src/gray_core.f90: implement adaptive step control

This implements a method to control the integrator step size based on
the integration error and resonance conditions. The main advantages are that:

  - the ray trajectories have a bounded error;
  - the initial step size can be large as to quickly traverse the vacuum;
  - the results no longer depend on the choice of the step size.

The error is estimated from the real part of the dispersion relation
Λ(x̅, N̅), which if solved exactly should be zero.
The error bound is set to a strict value when crossing the plasma
boundary to ensure a correct coupling and is relaxed afterwards.

Finally, when the ray is approaching a resonance the controller ensures
the step size is small compared to the absorption profile.
This commit is contained in:
Michele Guerini Rocco 2022-07-19 18:22:50 +01:00
parent c9c20198a7
commit 92b3ad9bd3
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450
6 changed files with 421 additions and 126 deletions

View File

@ -34,6 +34,11 @@ idst = 0
; 4: 4-stage Runge-Kutta (4⁰ order)
integrator = 4
; Whether to automatically adjust the integration step
; size based on the local error. If true `dst` will set
; the initial step size.
adaptive_step = false
[ecrh_cd]
; Choice of the power absorption model

View File

@ -22,12 +22,16 @@ module dispersion
real(wp_), parameter :: tmax = 5.0_wp_
real(wp_), parameter :: dtex = 2*tmax/dble(npts)
! Maximum value for the argument of the electron distribution,
! μ(γ-1), above which the function is considered to be 0.
real(wp_), parameter :: expcr = 16.0_wp_
! global variables
real(wp_), dimension(npts+1), save :: ttv, extv
private
public expinit, colddisp, warmdisp
public zetac, harmnumber
public zetac, harmnumber, resonance_width
contains
@ -131,10 +135,6 @@ pure subroutine harmnumber(Y, mu, Npl2, weakly, nhmin, nhmax)
! local constants
! Maximum value for μ(γ-1) above which the
! distribution function is considered to be 0.
real(wp_), parameter :: expcr = 16.0_wp_
nhmin = 0
nhmax = 0
@ -218,6 +218,79 @@ pure subroutine harmnumber(Y, mu, Npl2, weakly, nhmin, nhmax)
end subroutine harmnumber
function resonance_width(Y, mu, Npl2, R)
! Estimates the width, as the extent in major radius, of the
! resonating plasma layer at the smallest possible harmonic
!
! This computes, following the same logic of `harmnumber`, the
! smallest possible harmonic, then estimates the width as the
! value ΔR of major radius that causes a change Δγ dγ/dR ΔR
! in the argument of the electron distribution equals to 1/μ.
implicit none
! subroutine arguments
! CMA Y variable: Y=ω_c/ω
real(wp_), intent(in) :: Y
! squared parallel refractive index: N²=N²cos²θ
real(wp_), intent(in) :: Npl2
! reciprocal of adimensional temperature: μ=mc²/kT
real(wp_), intent(in) :: mu
! major radius R=(x² + y²)
real(wp_), intent(in) :: R
! width of the resonance
real(wp_) :: resonance_width
! local variables
integer :: nh, nhc, nhmin
real(wp_) :: Yc, Yn, gamma, rdu2, argexp
! Derivatives of the argument A μγ(Y, N, n)
real(wp_) :: dAdR, dAdY
! local constants
nhmin = 0 ! Minimum harmonic number
resonance_width = 0 ! The result, ΔR
Yc = sqrt(max(1 - npl2, zero)) ! Critical Y value
nhc = ceiling(Yc/Y) ! Critical harmonic number
! Check a few numbers starting with nhc
do nh = nhc, nhc + 10
Yn = Y*nh
! γ = [Yn - (N²(Yn²-Yc²))]/Yc²
rdu2 = Yn**2 - Yc**2
gamma = (Yn - sqrt(Npl2*rdu2))/(1 - Npl2)
argexp = mu*(gamma - one)
if (argexp <= expcr) then
! The are enough electrons with this energy
nhmin = nh
exit
end if
end do
! No harmonics possible
if (nhmin == 0) return
! The derivative of the minimum γ = γ(N, Y, n) is
!
! dγ/dY = n (Yn - γ)/(Yn - γYc²)
!
dAdY = mu * nhmin * (Yn - gamma)/(Yn - gamma*Yc**2)
! dAdR = dAdYdY/dR, assuming the magnetic field varies
! solely as B(R) BR/R, then dY/dR = -Y/R
dAdR = dAdY * (-Y/R)
! Take ΔR = |ΔA / A/dR|, where ΔA = μΔγ = 1
resonance_width = 1 / abs(dAdR)
end function resonance_width
subroutine warmdisp(X, Y, mu, Npl, Npr_cold, sox, &
error, Npr, e, &
model, nlarmor, max_iters, fallback)

View File

@ -6,11 +6,13 @@ module gray_core
implicit none
abstract interface
function rhs_function(y) result(f)
function rhs_function(y, e) result(f)
! Function passed to the integrator subroutine
! This represent the right-hand side of the ODE: dy/ds = f(y)
use const_and_precisions, only : wp_
real(wp_), intent(in) :: y(6)
real(wp_) :: f(6)
real(wp_), intent(in) :: y(6) ! variable y
real(wp_), intent(inout), optional :: e ! error estimator
real(wp_) :: f(6) ! f(y)
end function
end interface
@ -85,7 +87,7 @@ contains
real(wp_), dimension(:), pointer :: p0jk=>null()
real(wp_), dimension(:), pointer :: jphi_beam=>null(),pins_beam=>null(), &
currins_beam=>null(), dpdv_beam=>null(),jcd_beam=>null(),stv=>null(), &
psipv=>null(),chipv=>null()
psipv=>null(),chipv=>null(),dst=>null()
complex(wp_), dimension(:), pointer :: ext=>null(), eyt=>null()
integer, dimension(:), pointer :: iiv=>null(),iop=>null(),iow=>null()
logical, dimension(:), pointer :: iwait=>null()
@ -119,13 +121,11 @@ contains
call pec_init(params%output%ipec, rhout)
nnd = size(rhop_tab) ! number of radial profile points
call alloc_multipass(nnd, iwait, iroff, iop, iow, yynext, yypnext, yw0, ypw0, stnext, &
stv, p0ray, taus, tau1, etau1, cpls, cpl1, lgcpl1, jphi_beam, &
pins_beam, currins_beam, dpdv_beam, jcd_beam, psipv, chipv)
! Allocate memory for the results...
allocate(results%dpdv(params%output%nrho))
allocate(results%jcd(params%output%nrho))
! Initialise multipass module
call alloc_multipass(nnd, iwait, iroff, iop, iow, yynext, yypnext, &
yw0, ypw0, stnext, stv, dst, p0ray, taus, tau1, &
etau1, cpls, cpl1, lgcpl1, jphi_beam, pins_beam, &
currins_beam, dpdv_beam, jcd_beam, psipv, chipv)
! ...and initialise them
results%pabs = zero
@ -208,8 +208,8 @@ contains
index_rt = index_rt +1
iO = 2*index_rt +1 ! * index_rt of O-mode derived ray (iX=iO+1)
call initbeam(index_rt,iroff,iboff,iwait,stv,jphi_beam, &
pins_beam,currins_beam,dpdv_beam,jcd_beam)
call initbeam(params, index_rt, iroff, iboff, iwait, stv, dst, &
jphi_beam, pins_beam, currins_beam, dpdv_beam, jcd_beam)
write(msg, '(" beam: ",g0," (",a1," mode)")') index_rt, mode(iox)
call log_info(msg, mod='gray_core', proc='gray_main')
@ -273,10 +273,11 @@ contains
! advance one step with "frozen" grad(S_I)
do jk=1,params%raytracing%nray
if(iwait(jk)) cycle ! jk ray is waiting for next pass
stv(jk) = stv(jk) + params%raytracing%dst ! current ray step
call integrator(yw(:, jk), ypw(:, jk), rhs, &
params%raytracing%dst, &
params%raytracing%integrator)
call step_controller( &
y=yw(:, jk), yp=ypw(:, jk), f=rhs, &
h=dst(jk), method=params%raytracing%integrator, &
adaptive=params%raytracing%adaptive_step, Bres=Bres)
stv(jk) = stv(jk) + dst(jk) ! current ray step
end do
! update position and grad
if(igrad_b == 1) call gradi_upd(yw,ak0,xc,du1,gri,ggri)
@ -346,7 +347,7 @@ contains
if(ip < params%raytracing%ipass) then ! + not last pass
yynext(:,jk,index_rt) = yw0(:,jk) ! . copy starting coordinates
yypnext(:,jk,index_rt) = ypw0(:,jk) ! for next pass from last step
stnext(jk,index_rt) = stv(jk) - params%raytracing%dst ! . starting step for next pass = last step
stnext(jk,index_rt) = stv(jk) - dst(jk) ! . starting step for next pass = last step
if(cpl(1) < etaucr) then ! . low coupled power for O-mode => de-activate derived rays
call turnoffray(jk,ip+1,2*ib-1,iroff)
@ -468,15 +469,15 @@ contains
! Computation of the ray τ, dP/ds, P(s), dI/ds, I(s)
! optical depth: τ = α(s)ds using the trapezoid rule
tau = tau0(jk) + 0.5_wp_*(alphaabs0(jk) + alpha) * dersdst * params%raytracing%dst
! optical depth: τ = α(s)ds using the trapezoidal rule
tau = tau0(jk) + 0.5_wp_*(alphaabs0(jk) + alpha) * dersdst * dst(jk)
pow = p0ray(jk) * exp(-tau) ! residual power: P = Pexp(-τ)
ppabs(jk,i) = p0ray(jk) - pow ! absorbed power: P_abs = P - P
dids = didp * pow * alpha ! current driven: dI/ds = dI/dPdP/ds = dI/dPPα
! current: I = dI/dsds using the trapezoid rule
ccci(jk,i) = ccci0(jk) + 0.5_wp_*(dids0(jk) + dids) * dersdst * params%raytracing%dst
! current: I = dI/dsds using the trapezoidal rule
ccci(jk,i) = ccci0(jk) + 0.5_wp_*(dids0(jk) + dids) * dersdst * dst(jk)
tau0(jk) = tau
alphaabs0(jk) = alpha
@ -621,7 +622,7 @@ contains
alphaabs0,dids0,ccci0,p0jk,ext,eyt,iiv)
call dealloc_pec
call dealloc_multipass(iwait,iroff,iop,iow,yynext,yypnext,yw0,ypw0, &
stnext,stv,p0ray,taus,tau1,etau1,cpls,cpl1,lgcpl1,jphi_beam, &
stnext,stv,dst,p0ray,taus,tau1,etau1,cpls,cpl1,lgcpl1,jphi_beam, &
pins_beam,currins_beam,dpdv_beam,jcd_beam,psipv,chipv)
! =========== free memory END ===========
@ -629,15 +630,16 @@ contains
! Functions that needs the scope of gray_main
function rhs(y) result(dery)
! Computes the right-hand-side terms of the ray equations
function rhs(y, e) result(f)
! Computes the right-hand side terms of the ray equations
! To be passed to the integrator subroutine
implicit none
! function arguments
real(wp_), dimension(6), intent(in) :: y ! (, )
real(wp_), intent(in) :: y(6) ! (, )
real(wp_), intent(inout), optional :: e ! |Λ(, )| as an error
! result
real(wp_), dimension(6) :: dery
real(wp_) :: f(6) ! (dx̅/ds, dN̅/ds)
! local variables
real(wp_) :: xg, yg
@ -653,8 +655,15 @@ contains
xg, yg, derxg, deryg)
! computes derivatives of dispersion relation: Λ/, Λ/
call disp_deriv(anv, sox, xg, yg, derxg, deryg, bv, derbv, &
gri(:, jk), ggri(:, :, jk), igrad_b, dery)
call disp_deriv(anv, sox, xg, yg, derxg, deryg, bv, derbv, &
gri(:, jk), ggri(:, :, jk), igrad_b, dery=f, &
ddr=e)
! make the error positive and correct it for an unknown bias:
! on the correct trajectory |Λ(, )| -kX, instead of zero.
if (present(e)) then
e = abs(e + 4.15e-4 * xg)
end if
end function rhs
end subroutine gray_main
@ -1009,66 +1018,209 @@ contains
end subroutine ic_gb
subroutine integrator(y, yp, f, h, method)
function integrator(y, yp, f, h, method) result(y1)
! Integrator of the raytracing equations
implicit none
real(wp_), dimension(6), intent(inout) :: y ! = (, )
real(wp_), dimension(6), intent(in) :: yp ! ˙ = (dx̅/dσ, dN̅/dσ)
procedure(rhs_function) :: f ! dy̅/dσ = ()
real(wp_), intent(in) :: h ! step size
integer, intent(in) :: method
real(wp_), dimension(6), intent(in) :: y ! = (, )
real(wp_), dimension(6), intent(in) :: yp ! ˙ = f()
procedure(rhs_function) :: f ! dy̅/dσ = ()
real(wp_), intent(in) :: h ! step size
integer, intent(in) :: method ! kind of integrator
real(wp_), dimension(6) :: y1 ! the new
! local variables
real(wp_), dimension(6) :: yy, k1, k2, k3, k4
real(wp_), dimension(6) :: k1, k2, k3, k4
select case (method)
case (0)
! Explicit Euler (1 order)
y = y + yp*h
y1 = y + yp*h
case (1)
! Semi-implicit Euler (1 order, symplectic)
! P = p - H/q(q, p)
! Q = q + H/p(q, P)
k1 = yp
y(4:6) = y(4:6) + k1(4:6)*h
k2 = f(y)
y(1:3) = y(1:3) + k2(1:3)*h
! P = p - H/q(q, p)h
! Q = q + H/p(q, P)h
k1 = h*yp
y1(1:3) = y(1:3)
y1(4:6) = y(4:6) + k1(4:6)
k2 = h*f(y1)
y1(1:3) = y1(1:3) + k2(1:3)
case (2)
! Velocity Verlet (2 order, symplectic)
! p(n+½) = p(n) - H/q(q(n), p(n))h/2
! q(n+1) = q(n) + H/p(q(n), p(n+½))h
! p(n+1) = p(n+½) - H/q(q(n+1), p(n+½))h/2
k1 = yp
y(4:6) = y(4:6) + k1(4:6)*h/2
k2 = f(y)
y(1:3) = y(1:3) + k2(1:3)*h
k3 = f(y)
y(4:6) = y(4:6) + k3(4:6)*h/2
k1 = h*yp
y1(1:3) = y(1:3)
y1(4:6) = y(4:6) + k1(4:6)/2
k2 = h*f(y1)
y1(1:3) = y(1:3) + k2(1:3)
k3 = h*f(y1)
y1(4:6) = y1(4:6) + k3(4:6)/2
case (3)
! 2-stage Runge-Kutta (2 order)
k1 = yp
yy = y + k1*h
k2 = f(yy)
yy = y + k2*h
y = y + (k1 + k2)*h/2
k1 = h*yp
k2 = h*f(y + k1/2)
y1 = y + k2
case default
! 4-stage Runge-Kutta (4 order)
k1 = yp
yy = y + k1*h/2
k2 = f(yy)
yy = y + k2*h/2
k3 = f(yy)
yy = y + k3*h
k4 = f(yy)
y = y + (k1 + 2*k2 + 2*k3 + k4)*h/6
k1 = h*yp
k2 = h*f(y + k1/2)
k3 = h*f(y + k2/2)
k4 = h*f(y + k3)
y1 = y + k1/6 + k2/3 + k3/3 + k4/6
end select
end subroutine integrator
end function integrator
subroutine step_controller(y, yp, f, h, method, adaptive, Bres)
! Advances the integration of dy/dσ = f(y) by one step while
! controlling the error, the latter estimated by the dispersion relation:
! |Λ(, )| 0.
use logger, only : log_debug, log_warning
implicit none
! subroutine arguments
real(wp_), dimension(6), intent(inout) :: y ! = (, )
real(wp_), dimension(6), intent(in) :: yp ! ˙ = (dx̅/dσ, dN̅/dσ)
procedure(rhs_function) :: f ! dy̅/dσ = ()
real(wp_), intent(inout) :: h ! step size
integer, intent(in) :: method ! kind of integrator
logical, intent(in) :: adaptive ! whether to change the step
! arguments for adaptive control
real(wp_), optional, intent(in) :: Bres ! resonant magnetic field
! local variables
real(wp_), dimension(6) :: y1, dummy ! new position, dummy variable
real(wp_) :: e ! error at new position
real(wp_) :: h_max ! max step size
character(256) :: msg
! local constants
real(wp_), parameter :: h_min = 1e-2_wp_ ! min step size (cm)
real(wp_), parameter :: e_min = 1e-4_wp_ ! min error
real(wp_), parameter :: e_max = 1e-3_wp_ ! max error
! Compute the max step size: this is 1/10 the width of the
! resonating plasma layer or 5cm otherwise
h_max = max_plasma_step(y(1:3), y(4:6), Bres)
! Check if the step could miss the resonance
if (h > h_max) then
if (.not. adaptive) then
write(msg, '("step size is too large: h=", g0.2, " h_max=", g0.2)') h, h_max
call log_warning(msg, mod='gray_core', proc='step_controller')
else
h = h_max
end if
end if
do
! Advance by one step
y1 = integrator(y, yp, f, h, method)
if (.not. adaptive) exit
! Compute the error
dummy = f(y1, e)
! Try to keep the error bounded to e_max
if (e > e_max .and. h/2 > h_min) then
h = h/2
write(msg, '("e=", 1pe8.2, ": decreasing step to h=", g0.2)') e, h
call log_debug(msg, mod='gray_core', proc='step_controller')
cycle
end if
if (e < e_min .and. h*2 < h_max) then
h = h*2
write(msg, '("e=", 1pe8.2, ": increasing step to h=", g0.2)') e, h
call log_debug(msg, mod='gray_core', proc='step_controller')
end if
exit
end do
! Update the position
y = y1
end subroutine step_controller
function max_plasma_step(x, N, Bres) result(ds)
! Takes the position , refractive index , resonant magnetic field
! Bres and returns the maximum integration step `ds` that can be
! taken inside the plasma such that it's still possible to resolve
! the resonance profile well enough.
use equilibrium, only : bfield, equinum_psi
use dispersion, only : resonance_width
use coreprofiles, only : temp
use const_and_precisions, only : mc2=>mc2_
implicit none
! function arguments
real(wp_), intent(in) :: x(3), N(3) ! position, refractive index
real(wp_), intent(in) :: Bres ! resonant magnetic field
real(wp_) :: ds ! maximum step size
! local variables
real(wp_) :: R, dR, z ! cylindrical coordinates
real(wp_) :: B(3), BR, Bphi ! magnetic field components
real(wp_) :: Te, psi ! temperature, poloidal flux
real(wp_) :: Npl ! parallel component of
! To convert from CGS (internal) to SI (equilibrium data)
real(wp_), parameter :: cm = 1e-2_wp_
! Initially assume we are in a vacuum outside the plasma
! and return ds=5cm as a fallback value
ds = 5
! Compute the local flux and temperature to check
! whether we are inside the plasma
R = norm2(x(1:2))
z = x(3)
call equinum_psi(R*cm, z*cm, psi)
! No flux data outside plasma
if (psi <= 0) return
! No temperature data outside plasma
Te = temp(psi)
if (Te <= 0) return
! Inside the plasma, check for possible harmonics
! Compute magnetic field in Cartesian coordinates
call bfield(R*cm, z*cm, Bphi=Bphi, BR=BR, Bz=B(3))
B(1) = (BR*x(1) - Bphi*x(2)) / R
B(2) = (BR*x(2) + Bphi*x(1)) / R
Npl = dot_product(N, B)/norm2(B) ! N =
! Compute the extent ΔR of the resonating plasma
! layer in the major radius R
dR = resonance_width(Y=norm2(B)/Bres, mu=mc2/Te, Npl2=Npl**2, R=R)
! No resonance, return the vacuum step
if (dR == 0) return
! Compute the extent in the ray direction:
!
! ΔR = Δssinθ Δs = ΔR/sinθ = ΔR/[1 - (N/N)²]
!
! and divide by a safety factor of 10:
ds = dR / sqrt(1 - (Npl/norm2(N))**2) / 10
end function max_plasma_step
subroutine ywppla_upd(xv,anv,dgr,ddgr,sox,bres,xgcn,dery,psinv,dens,btot, &

View File

@ -59,6 +59,7 @@ module gray_params
integer :: nstep ! Max number of integration steps
integer :: idst ! Choice of the integration variable
integer :: integrator ! Choice of the integration method
logical :: adaptive_step ! Allow variable step sizes
integer :: ipass ! Number of plasma passes
integer :: ipol ! Whether to compute wave polarisation
end type
@ -373,6 +374,7 @@ contains
! Default values of parameters introduced after
! gray_params.data has been deprecated
params%raytracing%integrator = 4
params%raytracing%adaptive_step = .false.
end subroutine read_gray_params

View File

@ -11,7 +11,7 @@ sets='antenna equilibrium profiles raytracing ecrh_cd output misc'
antenna='alpha beta power psi chi iox ibeam filenm fghz pos w ri phi'
equilibrium='ssplps ssplf factb sgnb sgni ixp iequil icocos ipsinorm idesc ifreefmt filenm'
profiles='psnbnd sspld factne factte iscal irho iprof filenm'
raytracing='rwmax dst nrayr nrayth nstep igrad idst ipass ipol integrator'
raytracing='rwmax dst nrayr nrayth nstep igrad idst ipass ipol integrator adaptive_step'
ecrh_cd='iwarm ilarm imx ieccd'
output='ipec nrho istpr istpl'
misc='rwall'

View File

@ -133,24 +133,34 @@ contains
end if
end subroutine wall_out
! ------------------------------
subroutine initbeam(i,iroff,iboff,iwait,stv,jphi_beam,pins_beam,currins_beam, &
dpdv_beam,jcd_beam) ! initialization at beam propagation start
use logger, only : log_info, log_warning
subroutine initbeam(params, i, iroff, iboff, iwait, stv, dst, jphi_beam, &
pins_beam, currins_beam, dpdv_beam, jcd_beam)
! Initialises the beam variables at the start of the beam propagation
use gray_params, only : gray_parameters
use logger, only : log_warning
implicit none
! arguments
integer, intent(in) :: i ! beam index
logical, dimension(:,:), intent(in), pointer :: iroff ! global ray status (F = active, T = inactive)
logical, intent(out) :: iboff
logical, dimension(:), intent(out), pointer :: iwait
real(wp_), dimension(:), intent(out), pointer :: jphi_beam,pins_beam, &
currins_beam,dpdv_beam,jcd_beam,stv
character(256) :: msg ! buffer for formatting log messages
iboff = .false. ! beam status (F = active, T = inactive)
iwait = iroff(:,i) ! copy ray status for current beam from global ray status
if(all(iwait)) then ! no rays active => stop beam
! subroutine arguments
type(gray_parameters), intent(in) :: params
integer, intent(in) :: i ! beam index
logical, pointer, intent(in) :: iroff(:,:) ! global ray status (F = active, T = inactive)
logical, intent(out) :: iboff ! beam status (F = active, T = inactive)
logical, pointer, intent(out) :: iwait(:)
real(wp_), pointer, intent(out), dimension(:) :: &
jphi_beam, pins_beam, currins_beam, dpdv_beam, jcd_beam, stv, dst
! local variables
character(256) :: msg ! buffer for formatting log messages
iboff = .false.
iwait = iroff(:,i) ! copy current beam status from the global one
if (all(iwait)) then
! no rays active => stop beam
iboff = .true.
else if (any(iwait)) then
! only some rays active
@ -158,15 +168,18 @@ contains
call log_warning(msg, mod='multipass', proc='initbeam')
end if
stv = zero ! starting step
jphi_beam = zero ! 1D beam profiles
stv = zero ! starting ray parameter (s, ct, S_R)
dst = params%raytracing%dst ! starting step size (ds, cdt, dS_R)
! 1D beam profiles
jphi_beam = zero
pins_beam = zero
currins_beam = zero
dpdv_beam = zero
jcd_beam = zero
end subroutine initbeam
! ------------------------------
subroutine initmultipass(i,iox,iroff,yynext,yypnext,yw0,ypw0,stnext,p0ray, &
taus,tau1,etau1,cpls,cpl1,lgcpl1,psipv,chipv) ! initialization before pass loop
implicit none
@ -219,71 +232,121 @@ contains
end if
end subroutine turnoffray
! ------------------------------
subroutine alloc_multipass(dim,iwait,iroff,iop,iow,yynext,yypnext,yw0,ypw0,stnext, &
stv,p0ray,taus,tau1,etau1,cpls,cpl1,lgcpl1,jphi_beam, &
pins_beam,currins_beam,dpdv_beam,jcd_beam,psipv,chipv)
subroutine alloc_multipass(&
dim, iwait, iroff, iop, iow, yynext, yypnext, yw0, ypw0, stnext, &
stv, dst, p0ray, taus, tau1, etau1, cpls, cpl1, lgcpl1, jphi_beam, &
pins_beam, currins_beam, dpdv_beam, jcd_beam, psipv, chipv)
implicit none
integer :: dim
logical, dimension(:), intent(out), pointer :: iwait
logical, dimension(:,:), intent(out), pointer :: iroff
integer, dimension(:), intent(out), pointer :: iop,iow
real(wp_), dimension(:), intent(out), pointer :: jphi_beam,pins_beam,currins_beam, &
dpdv_beam,jcd_beam,stv,tau1,etau1,cpl1,lgcpl1,p0ray,psipv,chipv
real(wp_), dimension(:,:), intent(out), pointer :: taus,cpls,stnext,yw0,ypw0
real(wp_), dimension(:,:,:), intent(out), pointer :: yynext,yypnext
! subroutine arguments
integer, intent(in) :: dim
logical, pointer, dimension(:), intent(out) :: iwait
logical, pointer, dimension(:,:), intent(out) :: iroff
integer, pointer, dimension(:), intent(out) :: iop, iow
real(wp_), pointer, dimension(:), intent(out) :: &
jphi_beam, pins_beam, currins_beam, dpdv_beam, &
jcd_beam, stv, dst, tau1, etau1, cpl1, lgcpl1, &
p0ray, psipv, chipv
real(wp_), pointer, dimension(:, :), intent(out) :: taus, cpls, stnext
real(wp_), pointer, dimension(:, :), intent(out) :: yw0, ypw0
real(wp_), pointer, dimension(:, :, :), intent(out) :: yynext, yypnext
call dealloc_multipass(iwait,iroff,iop,iow,yynext,yypnext,yw0,ypw0,stnext,stv, &
p0ray,taus,tau1,etau1,cpls,cpl1,lgcpl1,jphi_beam,pins_beam,currins_beam, &
dpdv_beam,jcd_beam,psipv,chipv)
call dealloc_multipass(&
iwait, iroff, iop, iow, yynext, yypnext, yw0, ypw0, stnext, &
stv, dst, p0ray, taus, tau1, etau1, cpls, cpl1, lgcpl1, jphi_beam, &
pins_beam, currins_beam, dpdv_beam, jcd_beam, psipv, chipv)
nbeam_max = 2**ipass ! max n of beams active at a time
nbeam_tot = 2**(ipass+1)-2 ! total n of beams
nbeam_max = 2**ipass ! max n of beams active at a time
nbeam_tot = 2**(ipass+1)-2 ! total n of beams
allocate(iwait(nray),iroff(nray,nbeam_tot),iop(nray),iow(nray), &
yynext(6,nray,nbeam_max-2),yypnext(6,nray,nbeam_max-2), &
yw0(6,nray),ypw0(6,nray),stnext(nray,nbeam_tot),stv(nray), &
p0ray(nray),taus(nray,nbeam_tot),tau1(nray),etau1(nray), &
cpls(nray,nbeam_tot),cpl1(nray),lgcpl1(nray),jphi_beam(dim), &
pins_beam(dim),currins_beam(dim),dpdv_beam(dim),jcd_beam(dim), &
psipv(nbeam_tot),chipv(nbeam_tot))
allocate(iwait(nray))
allocate(iroff(nray, nbeam_tot))
allocate(iop(nray))
allocate(iow(nray))
allocate(yynext(6, nray, nbeam_max-2))
allocate(yypnext(6, nray, nbeam_max-2))
allocate(yw0(6, nray))
allocate(ypw0(6, nray))
allocate(stnext(nray, nbeam_tot))
allocate(stv(nray))
allocate(dst(nray))
allocate(p0ray(nray))
allocate(taus(nray, nbeam_tot))
allocate(tau1(nray))
allocate(etau1(nray))
allocate(cpls(nray, nbeam_tot))
allocate(cpl1(nray))
allocate(lgcpl1(nray))
allocate(jphi_beam(dim))
allocate(pins_beam(dim))
allocate(currins_beam(dim))
allocate(dpdv_beam(dim))
allocate(jcd_beam(dim))
allocate(psipv(nbeam_tot))
allocate(chipv(nbeam_tot))
end subroutine alloc_multipass
! ------------------------------
subroutine dealloc_multipass(iwait,iroff,iop,iow,yynext,yypnext,yw0,ypw0,stnext, &
stv,p0ray,taus,tau1,etau1,cpls,cpl1,lgcpl1,jphi_beam, &
pins_beam,currins_beam,dpdv_beam,jcd_beam,psipv,chipv)
subroutine dealloc_multipass(&
iwait, iroff, iop, iow, yynext, yypnext, yw0, ypw0, stnext, &
stv, dst, p0ray, taus, tau1, etau1, cpls, cpl1, lgcpl1, jphi_beam, &
pins_beam, currins_beam, dpdv_beam, jcd_beam, psipv, chipv)
implicit none
logical, dimension(:), intent(out), pointer :: iwait
logical, dimension(:,:), intent(out), pointer :: iroff
integer, dimension(:), intent(out), pointer :: iop,iow
real(wp_), dimension(:), intent(out), pointer :: stv,p0ray,tau1,etau1,cpl1,lgcpl1, &
jphi_beam,pins_beam,currins_beam,dpdv_beam,jcd_beam,psipv,chipv
real(wp_), dimension(:,:), intent(out), pointer :: yw0,ypw0,stnext,taus,cpls
real(wp_), dimension(:,:,:), intent(out), pointer :: yynext,yypnext
logical, pointer, dimension(:), intent(out) :: iwait
logical, pointer, dimension(:,:), intent(out) :: iroff
integer, pointer, dimension(:), intent(out) :: iop, iow
real(wp_), pointer, dimension(:), intent(out) :: &
jphi_beam, pins_beam, currins_beam, dpdv_beam, &
jcd_beam, stv, dst, tau1, etau1, cpl1, lgcpl1, &
p0ray, psipv, chipv
real(wp_), pointer, dimension(:, :), intent(out) :: taus, cpls, stnext
real(wp_), pointer, dimension(:, :), intent(out) :: yw0, ypw0
real(wp_), pointer, dimension(:, :, :), intent(out) :: yynext, yypnext
if (associated(iwait)) deallocate(iwait)
if (associated(iroff)) deallocate(iroff)
if (associated(iop)) deallocate(iop)
if (associated(iow)) deallocate(iow)
if (associated(yynext)) deallocate(yynext)
if (associated(yypnext)) deallocate(yypnext)
if (associated(yw0)) deallocate(yw0)
if (associated(ypw0)) deallocate(ypw0)
if (associated(stnext)) deallocate(stnext)
if (associated(stv)) deallocate(stv)
if (associated(dst)) deallocate(dst)
if (associated(p0ray)) deallocate(p0ray)
if (associated(taus)) deallocate(taus)
if (associated(tau1)) deallocate(tau1)
if (associated(etau1)) deallocate(etau1)
if (associated(cpls)) deallocate(cpls)
if (associated(cpl1)) deallocate(cpl1)
if (associated(lgcpl1)) deallocate(lgcpl1)
if (associated(jphi_beam)) deallocate(jphi_beam)
if (associated(pins_beam)) deallocate(pins_beam)
if (associated(currins_beam)) deallocate(currins_beam)
if (associated(dpdv_beam)) deallocate(dpdv_beam)
if (associated(jcd_beam)) deallocate(jcd_beam)
if (associated(psipv)) deallocate(psipv)
if (associated(chipv)) deallocate(chipv)
end subroutine dealloc_multipass