Optimize routines to test point inclusion in closed contour
This commit is contained in:
parent
cf8a37fec9
commit
60be54fcc9
@ -218,22 +218,32 @@ function inside(xc,yc,n,x,y)
|
||||
real(wp_), intent(in) :: x,y
|
||||
logical :: inside
|
||||
integer, dimension(n) :: jint
|
||||
real(wp_), dimension(n) :: xint
|
||||
! real(wp_), dimension(n) :: xint
|
||||
real(wp_), dimension(n+1) :: xclosed,yclosed
|
||||
integer :: i,nj
|
||||
xclosed(1:n)=xc(1:n)
|
||||
yclosed(1:n)=yc(1:n)
|
||||
xclosed(n+1)=xc(1)
|
||||
yclosed(n+1)=yc(1)
|
||||
! Count the number of segments for which y lies between
|
||||
! yclosed(j) and yclosed(j+1)
|
||||
! and store the indexes j in jint
|
||||
call locate_unord(yclosed,n+1,y,jint,n,nj)
|
||||
inside=.false.
|
||||
if (nj==0) return
|
||||
! Determine the x coordinate, along the previously identified segments,
|
||||
! required to match the y coordinate of the inquired point,
|
||||
! and count the segments to the left of the inquired point.
|
||||
! An even number means that the point is outside the closed contour.
|
||||
do i=1,nj
|
||||
xint(i)=intlinf(yclosed(jint(i)),xclosed(jint(i)), &
|
||||
yclosed(jint(i)+1),xclosed(jint(i)+1),y)
|
||||
if (x>intlinf(yclosed(jint(i)),xclosed(jint(i)), &
|
||||
yclosed(jint(i)+1),xclosed(jint(i)+1),y)) &
|
||||
inside=.not.inside
|
||||
! xint(i)=intlinf(yclosed(jint(i)),xclosed(jint(i)), &
|
||||
! yclosed(jint(i)+1),xclosed(jint(i)+1),y)
|
||||
end do
|
||||
call bubble(xint,nj)
|
||||
inside=(mod(locatef(xint,nj,x),2)==1)
|
||||
! call bubble(xint,nj)
|
||||
! inside=(mod(locatef(xint,nj,x),2)==1)
|
||||
end function inside
|
||||
|
||||
|
||||
|
@ -93,11 +93,44 @@ contains
|
||||
real(wp_), intent(in) :: x
|
||||
integer, dimension(m), intent(inout) :: j
|
||||
integer :: i
|
||||
logical :: larger_than_last
|
||||
|
||||
nj=0
|
||||
do i=1,n-1
|
||||
if (x>a(i).neqv.x>a(i+1)) then
|
||||
! do i=1,n-1
|
||||
! if (x>a(i).neqv.x>a(i+1)) then
|
||||
! nj=nj+1
|
||||
! if (nj<=m) j(nj)=i
|
||||
! end if
|
||||
! end do
|
||||
!
|
||||
! Alternative formulation
|
||||
! Should reduce the number of evaluations of i+1 and x>a(i)
|
||||
! * For an array a with only two changes of derivative
|
||||
! (e.g., z of convex R,z contour) and x in range:
|
||||
! * comparisons between floats (x>a(i)): 2*(n-1) --> n+2
|
||||
! * comparisons between booleans (.neqv.): n-1 --> n-1
|
||||
! * comparisons between integers (n<2): 0 --> 1
|
||||
! * sum of integers (i+1, i-1): n --> 2
|
||||
! * booleans assigments: 0 --> 3
|
||||
! * For x out of range:
|
||||
! * comparisons between floats (x>a(i)): 2*(n-1) --> n
|
||||
! * comparisons between booleans (.neqv.): n-1 --> n-1
|
||||
! * comparisons between integers (n<2): 0 --> 1
|
||||
! * sum of integers (i+1, i-1): n --> 0
|
||||
! * booleans assigments: 0 --> 1
|
||||
! * For a elements alternated above/below x:
|
||||
! * comparisons between floats (x>a(i)): 2*(n-1) --> 2*(n-1)+1
|
||||
! * comparisons between booleans (.neqv.): n-1 --> n-1
|
||||
! * comparisons between integers (n<2): 0 --> 1
|
||||
! * sum of integers (i+1, i-1): n --> n-1
|
||||
! * booleans assigments: 0 --> n
|
||||
if (n<2) return
|
||||
larger_than_last = (x>a(1))
|
||||
do i=2,n
|
||||
if (x>a(i).neqv.larger_than_last) then
|
||||
larger_than_last = (x>a(i))
|
||||
nj=nj+1
|
||||
if (nj<=m) j(nj)=i
|
||||
if (nj<=m) j(nj)=i-1
|
||||
end if
|
||||
end do
|
||||
end subroutine locate_unord
|
||||
|
Loading…
Reference in New Issue
Block a user