mark some procedures as pure
This commit is contained in:
parent
166086d369
commit
751cca3bfc
@ -35,7 +35,7 @@ module gray_equil
|
||||
end type
|
||||
|
||||
abstract interface
|
||||
subroutine pol_flux_sub(self, R, z, psi_n, dpsidr, dpsidz, &
|
||||
pure subroutine pol_flux_sub(self, R, z, psi_n, dpsidr, dpsidz, &
|
||||
ddpsidrr, ddpsidzz, ddpsidrz)
|
||||
! Computes the normalised poloidal flux ψ_n and its
|
||||
! derivatives wrt (R, z) up to the second order.
|
||||
@ -48,7 +48,7 @@ module gray_equil
|
||||
psi_n, dpsidr, dpsidz, ddpsidrr, ddpsidzz, ddpsidrz
|
||||
end subroutine pol_flux_sub
|
||||
|
||||
subroutine pol_curr_sub(self, psi_n, fpol, dfpol)
|
||||
pure subroutine pol_curr_sub(self, psi_n, fpol, dfpol)
|
||||
! Computes the poloidal current function F(ψ_n)
|
||||
! and (optionally) its derivative dF/dψ_n given ψ_n.
|
||||
import :: abstract_equil, wp_
|
||||
@ -58,7 +58,7 @@ module gray_equil
|
||||
real(wp_), intent(out), optional :: dfpol ! derivative
|
||||
end subroutine pol_curr_sub
|
||||
|
||||
function safety_fun(self, psi_n) result(q)
|
||||
pure function safety_fun(self, psi_n) result(q)
|
||||
! Computes the safety factor q as a function of the
|
||||
! normalised poloidal flux ψ_n.
|
||||
!
|
||||
@ -69,7 +69,7 @@ module gray_equil
|
||||
real(wp_) :: q
|
||||
end function safety_fun
|
||||
|
||||
function rho_conv_fun(self, rho_in) result(rho_out)
|
||||
pure function rho_conv_fun(self, rho_in) result(rho_out)
|
||||
! Converts between poloidal (ρ_p) and toroidal (ρ_t) normalised radius
|
||||
import :: abstract_equil, wp_
|
||||
class(abstract_equil), intent(in) :: self
|
||||
@ -176,7 +176,7 @@ module gray_equil
|
||||
|
||||
contains
|
||||
|
||||
subroutine b_field(self, R, z, B_R, B_z, B_phi)
|
||||
pure subroutine b_field(self, R, z, B_R, B_z, B_phi)
|
||||
! Computes the magnetic field as a function of
|
||||
! (R, z) in cylindrical coordinates
|
||||
!
|
||||
@ -211,7 +211,7 @@ contains
|
||||
end subroutine b_field
|
||||
|
||||
|
||||
function tor_curr(self, R, z) result(J_phi)
|
||||
pure function tor_curr(self, R, z) result(J_phi)
|
||||
! Computes the toroidal current J_φ as a function of (R, z)
|
||||
use const_and_precisions, only : mu0_
|
||||
|
||||
@ -251,7 +251,7 @@ contains
|
||||
! Analytical model
|
||||
!
|
||||
|
||||
subroutine analytic_pol_flux(self, R, z, psi_n, dpsidr, dpsidz, &
|
||||
pure subroutine analytic_pol_flux(self, R, z, psi_n, dpsidr, dpsidz, &
|
||||
ddpsidrr, ddpsidzz, ddpsidrz)
|
||||
use const_and_precisions, only : pi
|
||||
|
||||
@ -376,7 +376,7 @@ contains
|
||||
end subroutine analytic_pol_flux
|
||||
|
||||
|
||||
subroutine analytic_pol_curr(self, psi_n, fpol, dfpol)
|
||||
pure subroutine analytic_pol_curr(self, psi_n, fpol, dfpol)
|
||||
! subroutine arguments
|
||||
class(analytic_equil), intent(in) :: self
|
||||
real(wp_), intent(in) :: psi_n
|
||||
@ -394,7 +394,7 @@ contains
|
||||
end subroutine analytic_pol_curr
|
||||
|
||||
|
||||
function analytic_safety(self, psi_n) result(q)
|
||||
pure function analytic_safety(self, psi_n) result(q)
|
||||
! function arguments
|
||||
class(analytic_equil), intent(in) :: self
|
||||
real(wp_), intent(in) :: psi_n
|
||||
@ -412,7 +412,7 @@ contains
|
||||
end function analytic_safety
|
||||
|
||||
|
||||
function analytic_pol2tor(self, rho_in) result(rho_out)
|
||||
pure function analytic_pol2tor(self, rho_in) result(rho_out)
|
||||
! function arguments
|
||||
class(analytic_equil), intent(in) :: self
|
||||
real(wp_), intent(in) :: rho_in
|
||||
@ -438,7 +438,7 @@ contains
|
||||
end function analytic_pol2tor
|
||||
|
||||
|
||||
function analytic_tor2pol(self, rho_in) result(rho_out)
|
||||
pure function analytic_tor2pol(self, rho_in) result(rho_out)
|
||||
! Converts from toroidal (ρ_t) to poloidal (ρ_p) normalised radius
|
||||
use const_and_precisions, only : comp_eps
|
||||
use minpack, only : hybrj1
|
||||
@ -462,7 +462,7 @@ contains
|
||||
|
||||
contains
|
||||
|
||||
subroutine equation(n, x, f, df, ldf, flag)
|
||||
pure subroutine equation(n, x, f, df, ldf, flag)
|
||||
! The equation to solve: f(x) = ρ_t(x) - ρ_t₀ = 0
|
||||
|
||||
! optimal step size
|
||||
@ -490,7 +490,7 @@ contains
|
||||
end function analytic_tor2pol
|
||||
|
||||
|
||||
subroutine analytic_flux_contour(self, psi0, R_min, R, z, &
|
||||
pure subroutine analytic_flux_contour(self, psi0, R_min, R, z, &
|
||||
R_hi, z_hi, R_lo, z_lo)
|
||||
use const_and_precisions, only : pi
|
||||
|
||||
@ -525,7 +525,7 @@ contains
|
||||
! Numerical equilibrium
|
||||
!
|
||||
|
||||
subroutine numeric_pol_flux(self, R, z, psi_n, dpsidr, dpsidz, &
|
||||
pure subroutine numeric_pol_flux(self, R, z, psi_n, dpsidr, dpsidz, &
|
||||
ddpsidrr, ddpsidzz, ddpsidrz)
|
||||
! function arguments
|
||||
class(numeric_equil), intent(in) :: self
|
||||
@ -554,7 +554,7 @@ contains
|
||||
end subroutine numeric_pol_flux
|
||||
|
||||
|
||||
subroutine numeric_pol_curr(self, psi_n, fpol, dfpol)
|
||||
pure subroutine numeric_pol_curr(self, psi_n, fpol, dfpol)
|
||||
! subroutine arguments
|
||||
class(numeric_equil), intent(in) :: self
|
||||
real(wp_), intent(in) :: psi_n
|
||||
@ -573,7 +573,7 @@ contains
|
||||
end subroutine numeric_pol_curr
|
||||
|
||||
|
||||
function numeric_safety(self, psi_n) result(q)
|
||||
pure function numeric_safety(self, psi_n) result(q)
|
||||
! function arguments
|
||||
class(numeric_equil), intent(in) :: self
|
||||
real(wp_), intent(in) :: psi_n
|
||||
@ -589,7 +589,7 @@ contains
|
||||
end function numeric_safety
|
||||
|
||||
|
||||
function numeric_pol2tor(self, rho_in) result(rho_out)
|
||||
pure function numeric_pol2tor(self, rho_in) result(rho_out)
|
||||
! function arguments
|
||||
class(numeric_equil), intent(in) :: self
|
||||
real(wp_), intent(in) :: rho_in
|
||||
@ -599,7 +599,7 @@ contains
|
||||
end function numeric_pol2tor
|
||||
|
||||
|
||||
function numeric_tor2pol(self, rho_in) result(rho_out)
|
||||
pure function numeric_tor2pol(self, rho_in) result(rho_out)
|
||||
! function arguments
|
||||
class(numeric_equil), intent(in) :: self
|
||||
real(wp_), intent(in) :: rho_in
|
||||
@ -956,7 +956,7 @@ contains
|
||||
end subroutine numeric_init
|
||||
|
||||
|
||||
subroutine rescale_boundary(cont, psi, O, t0)
|
||||
pure subroutine rescale_boundary(cont, psi, O, t0)
|
||||
! Given the plasma boundary contour `cont`, the position of the
|
||||
! magnetic axis `O`, and a scaling factor `t0`; this subroutine
|
||||
! rescales the contour by `t0` about `O` while ensuring the
|
||||
@ -994,7 +994,7 @@ contains
|
||||
|
||||
contains
|
||||
|
||||
function s(t)
|
||||
pure function s(t)
|
||||
! Rescriction of ψ(R, z) on the line Q(t) = O + tN
|
||||
|
||||
real(wp_), intent(in) :: t
|
||||
@ -1047,7 +1047,7 @@ contains
|
||||
|
||||
contains
|
||||
|
||||
subroutine equation(n, x, f, df, ldf, flag)
|
||||
pure subroutine equation(n, x, f, df, ldf, flag)
|
||||
! The equation to solve: f(R,z) = ∇ψ(R,z) = 0
|
||||
|
||||
! subroutine arguments
|
||||
@ -1108,7 +1108,7 @@ contains
|
||||
z1 = sol(2)
|
||||
contains
|
||||
|
||||
subroutine equation(n, x, f, df, ldf, flag)
|
||||
pure subroutine equation(n, x, f, df, ldf, flag)
|
||||
! The equation to solve: f(R,z) = [ψ(R,z)-ψ₀, ∂ψ/∂R] = 0
|
||||
|
||||
! subroutine arguments
|
||||
@ -1134,7 +1134,7 @@ contains
|
||||
! Vacuum
|
||||
!
|
||||
|
||||
subroutine vacuum_pol_flux(self, R, z, psi_n, dpsidr, dpsidz, &
|
||||
pure subroutine vacuum_pol_flux(self, R, z, psi_n, dpsidr, dpsidz, &
|
||||
ddpsidrr, ddpsidzz, ddpsidrz)
|
||||
! function arguments
|
||||
class(vacuum), intent(in) :: self
|
||||
@ -1154,7 +1154,7 @@ contains
|
||||
end subroutine vacuum_pol_flux
|
||||
|
||||
|
||||
subroutine vacuum_pol_curr(self, psi_n, fpol, dfpol)
|
||||
pure subroutine vacuum_pol_curr(self, psi_n, fpol, dfpol)
|
||||
! subroutine arguments
|
||||
class(vacuum), intent(in) :: self
|
||||
real(wp_), intent(in) :: psi_n
|
||||
@ -1169,7 +1169,7 @@ contains
|
||||
end subroutine vacuum_pol_curr
|
||||
|
||||
|
||||
function vacuum_safety(self, psi_n) result(q)
|
||||
pure function vacuum_safety(self, psi_n) result(q)
|
||||
! function arguments
|
||||
class(vacuum), intent(in) :: self
|
||||
real(wp_), intent(in) :: psi_n
|
||||
@ -1182,7 +1182,7 @@ contains
|
||||
end function vacuum_safety
|
||||
|
||||
|
||||
function vacuum_conv(self, rho_in) result(rho_out)
|
||||
pure function vacuum_conv(self, rho_in) result(rho_out)
|
||||
! function arguments
|
||||
class(vacuum), intent(in) :: self
|
||||
real(wp_), intent(in) :: rho_in
|
||||
@ -1195,7 +1195,7 @@ contains
|
||||
end function vacuum_conv
|
||||
|
||||
|
||||
subroutine vacuum_flux_contour(self, psi0, R_min, R, z, &
|
||||
pure subroutine vacuum_flux_contour(self, psi0, R_min, R, z, &
|
||||
R_hi, z_hi, R_lo, z_lo)
|
||||
! subroutine arguments
|
||||
class(vacuum), intent(in) :: self
|
||||
|
@ -267,7 +267,7 @@ contains
|
||||
! Build a regular (R, z) grid
|
||||
dR = (equil%r_range(2) - equil%r_range(1) - comp_eps)/(npsi - 1)
|
||||
dz = (equil%z_range(2) - equil%z_range(1))/(npsi - 1)
|
||||
do j = 1, npsi
|
||||
do concurrent (j = 1:npsi)
|
||||
R(j) = comp_eps + equil%r_range(1) + dR*(j - 1)
|
||||
z(j) = equil%z_range(1) + dz*(j - 1)
|
||||
end do
|
||||
@ -360,7 +360,7 @@ contains
|
||||
|
||||
contains
|
||||
|
||||
subroutine equation(n, x, f, df, ldf, flag)
|
||||
pure subroutine equation(n, x, f, df, ldf, flag)
|
||||
! The equation to solve: f(x) = q(x) - q₀ = 0
|
||||
use const_and_precisions, only : comp_eps
|
||||
|
||||
|
@ -108,7 +108,7 @@ contains
|
||||
end subroutine spline_simple_deinit
|
||||
|
||||
|
||||
function spline_simple_eval(self, x) result(y)
|
||||
pure function spline_simple_eval(self, x) result(y)
|
||||
! Evaluates the spline at x
|
||||
use utils, only : locate
|
||||
|
||||
@ -128,7 +128,7 @@ contains
|
||||
end function spline_simple_eval
|
||||
|
||||
|
||||
function spline_simple_raw_eval(self, i, dx) result(y)
|
||||
pure function spline_simple_raw_eval(self, i, dx) result(y)
|
||||
! Evaluates the i-th polynomial of the spline at dx
|
||||
|
||||
! subroutine arguments
|
||||
@ -142,7 +142,7 @@ contains
|
||||
end function spline_simple_raw_eval
|
||||
|
||||
|
||||
function spline_simple_deriv(self, x) result(y)
|
||||
pure function spline_simple_deriv(self, x) result(y)
|
||||
! Computes the derivative of the spline at x
|
||||
use utils, only : locate
|
||||
|
||||
@ -163,7 +163,7 @@ contains
|
||||
end function spline_simple_deriv
|
||||
|
||||
|
||||
subroutine spline_simple_coeffs(x, y, n, c)
|
||||
pure subroutine spline_simple_coeffs(x, y, n, c)
|
||||
! Computes the cubic coefficients of all n polynomials
|
||||
|
||||
! subroutine arguments
|
||||
@ -323,7 +323,7 @@ contains
|
||||
end subroutine spline_1d_deinit
|
||||
|
||||
|
||||
function spline_1d_eval(self, x) result(y)
|
||||
pure function spline_1d_eval(self, x) result(y)
|
||||
! Evaluates the spline at x
|
||||
use dierckx, only : splev
|
||||
|
||||
@ -341,7 +341,7 @@ contains
|
||||
end function spline_1d_eval
|
||||
|
||||
|
||||
function spline_1d_deriv(self, x, order) result(y)
|
||||
pure function spline_1d_deriv(self, x, order) result(y)
|
||||
! Evaluates the spline n-th order derivative at x
|
||||
use dierckx, only : splder
|
||||
|
||||
@ -525,7 +525,7 @@ contains
|
||||
end subroutine spline_2d_final
|
||||
|
||||
|
||||
function spline_2d_eval(self, x, y) result(z)
|
||||
pure function spline_2d_eval(self, x, y) result(z)
|
||||
! Evaluates the spline at (x, y)
|
||||
use dierckx, only : fpbisp
|
||||
|
||||
@ -585,7 +585,7 @@ contains
|
||||
end subroutine spline_2d_init_deriv
|
||||
|
||||
|
||||
function spline_2d_deriv(self, x, y, n, m) result(z)
|
||||
pure function spline_2d_deriv(self, x, y, n, m) result(z)
|
||||
! Evaluates the spline n-th partial derivative w.r.t x
|
||||
! and m-th partial derivative w.r.t y at (x, y)
|
||||
!
|
||||
@ -679,7 +679,7 @@ contains
|
||||
end subroutine linear_1d_deinit
|
||||
|
||||
|
||||
function linear_1d_eval(self, x) result(y)
|
||||
pure function linear_1d_eval(self, x) result(y)
|
||||
! Evaluates the linear interpolated data at x
|
||||
use utils, only : locate
|
||||
|
||||
@ -697,7 +697,7 @@ contains
|
||||
end function linear_1d_eval
|
||||
|
||||
|
||||
function linear_1d_raw_eval(self, i, x) result(y)
|
||||
pure function linear_1d_raw_eval(self, i, x) result(y)
|
||||
! Performs the linear interpolation in the i-th interval
|
||||
|
||||
! subroutine arguments
|
||||
|
@ -70,7 +70,7 @@ module types
|
||||
|
||||
contains
|
||||
|
||||
subroutine queue_put(self, val)
|
||||
pure subroutine queue_put(self, val)
|
||||
! Inserts an item of value `val` at the end of the `self` queue
|
||||
class(queue), intent(inout) :: self
|
||||
class(*), intent(in) :: val
|
||||
@ -260,7 +260,7 @@ contains
|
||||
end subroutine table_save
|
||||
|
||||
|
||||
function contour_init(R, z) result(self)
|
||||
pure function contour_init(R, z) result(self)
|
||||
! Creates a contour
|
||||
|
||||
! functions arguments
|
||||
@ -277,7 +277,7 @@ contains
|
||||
end function contour_init
|
||||
|
||||
|
||||
function contour_init_rect(Rmin, Rmax, zmin, zmax) result(self)
|
||||
pure function contour_init_rect(Rmin, Rmax, zmin, zmax) result(self)
|
||||
! Given two ranges [Rmin, Rmax], [zmin, zmax] creates a
|
||||
! rectangular contour as follows:
|
||||
!
|
||||
@ -296,7 +296,7 @@ contains
|
||||
end function contour_init_rect
|
||||
|
||||
|
||||
function contour_contains(self, R0, z0) result(inside)
|
||||
pure function contour_contains(self, R0, z0) result(inside)
|
||||
! Tests whether the point (`R`, `z`) lies inside the 2D contour
|
||||
|
||||
use utils, only : intlinf, locate_unord
|
||||
|
@ -6,7 +6,7 @@ module utils
|
||||
|
||||
contains
|
||||
|
||||
function locatef(a,n,x) result(j)
|
||||
pure function locatef(a,n,x) result(j)
|
||||
! Given an array a(n), and a value x, with a(n) monotonic, either
|
||||
! increasing or decreasing, returns a value j such that
|
||||
! a(j) < x <= a(j+1) for a increasing, and such that
|
||||
@ -32,7 +32,7 @@ contains
|
||||
j=jl
|
||||
end function locatef
|
||||
|
||||
subroutine locate(xx,n,x,j)
|
||||
pure subroutine locate(xx,n,x,j)
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: xx(n), x
|
||||
integer, intent(out) :: j
|
||||
@ -58,7 +58,7 @@ contains
|
||||
j=jl
|
||||
end subroutine locate
|
||||
|
||||
subroutine locatex(xx,n,n1,n2,x,j)
|
||||
pure subroutine locatex(xx,n,n1,n2,x,j)
|
||||
integer, intent(in) :: n,n1,n2
|
||||
real(wp_), intent(in) :: xx(n), x
|
||||
integer, intent(out) :: j
|
||||
@ -84,7 +84,7 @@ contains
|
||||
end subroutine locatex
|
||||
|
||||
|
||||
subroutine locate_unord(array, value, locs, n, nlocs)
|
||||
pure subroutine locate_unord(array, value, locs, n, nlocs)
|
||||
! Given an `array` of size `n` and a `value`, finds at most
|
||||
! `n` locations `locs` such that `value` is between
|
||||
! `array(locs(i))` and `array(locs(i+i))`, in whichever order.
|
||||
@ -117,7 +117,7 @@ contains
|
||||
end subroutine locate_unord
|
||||
|
||||
|
||||
function intlinf(x1,y1,x2,y2,x) result(y)
|
||||
pure function intlinf(x1,y1,x2,y2,x) result(y)
|
||||
!linear interpolation
|
||||
!must be x1 != x2
|
||||
use const_and_precisions, only : one
|
||||
@ -128,7 +128,7 @@ contains
|
||||
y=a*y1+(one-a)*y2
|
||||
end function intlinf
|
||||
|
||||
subroutine intlin(x1,y1,x2,y2,x,y)
|
||||
pure subroutine intlin(x1,y1,x2,y2,x,y)
|
||||
real(wp_), intent(in) :: x1,y1,x2,y2,x
|
||||
real(wp_), intent(out) :: y
|
||||
real(wp_) :: dx,aa,bb
|
||||
@ -142,7 +142,7 @@ contains
|
||||
y=aa*y1+bb*y2
|
||||
end subroutine intlin
|
||||
|
||||
subroutine vmax(x,n,xmax,imx)
|
||||
pure subroutine vmax(x,n,xmax,imx)
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(out) :: xmax
|
||||
@ -163,7 +163,7 @@ contains
|
||||
end do
|
||||
end subroutine vmax
|
||||
|
||||
subroutine vmin(x,n,xmin,imn)
|
||||
pure subroutine vmin(x,n,xmin,imn)
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(out) :: xmin
|
||||
@ -184,7 +184,7 @@ contains
|
||||
end do
|
||||
end subroutine vmin
|
||||
|
||||
subroutine vmaxmini(x,n,xmin,xmax,imn,imx)
|
||||
pure subroutine vmaxmini(x,n,xmin,xmax,imn,imx)
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(out) :: xmin, xmax
|
||||
@ -210,7 +210,7 @@ contains
|
||||
end do
|
||||
end subroutine vmaxmini
|
||||
|
||||
subroutine vmaxmin(x,n,xmin,xmax)
|
||||
pure subroutine vmaxmin(x,n,xmin,xmax)
|
||||
integer, intent(in) :: n
|
||||
real(wp_), intent(in) :: x(n)
|
||||
real(wp_), intent(out) :: xmin, xmax
|
||||
@ -230,7 +230,7 @@ contains
|
||||
end do
|
||||
end subroutine vmaxmin
|
||||
|
||||
subroutine order(p,q)
|
||||
pure subroutine order(p,q)
|
||||
! returns p,q in ascending order
|
||||
real(wp_), intent(inout) :: p,q
|
||||
real(wp_) :: temp
|
||||
@ -241,7 +241,7 @@ contains
|
||||
end if
|
||||
end subroutine order
|
||||
|
||||
subroutine bubble(a,n)
|
||||
pure subroutine bubble(a,n)
|
||||
! bubble sorting of array a
|
||||
integer, intent(in) :: n
|
||||
real(wp_), dimension(n), intent(inout) :: a
|
||||
@ -254,7 +254,7 @@ contains
|
||||
end subroutine bubble
|
||||
|
||||
|
||||
subroutine range2rect(xmin, xmax, ymin, ymax, x, y)
|
||||
pure subroutine range2rect(xmin, xmax, ymin, ymax, x, y)
|
||||
! Given two ranges [xmin, xmax], [ymin, ymax] builds
|
||||
! the x and y vertices of the following rectangle:
|
||||
!
|
||||
|
8
src/vendor/dierckx.f90
vendored
8
src/vendor/dierckx.f90
vendored
@ -1242,7 +1242,7 @@ contains
|
||||
end do
|
||||
end subroutine fpback
|
||||
|
||||
subroutine fpbisp(tx,nx,ty,ny,c,kx,ky,x,mx,y,my,z,wx,wy,lx,ly)
|
||||
pure subroutine fpbisp(tx,nx,ty,ny,c,kx,ky,x,mx,y,my,z,wx,wy,lx,ly)
|
||||
! arguments
|
||||
integer, intent(in) :: nx, ny, kx, ky, mx, my
|
||||
integer, intent(out) :: lx(mx), ly(my)
|
||||
@ -1321,7 +1321,7 @@ contains
|
||||
end do
|
||||
end subroutine fpbisp
|
||||
|
||||
subroutine fpbspl(t,n,k,x,l,h)
|
||||
pure subroutine fpbspl(t,n,k,x,l,h)
|
||||
! subroutine fpbspl evaluates the (k+1) non-zero b-splines of
|
||||
! degree k at t(l) <= x < t(l+1) using the stable recurrence
|
||||
! relation of de boor and cox.
|
||||
@ -3942,7 +3942,7 @@ contains
|
||||
end do
|
||||
end subroutine fpcurf
|
||||
|
||||
subroutine splder(t,n,c,k,nu,x,y,m,wrk,ier)
|
||||
pure subroutine splder(t,n,c,k,nu,x,y,m,wrk,ier)
|
||||
! subroutine splder evaluates in a number of points x(i),i=1,2,...,m
|
||||
! the derivative of order nu of a spline s(x) of degree k,given in
|
||||
! its b-spline representation.
|
||||
@ -4081,7 +4081,7 @@ contains
|
||||
end do
|
||||
end subroutine splder
|
||||
|
||||
subroutine splev(t,n,c,k,x,y,m,ier)
|
||||
pure subroutine splev(t,n,c,k,x,y,m,ier)
|
||||
! subroutine splev evaluates in a number of points x(i),i=1,2,...,m
|
||||
! a spline s(x) of degree k, given in its b-spline representation.
|
||||
!
|
||||
|
20
src/vendor/minpack.f90
vendored
20
src/vendor/minpack.f90
vendored
@ -47,7 +47,7 @@ module minpack
|
||||
|
||||
contains
|
||||
|
||||
subroutine hybrj1(fcn,n,x,fvec,fjac,ldfjac,tol,info,wa,lwa)
|
||||
pure subroutine hybrj1(fcn,n,x,fvec,fjac,ldfjac,tol,info,wa,lwa)
|
||||
use const_and_precisions, only : zero, one
|
||||
! arguments
|
||||
integer, intent(in) :: n, ldfjac, lwa
|
||||
@ -154,7 +154,7 @@ contains
|
||||
real(wp_), parameter :: factor=1.0e2_wp_
|
||||
|
||||
interface
|
||||
subroutine fcn(n,x,fvec,fjac,ldfjac,iflag)
|
||||
pure subroutine fcn(n,x,fvec,fjac,ldfjac,iflag)
|
||||
use const_and_precisions, only : wp_
|
||||
integer, intent(in) :: n,ldfjac,iflag
|
||||
real(wp_), intent(in) :: x(n)
|
||||
@ -185,7 +185,7 @@ contains
|
||||
if (info == 5) info = 4
|
||||
end subroutine hybrj1
|
||||
|
||||
subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag,mode, &
|
||||
pure subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag,mode, &
|
||||
factor,nprint,info,nfev,njev,r,lr,qtf,wa1,wa2, &
|
||||
wa3,wa4)
|
||||
use const_and_precisions, only : zero, one, epsmch=>comp_eps
|
||||
@ -353,7 +353,7 @@ contains
|
||||
p001 = 1.0e-3_wp_, p0001 = 1.0e-4_wp_
|
||||
|
||||
interface
|
||||
subroutine fcn(n,x,fvec,fjac,ldfjac,iflag)
|
||||
pure subroutine fcn(n,x,fvec,fjac,ldfjac,iflag)
|
||||
use const_and_precisions, only : wp_
|
||||
integer, intent(in) :: n,ldfjac,iflag
|
||||
real(wp_), intent(in) :: x(n)
|
||||
@ -637,7 +637,7 @@ contains
|
||||
|
||||
end subroutine hybrj
|
||||
|
||||
subroutine dogleg(n,r,lr,diag,qtb,delta,x,wa1,wa2)
|
||||
pure subroutine dogleg(n,r,lr,diag,qtb,delta,x,wa1,wa2)
|
||||
use const_and_precisions, only : zero, one, epsmch=>comp_eps
|
||||
! arguments
|
||||
integer, intent(in) :: n, lr
|
||||
@ -805,7 +805,7 @@ contains
|
||||
end do
|
||||
end subroutine dogleg
|
||||
|
||||
function enorm(n,x)
|
||||
pure function enorm(n,x)
|
||||
use const_and_precisions, only : zero, one
|
||||
real(wp_) :: enorm
|
||||
integer, intent(in) :: n
|
||||
@ -903,7 +903,7 @@ contains
|
||||
end if
|
||||
end function enorm
|
||||
|
||||
subroutine qform(m,n,q,ldq,wa)
|
||||
pure subroutine qform(m,n,q,ldq,wa)
|
||||
use const_and_precisions, only : zero, one
|
||||
! arguments
|
||||
integer, intent(in) :: m,n,ldq
|
||||
@ -994,7 +994,7 @@ contains
|
||||
end do
|
||||
end subroutine qform
|
||||
|
||||
subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
|
||||
pure subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
|
||||
use const_and_precisions, only : zero, one, epsmch=>comp_eps
|
||||
! arguments
|
||||
integer, intent(in) :: m, n, lda, lipvt
|
||||
@ -1156,7 +1156,7 @@ contains
|
||||
end do
|
||||
end subroutine qrfac
|
||||
|
||||
subroutine r1mpyq(m,n,a,lda,v,w)
|
||||
pure subroutine r1mpyq(m,n,a,lda,v,w)
|
||||
use const_and_precisions, only : one
|
||||
! arguments
|
||||
integer, intent(in) :: m, n, lda
|
||||
@ -1247,7 +1247,7 @@ contains
|
||||
end do
|
||||
end subroutine r1mpyq
|
||||
|
||||
subroutine r1updt(m,n,s,ls,u,v,w,sing)
|
||||
pure subroutine r1updt(m,n,s,ls,u,v,w,sing)
|
||||
use const_and_precisions, only : zero, one, giant=>comp_huge
|
||||
! arguments
|
||||
integer, intent(in) :: m, n, ls
|
||||
|
Loading…
Reference in New Issue
Block a user