzz)) ddpsidzz = ddpsidphidz * dphidz + dpsidphi * ddphidzdz
|
||||||
if (present(ddpsidrz)) ddpsidrz = ddpsidphidr * dphidz
|
if (present(ddpsidrz)) ddpsidrz = ddpsidphidr * dphidz + dpsidphi * ddphidrdz
|
||||||
else
|
else
|
||||||
! Numerical data
|
! Numerical data
|
||||||
if (R <= rmxm .and. R >= rmnm .and. &
|
if (R <= rmxm .and. R >= rmnm .and. &
|
||||||
|
Loading…
Reference in New Issue
Block a user