src/equilibrium.f90: use enums

This commit is contained in:
Michele Guerini Rocco 2024-01-30 10:14:24 +01:00
parent fac0c6ded8
commit 7c5b443847
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450
4 changed files with 380 additions and 329 deletions

View File

@ -8,6 +8,8 @@
module equilibrium
use const_and_precisions, only : wp_
use splines, only : spline_simple, spline_1d, spline_2d, linear_1d
use gray_params, only : EQ_VACUUM, EQ_ANALYTICAL, &
EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL
implicit none
@ -360,36 +362,34 @@ contains
! 3. q = 1/2π Φ/ψ ~ Φ/rr/ψ < 0.
! 4. In general, sgn(q) = -sgn(I_p)sgn(B_φ).
if (iequil < 2) then
! Analytical model
select case(iequil)
case (EQ_ANALYTICAL) ! Analytical model
! Apply signs
if (params%sgni /= 0) then
model%q0 = sign(model%q0, -params%sgni*one)
model%q1 = sign(model%q1, -params%sgni*one)
end if
if (params%sgnb /= 0) then
model%B0 = sign(model%B0, +params%sgnb*one)
end if
! Rescale
model%B0 = model%B0 * params%factb
! Apply signs
if (params%sgni /= 0) then
model%q0 = sign(model%q0, -params%sgni*one)
model%q1 = sign(model%q1, -params%sgni*one)
end if
if (params%sgnb /= 0) then
model%B0 = sign(model%B0, +params%sgnb*one)
end if
! Rescale
model%B0 = model%B0 * params%factb
else
! Numeric data
case (EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL) ! Numeric data
! Apply signs
if (params%sgni /= 0) &
data%psia = sign(data%psia, -params%sgni*one)
if (params%sgnb /= 0) &
data%fpol = sign(data%fpol, +params%sgnb*one)
! Rescale
data%psia = data%psia * params%factb
data%fpol = data%fpol * params%factb
! Apply signs
if (params%sgni /= 0) &
data%psia = sign(data%psia, -params%sgni*one)
if (params%sgnb /= 0) &
data%fpol = sign(data%fpol, +params%sgnb*one)
! Rescale
data%psia = data%psia * params%factb
data%fpol = data%fpol * params%factb
! Compute the signs to be shown in the outputs header when cocos0,10.
! Note: In these cases the values sgni,sgnb from gray.ini are unused.
params%sgni = int(sign(one, -data%psia))
params%sgnb = int(sign(one, +data%fpol(size(data%fpol))))
end if
! Compute the signs to be shown in the outputs header when cocos0,10.
! Note: In these cases the values sgni,sgnb from gray.ini are unused.
params%sgni = int(sign(one, -data%psia))
params%sgnb = int(sign(one, +data%fpol(size(data%fpol))))
end select
end subroutine scale_equil
@ -398,7 +398,7 @@ contains
! in their respective global variables, see the top of this file.
use const_and_precisions, only : zero, one
use gray_params, only : equilibrium_parameters, equilibrium_data
use gray_params, only : iequil
use gray_params, only : iequil, X_AT_TOP, X_AT_BOTTOM, X_IS_MISSING
use utils, only : vmaxmin, vmaxmini, inside
use logger, only : log_info
@ -434,77 +434,80 @@ contains
! Spline interpolation of ψ(R, z)
if (iequil>2) then
! data valid only inside boundary (data%psin=0 outside), e.g. source==ESCO
! presence of boundary anticipated here to filter invalid data
nbnd = min(size(data%rbnd), size(data%zbnd))
select case (iequil)
! allocate knots and spline coefficients arrays
if (allocated(psi_spline%knots_x)) deallocate(psi_spline%knots_x)
if (allocated(psi_spline%knots_y)) deallocate(psi_spline%knots_y)
if (allocated(psi_spline%coeffs)) deallocate(psi_spline%coeffs)
allocate(psi_spline%knots_x(nrest), psi_spline%knots_y(nzest))
allocate(psi_spline%coeffs(nrz))
case (EQ_EQDSK_PARTIAL)
! Data valid only inside boundary (data%psin=0 outside),
! presence of boundary anticipated here to filter invalid data
nbnd = min(size(data%rbnd), size(data%zbnd))
! determine number of valid grid points
nrz=0
do j=1,nz
do i=1,nr
if (nbnd.gt.0) then
if(.not.inside(data%rbnd,data%zbnd,data%rv(i),data%zv(j))) cycle
else
if(data%psin(i,j).le.0.0d0) cycle
end if
nrz=nrz+1
! allocate knots and spline coefficients arrays
if (allocated(psi_spline%knots_x)) deallocate(psi_spline%knots_x)
if (allocated(psi_spline%knots_y)) deallocate(psi_spline%knots_y)
if (allocated(psi_spline%coeffs)) deallocate(psi_spline%coeffs)
allocate(psi_spline%knots_x(nrest), psi_spline%knots_y(nzest))
allocate(psi_spline%coeffs(nrz))
! determine number of valid grid points
nrz=0
do j=1,nz
do i=1,nr
if (nbnd.gt.0) then
if(.not.inside(data%rbnd,data%zbnd,data%rv(i),data%zv(j))) cycle
else
if(data%psin(i,j).le.0.0d0) cycle
end if
nrz=nrz+1
end do
end do
end do
! store valid data
allocate(rv1d(nrz),zv1d(nrz),fvpsi(nrz),wf(nrz))
ij=0
do j=1,nz
do i=1,nr
if (nbnd.gt.0) then
if(.not.inside(data%rbnd,data%zbnd,data%rv(i),data%zv(j))) cycle
else
if(data%psin(i,j).le.0.0d0) cycle
end if
ij=ij+1
rv1d(ij)=data%rv(i)
zv1d(ij)=data%zv(j)
fvpsi(ij)=data%psin(i,j)
wf(ij)=1.0d0
! store valid data
allocate(rv1d(nrz),zv1d(nrz),fvpsi(nrz),wf(nrz))
ij=0
do j=1,nz
do i=1,nr
if (nbnd.gt.0) then
if(.not.inside(data%rbnd,data%zbnd,data%rv(i),data%zv(j))) cycle
else
if(data%psin(i,j).le.0.0d0) cycle
end if
ij=ij+1
rv1d(ij)=data%rv(i)
zv1d(ij)=data%zv(j)
fvpsi(ij)=data%psin(i,j)
wf(ij)=1.0d0
end do
end do
end do
! Fit as a scattered set of points
! use reduced number of knots to limit memory comsumption ?
psi_spline%nknots_x=nr/4+4
psi_spline%nknots_y=nz/4+4
tension = params%ssplps
call scatterspl(rv1d, zv1d, fvpsi, wf, nrz, kspl, tension, &
rmnm, rmxm, zmnm, zmxm, &
psi_spline%knots_x, psi_spline%nknots_x, &
psi_spline%knots_y, psi_spline%nknots_y, &
psi_spline%coeffs, err)
! if failed, re-fit with an interpolating spline (zero tension)
if(err == -1) then
err = 0
tension = 0
! Fit as a scattered set of points
! use reduced number of knots to limit memory comsumption ?
psi_spline%nknots_x=nr/4+4
psi_spline%nknots_y=nz/4+4
tension = params%ssplps
call scatterspl(rv1d, zv1d, fvpsi, wf, nrz, kspl, tension, &
rmnm, rmxm, zmnm, zmxm, &
psi_spline%knots_x, psi_spline%nknots_x, &
psi_spline%knots_y, psi_spline%nknots_y, &
psi_spline%coeffs, err)
end if
deallocate(rv1d, zv1d, wf, fvpsi)
! reset nrz to the total number of grid points for next allocations
nrz = nr*nz
else
! iequil==2: data are valid on the full R,z grid
! if failed, re-fit with an interpolating spline (zero tension)
if(err == -1) then
err = 0
tension = 0
psi_spline%nknots_x=nr/4+4
psi_spline%nknots_y=nz/4+4
call scatterspl(rv1d, zv1d, fvpsi, wf, nrz, kspl, tension, &
rmnm, rmxm, zmnm, zmxm, &
psi_spline%knots_x, psi_spline%nknots_x, &
psi_spline%knots_y, psi_spline%nknots_y, &
psi_spline%coeffs, err)
end if
deallocate(rv1d, zv1d, wf, fvpsi)
! reset nrz to the total number of grid points for next allocations
nrz = nr*nz
case (EQ_EQDSK_FULL)
! Data are valid on the full R,z grid
! reshape 2D ψ array to 1D (transposed)
allocate(fvpsi(nrz))
@ -523,7 +526,7 @@ contains
err = 0
end if
deallocate(fvpsi)
end if
end select
if (err /= 0) then
err = 2
@ -592,11 +595,11 @@ contains
'r', rmaxis, 'z', zmaxis, 'ψ', psinoptmp
call log_info(msg, mod='equilibrium', proc='set_equil_spline')
! search for X-point if params%ixp /= 0
! Search for X-point
ixploc = params%ixp
if(ixploc/=0) then
if(ixploc<0) then
select case (ixploc)
case (X_AT_BOTTOM)
call points_ox(rbinf,zbinf,r1,z1,psinxptmp,info)
if(psinxptmp/=-1.0_wp_) then
write (msg, '("X-point found:", 3(x,a,"=",g0.3))') &
@ -611,7 +614,8 @@ contains
else
ixploc=0
end if
else
case (X_AT_TOP)
call points_ox(rbsup,zbsup,r1,z1,psinxptmp,info)
if(psinxptmp.ne.-1.0_wp_) then
write (msg, '("X-point found:", 3(x,a,"=",g0.3))') &
@ -626,26 +630,22 @@ contains
else
ixploc=0
end if
end if
end if
if (ixploc==0) then
psinop=psinoptmp
psiant=one-psinop
! Find upper horizontal tangent point
call points_tgo(rmaxis,0.5_wp_*(zmaxis+zbsup),r1,z1,one,info)
zbsup=z1
rbsup=r1
! Find lower horizontal tangent point
call points_tgo(rmaxis,0.5_wp_*(zmaxis+zbinf),r1,z1,one,info)
zbinf=z1
rbinf=r1
write (msg, '("X-point not found in", 2(x,a,"∈[",g0.3,",",g0.3,"]"))') &
'r', rbinf, rbsup, 'z', zbinf, zbsup
call log_info(msg, mod='equilibrium', proc='set_equil_spline')
end if
case (X_IS_MISSING)
psinop=psinoptmp
psiant=one-psinop
! Find upper horizontal tangent point
call points_tgo(rmaxis,0.5_wp_*(zmaxis+zbsup),r1,z1,one,info)
zbsup=z1
rbsup=r1
! Find lower horizontal tangent point
call points_tgo(rmaxis,0.5_wp_*(zmaxis+zbinf),r1,z1,one,info)
zbinf=z1
rbinf=r1
write (msg, '("X-point not found in", 2(x,a,"∈[",g0.3,",",g0.3,"]"))') &
'r', rbinf, rbsup, 'z', zbinf, zbsup
call log_info(msg, mod='equilibrium', proc='set_equil_spline')
end select
! Adjust all the B-spline coefficients
! Note: since ψ_n(R,z) = Σ_ij c_ij B_i(R)B_j(z), to correct ψ_n
@ -908,128 +908,131 @@ contains
real(wp_) :: dqdr, dqdz ! q
real(wp_) :: dphidr2, ddphidr2dr2 ! dΦ_n/d(r²), d²Φ_n/d(r²)²
if (iequil < 2) then
! Analytical model
!
! The normalised poloidal flux ψ_n(R, z) is computed as follows:
! 1. ψ_n = ρ_p²
! 2. ρ_p = ρ_p(ρ_t), using `frhopol`, which in turns uses q(ψ)
! 3. ρ_t = Φ_n
! 4. Φ_n = Φ(r)/Φ(a), where Φ(r) is the flux of B_φ=BR/R
! through a circular surface
! 5. r = [(R-R)²+(z-z)²] is the geometric minor radius
r_g = hypot(R - model%R0, z - model%z0)
! Values for vacuum/outside the domain
if (present(psi_n)) psi_n = -1
if (present(dpsidr)) dpsidr = 0
if (present(dpsidz)) dpsidz = 0
if (present(ddpsidrr)) ddpsidrr = 0
if (present(ddpsidzz)) ddpsidzz = 0
if (present(ddpsidrz)) ddpsidrz = 0
! The exact flux of the toroidal field B_φ = BR/R is:
!
! Φ(r) = Bπr² 2γ/(γ + 1) where γ=1/(1 - r²/R²).
!
! Notes:
! 1. the function Φ(r) is defined for rR only.
! 2. as r 0, γ 1, so Φ ~ Bπr².
! 3. as r 1, Φ 2Bπr² but /dr -.
! 4. |B_R|, |B_z| +-.
!
if (r_g > model%R0) then
if (present(psi_n)) psi_n = -1
if (present(dpsidr)) dpsidr = 0
if (present(dpsidz)) dpsidz = 0
if (present(ddpsidrr)) ddpsidrr = 0
if (present(ddpsidzz)) ddpsidzz = 0
if (present(ddpsidrz)) ddpsidrz = 0
return
end if
select case (iequil)
case (EQ_ANALYTICAL)
! Analytical model
!
! The normalised poloidal flux ψ_n(R, z) is computed as follows:
! 1. ψ_n = ρ_p²
! 2. ρ_p = ρ_p(ρ_t), using `frhopol`, which in turns uses q(ψ)
! 3. ρ_t = Φ_n
! 4. Φ_n = Φ(r)/Φ(a), where Φ(r) is the flux of B_φ=BR/R
! through a circular surface
! 5. r = [(R-R)²+(z-z)²] is the geometric minor radius
r_g = hypot(R - model%R0, z - model%z0)
gamma = 1 / sqrt(1 - (r_g/model%R0)**2)
phi_n = model%B0 * pi*r_g**2 * 2*gamma/(gamma + 1) / phitedge
rho_t = sqrt(phi_n)
rho_p = frhopol(rho_t)
! The exact flux of the toroidal field B_φ = BR/R is:
!
! Φ(r) = Bπr² 2γ/(γ + 1) where γ=1/(1 - r²/R²).
!
! Notes:
! 1. the function Φ(r) is defined for rR only.
! 2. as r 0, γ 1, so Φ ~ Bπr².
! 3. as r 1, Φ 2Bπr² but /dr -.
! 4. |B_R|, |B_z| +-.
!
if (r_g > model%R0) then
if (present(psi_n)) psi_n = -1
if (present(dpsidr)) dpsidr = 0
if (present(dpsidz)) dpsidz = 0
if (present(ddpsidrr)) ddpsidrr = 0
if (present(ddpsidzz)) ddpsidzz = 0
if (present(ddpsidrz)) ddpsidrz = 0
return
end if
! For Φ_n and Φ_n we also need:
!
! Φ(r²) = Bπ γ(r)
! ²Φ(r²)² = Bπ γ³(r) / (2 R²)
!
dphidr2 = model%B0 * pi * gamma / phitedge
ddphidr2dr2 = model%B0 * pi * gamma**3/(2 * model%R0**2) / phitedge
gamma = 1 / sqrt(1 - (r_g/model%R0)**2)
phi_n = model%B0 * pi*r_g**2 * 2*gamma/(gamma + 1) / phitedge
rho_t = sqrt(phi_n)
rho_p = frhopol(rho_t)
! Φ_n = Φ_n/(r²) (r²)
! where (r²) = 2[(R-R), (z-z)]
dphidr = dphidr2 * 2*(R - model%R0)
dphidz = dphidr2 * 2*(z - model%z0)
! For Φ_n and Φ_n we also need:
!
! Φ(r²) = Bπ γ(r)
! ²Φ(r²)² = Bπ γ³(r) / (2 R²)
!
dphidr2 = model%B0 * pi * gamma / phitedge
ddphidr2dr2 = model%B0 * pi * gamma**3/(2 * model%R0**2) / phitedge
! Φ_n = [Φ_n/(r²)] (r²) + Φ_n/(r²) (r²)
! = ²Φ_n/(r²)² (r²)(r²) + Φ_n/(r²) (r²)
! where (r²) = 2I
ddphidrdr = ddphidr2dr2 * 4*(R - model%R0)*(R - model%R0) + dphidr2*2
ddphidzdz = ddphidr2dr2 * 4*(z - model%z0)*(z - model%z0) + dphidr2*2
ddphidrdz = ddphidr2dr2 * 4*(R - model%R0)*(z - model%z0)
! Φ_n = Φ_n/(r²) (r²)
! where (r²) = 2[(R-R), (z-z)]
dphidr = dphidr2 * 2*(R - model%R0)
dphidz = dphidr2 * 2*(z - model%z0)
! ψ_n = ρ_p(ρ_t)²
if (present(psi_n)) psi_n = rho_p**2
! Φ_n = [Φ_n/(r²)] (r²) + Φ_n/(r²) (r²)
! = ²Φ_n/(r²)² (r²)(r²) + Φ_n/(r²) (r²)
! where (r²) = 2I
ddphidrdr = ddphidr2dr2 * 4*(R - model%R0)*(R - model%R0) + dphidr2*2
ddphidzdz = ddphidr2dr2 * 4*(z - model%z0)*(z - model%z0) + dphidr2*2
ddphidrdz = ddphidr2dr2 * 4*(R - model%R0)*(z - model%z0)
! Using the definitions in `frhotor`:
!
! ψ_n = ψ_n/Φ_n Φ_n
!
! ψ_n/Φ_n = Φ_a/ψ_a ψ/Φ
! = Φ_a/ψ_a 1/2πq
!
! Using ψ_a = 1/2π Φ_a / (q + Δq), then:
!
! ψ_n/Φ_n = (q + Δq)/q
!
q = model%q0 + (model%q1 - model%q0) * rho_p**model%alpha
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
dpsidphi = (model%q0 + dq) / q
! ψ_n = ρ_p(ρ_t)²
if (present(psi_n)) psi_n = rho_p**2
! Using the above, ψ_n = ψ_n/Φ_n Φ_n
if (present(dpsidr)) dpsidr = dpsidphi * dphidr
if (present(dpsidz)) dpsidz = dpsidphi * dphidz
! Using the definitions in `frhotor`:
!
! ψ_n = ψ_n/Φ_n Φ_n
!
! ψ_n/Φ_n = Φ_a/ψ_a ψ/Φ
! = Φ_a/ψ_a 1/2πq
!
! Using ψ_a = 1/2π Φ_a / (q + Δq), then:
!
! ψ_n/Φ_n = (q + Δq)/q
!
q = model%q0 + (model%q1 - model%q0) * rho_p**model%alpha
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
dpsidphi = (model%q0 + dq) / q
! For the second derivatives:
!
! ψ_n = (ψ_n/Φ_n) Φ_n + (ψ_n/Φ_n) Φ_n
!
! (ψ_n/Φ_n) = - (ψ_n/Φ_n) q/q
!
! From q(ψ) = q + (q-q) ψ_n^α/2, we have:
!
! q = α/2 (q-q) ψ_n/ψ_n
! = α/2 (q-q)/ψ_n (ψ_n/Φ_n) Φ_n.
!
dqdr = model%alpha/2 * (model%q1 - model%q0)*rho_p**(model%alpha-2) * dpsidphi * dphidr
dqdz = model%alpha/2 * (model%q1 - model%q0)*rho_p**(model%alpha-2) * dpsidphi * dphidz
ddpsidphidr = - dpsidphi * dqdr/q
ddpsidphidz = - dpsidphi * dqdz/q
! Using the above, ψ_n = ψ_n/Φ_n Φ_n
if (present(dpsidr)) dpsidr = dpsidphi * dphidr
if (present(dpsidz)) dpsidz = dpsidphi * dphidz
! Combining all of the above:
!
! ψ_n = (ψ_n/Φ_n) Φ_n + (ψ_n/Φ_n) Φ_n
!
if (present(ddpsidrr)) ddpsidrr = ddpsidphidr * dphidr + dpsidphi * ddphidrdr
if (present(ddpsidzz)) ddpsidzz = ddpsidphidz * dphidz + dpsidphi * ddphidzdz
if (present(ddpsidrz)) ddpsidrz = ddpsidphidr * dphidz + dpsidphi * ddphidrdz
else
! Numerical data
if (inside(psi_domain%R, psi_domain%z, R, z)) then
! Within the interpolation range
if (present(psi_n)) psi_n = psi_spline%eval(R, z)
if (present(dpsidr)) dpsidr = psi_spline%deriv(R, z, 1, 0)
if (present(dpsidz)) dpsidz = psi_spline%deriv(R, z, 0, 1)
if (present(ddpsidrr)) ddpsidrr = psi_spline%deriv(R, z, 2, 0)
if (present(ddpsidzz)) ddpsidzz = psi_spline%deriv(R, z, 0, 2)
if (present(ddpsidrz)) ddpsidrz = psi_spline%deriv(R, z, 1, 1)
else
! Outside
if (present(psi_n)) psi_n = -1
if (present(dpsidr)) dpsidr = 0
if (present(dpsidz)) dpsidz = 0
if (present(ddpsidrr)) ddpsidrr = 0
if (present(ddpsidzz)) ddpsidzz = 0
if (present(ddpsidrz)) ddpsidrz = 0
end if
end if
! For the second derivatives:
!
! ψ_n = (ψ_n/Φ_n) Φ_n + (ψ_n/Φ_n) Φ_n
!
! (ψ_n/Φ_n) = - (ψ_n/Φ_n) q/q
!
! From q(ψ) = q + (q-q) ψ_n^α/2, we have:
!
! q = α/2 (q-q) ψ_n/ψ_n
! = α/2 (q-q)/ψ_n (ψ_n/Φ_n) Φ_n.
!
dqdr = model%alpha/2 * (model%q1 - model%q0)*rho_p**(model%alpha-2) * dpsidphi * dphidr
dqdz = model%alpha/2 * (model%q1 - model%q0)*rho_p**(model%alpha-2) * dpsidphi * dphidz
ddpsidphidr = - dpsidphi * dqdr/q
ddpsidphidz = - dpsidphi * dqdz/q
! Combining all of the above:
!
! ψ_n = (ψ_n/Φ_n) Φ_n + (ψ_n/Φ_n) Φ_n
!
if (present(ddpsidrr)) ddpsidrr = ddpsidphidr * dphidr + dpsidphi * ddphidrdr
if (present(ddpsidzz)) ddpsidzz = ddpsidphidz * dphidz + dpsidphi * ddphidzdz
if (present(ddpsidrz)) ddpsidrz = ddpsidphidr * dphidz + dpsidphi * ddphidrdz
case (EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL)
! Numerical data
if (inside(psi_domain%R, psi_domain%z, R, z)) then
! Within the interpolation range
if (present(psi_n)) psi_n = psi_spline%eval(R, z)
if (present(dpsidr)) dpsidr = psi_spline%deriv(R, z, 1, 0)
if (present(dpsidz)) dpsidz = psi_spline%deriv(R, z, 0, 1)
if (present(ddpsidrr)) ddpsidrr = psi_spline%deriv(R, z, 2, 0)
if (present(ddpsidzz)) ddpsidzz = psi_spline%deriv(R, z, 0, 2)
if (present(ddpsidrz)) ddpsidrz = psi_spline%deriv(R, z, 1, 1)
end if
end select
end subroutine pol_flux
@ -1043,21 +1046,28 @@ contains
real(wp_), intent(out) :: fpol ! poloidal current
real(wp_), intent(out), optional :: dfpol ! derivative
if (iequil < 2) then
! Analytical model
! F(ψ) = BR, a constant
fpol = model%B0 * model%R0
if (present(dfpol)) dfpol = 0
else
! Numerical data
if(psi_n <= 1 .and. psi_n >= 0) then
fpol = fpol_spline%eval(psi_n)
if (present(dfpol)) dfpol = fpol_spline%deriv(psi_n)
else
fpol = fpolas
select case (iequil)
case (EQ_VACUUM)
! Vacuum, no plasma
fpol = 0
if (present(dfpol)) dfpol = 0
end if
end if
case (EQ_ANALYTICAL)
! Analytical model
! F(ψ) = BR, a constant
fpol = model%B0 * model%R0
if (present(dfpol)) dfpol = 0
case (EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL)
! Numerical data
if(psi_n <= 1 .and. psi_n >= 0) then
fpol = fpol_spline%eval(psi_n)
if (present(dfpol)) dfpol = fpol_spline%deriv(psi_n)
else
fpol = fpolas
if (present(dfpol)) dfpol = 0
end if
end select
end subroutine pol_curr
@ -1069,30 +1079,34 @@ contains
real(wp_), intent(in) :: rho_p
real(wp_) :: frhotor
if (iequil < 2) then
! Analytical model
block
! The change of variable is obtained by integrating
!
! q(ψ) = 1/2π Φ/ψ
!
! and defining ψ = ψ_a ρ_p², Φ = Φ_a ρ_t².
! The result is:
!
! - ψ_a = 1/2π Φ_a / [q + Δq]
!
! - ρ_t = ρ_p [(q + Δq ρ_p^α)/(q + Δq)]
!
! where Δq = (q - q)/(α/2 + 1)
real(wp_) :: dq
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
frhotor = rho_p * sqrt((model%q0 + dq*rho_p**model%alpha) &
/ (model%q0 + dq))
end block
else
! Numerical data
frhotor = rhot_spline%eval(rho_p)
end if
select case (iequil)
case (EQ_ANALYTICAL)
! Analytical model
block
! The change of variable is obtained by integrating
!
! q(ψ) = 1/2π Φ/ψ
!
! and defining ψ = ψ_a ρ_p², Φ = Φ_a ρ_t².
! The result is:
!
! - ψ_a = 1/2π Φ_a / [q + Δq]
!
! - ρ_t = ρ_p [(q + Δq ρ_p^α)/(q + Δq)]
!
! where Δq = (q - q)/(α/2 + 1)
real(wp_) :: dq
dq = (model%q1 - model%q0) / (model%alpha/2 + 1)
frhotor = rho_p * sqrt((model%q0 + dq*rho_p**model%alpha) &
/ (model%q0 + dq))
end block
case (EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL)
! Numerical data
frhotor = rhot_spline%eval(rho_p)
end select
end function frhotor
@ -1105,26 +1119,32 @@ contains
real(wp_), intent(in) :: rho_t
real(wp_) :: frhopol
if (iequil < 2) then
! Analytical model
block
! In general there is no closed form for ρ_p(ρ_t) in the
! analytical model, we thus solve numerically the equation
! ρ_t(ρ_p) = ρ_t for ρ_p.
use minpack, only : hybrj1
select case (iequil)
case (EQ_VACUUM)
! Vacuum, no plasma
frhopol = 0
real(wp_) :: rho_p(1), fvec(1), fjac(1,1), wa(7)
integer :: info
case (EQ_ANALYTICAL)
! Analytical model
block
! In general there is no closed form for ρ_p(ρ_t) in the
! analytical model, we thus solve numerically the equation
! ρ_t(ρ_p) = ρ_t for ρ_p.
use minpack, only : hybrj1
rho_p = [rho_t] ! first guess, ρ_p ρ_t
call hybrj1(equation, n=1, x=rho_p, fvec=fvec, fjac=fjac, &
ldfjac=1, tol=comp_eps, info=info, wa=wa, lwa=7)
frhopol = rho_p(1)
end block
else
! Numerical data
frhopol = rhop_spline%eval(rho_t)
end if
real(wp_) :: rho_p(1), fvec(1), fjac(1,1), wa(7)
integer :: info
rho_p = [rho_t] ! first guess, ρ_p ρ_t
call hybrj1(equation, n=1, x=rho_p, fvec=fvec, fjac=fjac, &
ldfjac=1, tol=comp_eps, info=info, wa=wa, lwa=7)
frhopol = rho_p(1)
end block
case (EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL)
! Numerical data
frhopol = rhop_spline%eval(rho_t)
end select
contains
@ -1162,19 +1182,25 @@ contains
real(wp_), intent(in) :: psin
real(wp_) :: fq
if (iequil < 2) then
! Analytical model
! The safety factor is a power law in ρ_p:
! q(ρ_p) = q + (q-q) ρ_p^α
block
real(wp_) :: rho_p
rho_p = sqrt(psin)
fq = abs(model%q0 + (model%q1 - model%q0) * rho_p**model%alpha)
end block
else
! Numerical data
fq = q_spline%eval(psin)
end if
select case(iequil)
case (EQ_VACUUM)
! Vacuum, q is undefined
fq = 0
case (EQ_ANALYTICAL)
! Analytical model
! The safety factor is a power law in ρ_p:
! q(ρ_p) = q + (q-q) ρ_p^α
block
real(wp_) :: rho_p
rho_p = sqrt(psin)
fq = abs(model%q0 + (model%q1 - model%q0) * rho_p**model%alpha)
end block
case (EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL)
! Numerical data
fq = q_spline%eval(psin)
end select
end function fq
@ -1183,6 +1209,7 @@ contains
! (R, z) in cylindrical coordinates
!
! Note: all output arguments are optional.
use gray_params, only : iequil
! subroutine arguments
real(wp_), intent(in) :: R, z
@ -1191,6 +1218,14 @@ contains
! local variables
real(wp_) :: psi_n, fpol, dpsidr, dpsidz
if (iequil == EQ_VACUUM) then
! Vacuum, no plasma nor field
if (present(B_R)) B_R = 0
if (present(B_z)) B_z = 0
if (present(B_phi)) B_phi = 0
return
end if
call pol_flux(R, z, psi_n, dpsidr, dpsidz)
call pol_curr(psi_n, fpol)

View File

@ -12,7 +12,7 @@ contains
use coreprofiles, only : temp, fzeff
use dispersion, only : expinit
use gray_params, only : gray_parameters, gray_data, gray_results, &
print_parameters
print_parameters, EQ_VACUUM
use beams, only : xgygcoeff, launchangles2n
use beamdata, only : pweight, rayi2jk
use gray_errors, only : is_critical, print_err_raytracing, print_err_ecrh_cd
@ -100,12 +100,14 @@ contains
! Initialise the dispersion module
if(params%ecrh_cd%iwarm > 1) call expinit
! Initialise the magsurf_data module
call flux_average ! requires frhotor for dadrhot,dvdrhot
if (params%equilibrium%iequil /= EQ_VACUUM) then
! Initialise the magsurf_data module
call flux_average ! requires frhotor for dadrhot,dvdrhot
! Initialise the output profiles
call pec_init(params%output%ipec, rhout)
nnd = size(rhop_tab) ! number of radial profile points
! Initialise the output profiles
call pec_init(params%output%ipec, rhout)
nnd = size(rhop_tab) ! number of radial profile points
end if
call alloc_multipass(nnd, iwait, iroff, iop, iow, yynext, yypnext, yw0, ypw0, stnext, &
stv, p0ray, taus, tau1, etau1, cpls, cpl1, lgcpl1, jphi_beam, &
@ -138,11 +140,13 @@ contains
! print Btot=Bres
! print ne, Te, q, Jphi versus psi, rhop, rhot
call print_bres(bres)
call print_prof(params%profiles)
call print_maps(bres, xgcn, &
norm2(params%antenna%pos(1:2)) * 0.01_wp_, &
sin(params%antenna%beta*degree))
if (params%equilibrium%iequil /= EQ_VACUUM) then
call print_bres(bres)
call print_prof(params%profiles)
call print_maps(bres, xgcn, &
norm2(params%antenna%pos(1:2)) * 0.01_wp_, &
sin(params%antenna%beta*degree))
end if
! ========= pre-proc prints END =========
! =========== main loop BEGIN ===========
@ -518,9 +522,11 @@ contains
icd_beam = sum(ccci(:,i))
call vmaxmin(tau0,params%raytracing%nray,taumn,taumx) ! taumn,taumx for print
! compute power and current density profiles for all rays
call spec(psjki,ppabs,ccci,iiv,pabs_beam,icd_beam,dpdv_beam,jphi_beam,jcd_beam, &
pins_beam,currins_beam)
if (params%equilibrium%iequil /= EQ_VACUUM) then
! compute power and current density profiles for all rays
call spec(psjki,ppabs,ccci,iiv,pabs_beam,icd_beam,dpdv_beam, &
jphi_beam,jcd_beam,pins_beam,currins_beam)
end if
pabs_pass(iox) = pabs_pass(iox) + pabs_beam ! 0D results for current pass, sum on O/X mode beams
icd_pass(iox) = icd_pass(iox) + icd_beam
@ -563,17 +569,20 @@ contains
end if
end if
call print_pec(rhop_tab,rhot_tab,jphi_beam,jcd_beam,dpdv_beam,currins_beam, &
pins_beam,ip) ! *print power and current density profiles for current beam
if (params%equilibrium%iequil /= EQ_VACUUM) then
call print_pec(rhop_tab,rhot_tab,jphi_beam,jcd_beam, &
dpdv_beam,currins_beam,pins_beam,ip) ! *print power and current density profiles for current beam
call postproc_profiles(pabs_beam,icd_beam,rhot_tab,dpdv_beam,jphi_beam, &
rhotpav,drhotpav,rhotjava,drhotjava,dpdvp,jphip,rhotp,drhotp,rhotj, &
drhotj,dpdvmx,jphimx,ratjamx,ratjbmx) ! *compute profiles width for current beam
call postproc_profiles(pabs_beam,icd_beam,rhot_tab,dpdv_beam, &
jphi_beam, rhotpav,drhotpav,rhotjava,drhotjava,dpdvp,jphip, &
rhotp,drhotp,rhotj,drhotj,dpdvmx,jphimx,ratjamx,ratjbmx) ! *compute profiles width for current beam
call print_finals(pabs_beam,icd_beam,dpdvp,jphip,rhotpav, &
rhotjava,drhotpav,drhotjava,dpdvmx,jphimx,rhotp,rhotj, &
drhotp,drhotj,ratjamx,ratjbmx,stv(1),psipv(index_rt), &
chipv(index_rt),index_rt,sum(p0ray),cpl_beam1,cpl_beam2) ! *print 0D results for current beam
end if
call print_finals(pabs_beam,icd_beam,dpdvp,jphip,rhotpav,rhotjava, &
drhotpav,drhotjava,dpdvmx,jphimx,rhotp,rhotj,drhotp,drhotj,ratjamx, &
ratjbmx,stv(1),psipv(index_rt),chipv(index_rt),index_rt,sum(p0ray), &
cpl_beam1,cpl_beam2) ! *print 0D results for current beam
! ============ post-proc END ============
end do beam_loop
@ -1872,13 +1881,20 @@ contains
bv(1)=br*csphi-bphi*snphi
bv(2)=br*snphi+bphi*csphi
bv(3)=bz
call pol_limit(anv,bv,bres,sox,ext0(jk),eyt0(jk))
if (jk == 1) then
call stokes_ce(ext0(jk),eyt0(jk),qq,uu,vv)
call polellipse(qq,uu,vv,psipol0,chipol0)
psipol0=psipol0/degree ! convert from rad to degree
chipol0=chipol0/degree
if (norm2(bv) > 0) then
call pol_limit(anv,bv,bres,sox,ext0(jk),eyt0(jk))
if (jk == 1) then
call stokes_ce(ext0(jk),eyt0(jk),qq,uu,vv)
call polellipse(qq,uu,vv,psipol0,chipol0)
psipol0=psipol0/degree ! convert from rad to degree
chipol0=chipol0/degree
end if
else
! X/O mode are undefined if B=0
psipol0 = 0
chipol0 = 0
end if
else
call stokes_ell(chipol0*degree,psipol0*degree,qq,uu,vv)

View File

@ -242,7 +242,7 @@ contains
! Set global variables
select case (params%equilibrium%iequil)
case (EQ_VACUUM, EQ_ANALYTICAL)
case (EQ_ANALYTICAL)
call set_equil_an
case (EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL)
@ -387,7 +387,7 @@ contains
EQ_EQDSK_FULL, EQ_EQDSK_PARTIAL
use utils, only : range2rect
use limiter, only : limiter_set_globals=>set_globals
use const_and_precisions, only : cm
use const_and_precisions, only : cm, comp_huge
! subroutine arguments
type(gray_parameters), intent(inout) :: params
@ -415,7 +415,11 @@ contains
! Max radius, either due to the plasma extent or equilibrium grid
select case (params%equilibrium%iequil)
case (EQ_VACUUM, EQ_ANALYTICAL)
case (EQ_VACUUM)
! Use a very large R, ~ unbounded
R_max = comp_huge
case (EQ_ANALYTICAL)
! use R+a
block
use equilibrium, only : model

View File

@ -1,4 +0,0 @@
0.0 0.0 0.0 : rr0m,zr0m,rpam ! rhot[m] = min(sqrt((r-rr0m)**2+(z-zr0m)**2), rpam); tor flux phi = pi*b0*rhot**2
0.0 : b0 ! Bphi[T] @ rr0m[m]
1 3 2 : q0, qa, alq ! q = q0 + (qa-q0)*sqrt(psin)**alq
0 : nlim ! number of points in first wall (rlim,zlim) polygon