use MathML for the HTML manual
All the major browser now supports it pretty well.
This commit is contained in:
parent
7680cbe62e
commit
5043dd843d
@ -76,18 +76,16 @@ To build the documentation (GRAY user manual and man pages) you need:
|
|||||||
- [pandoc] (≥2.19 tested)
|
- [pandoc] (≥2.19 tested)
|
||||||
- [librsvg]
|
- [librsvg]
|
||||||
- a basic [Tex Live] installation (≥2022 tested)
|
- a basic [Tex Live] installation (≥2022 tested)
|
||||||
- a [KaTeX] release archive
|
|
||||||
- [help2man]
|
- [help2man]
|
||||||
|
|
||||||
[pandoc]: https://pandoc.org/installing.html
|
[pandoc]: https://pandoc.org/installing.html
|
||||||
[TeX Live]: https://tug.org/texlive/quickinstall.html
|
[TeX Live]: https://tug.org/texlive/quickinstall.html
|
||||||
[librsvg]: https://wiki.gnome.org/Projects/LibRsvg
|
[librsvg]: https://wiki.gnome.org/Projects/LibRsvg
|
||||||
[KaTeX]: https://github.com/KaTeX/KaTeX/releases
|
|
||||||
[help2man]: https://www.gnu.org/software/help2man/
|
[help2man]: https://www.gnu.org/software/help2man/
|
||||||
|
|
||||||
Then run:
|
Then run:
|
||||||
```
|
```
|
||||||
./configure --with-katex=/path/to/katex/archive/unpacked
|
./configure
|
||||||
make docs
|
make docs
|
||||||
```
|
```
|
||||||
The results will be placed in `build/share`, to install, run:
|
The results will be placed in `build/share`, to install, run:
|
||||||
@ -95,6 +93,9 @@ The results will be placed in `build/share`, to install, run:
|
|||||||
make install-doc
|
make install-doc
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Note: you may have to specify a math font to be bundled with the manual using
|
||||||
|
`./configure --with-math-font=/path/to/font.otf`.
|
||||||
|
|
||||||
## Running the tests
|
## Running the tests
|
||||||
|
|
||||||
GRAY includes a number of integration tests that are useful to check whether
|
GRAY includes a number of integration tests that are useful to check whether
|
||||||
|
4
configure
vendored
4
configure
vendored
@ -17,7 +17,7 @@ Options:
|
|||||||
--enable-static statically link programs and libraries [no]
|
--enable-static statically link programs and libraries [no]
|
||||||
--disable-static dynamically link programs and libraries [yes]
|
--disable-static dynamically link programs and libraries [yes]
|
||||||
--enable-deterministic try to make a bit-for-bit deterministic build [no]
|
--enable-deterministic try to make a bit-for-bit deterministic build [no]
|
||||||
--with-katex=PATH specify path to the KaTeX library [automatically downloaded]
|
--with-math-font=PATH specify path to OpenType math font for docs [Libertinus Math]
|
||||||
EOF
|
EOF
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -44,7 +44,7 @@ for arg in "$@"; do
|
|||||||
--enable-static) printf 'STATIC=1\n' >> configure.mk ;;
|
--enable-static) printf 'STATIC=1\n' >> configure.mk ;;
|
||||||
--disable-static) ;;
|
--disable-static) ;;
|
||||||
--enable-deterministic) printf 'DETERMINISTIC=1\n' >> configure.mk ;;
|
--enable-deterministic) printf 'DETERMINISTIC=1\n' >> configure.mk ;;
|
||||||
--with-katex=*) printf 'KATEX_URL==file://%s/\n' "${arg#*=}" >> configure.mk ;;
|
--with-math-font=*) printf 'MATHFONT=%s\n' "${arg#*=}" >> configure.mk ;;
|
||||||
*=*)
|
*=*)
|
||||||
printf '%s\n' "${arg?}" >> configure.mk
|
printf '%s\n' "${arg?}" >> configure.mk
|
||||||
printf 'set %s\n' "$arg"
|
printf 'set %s\n' "$arg"
|
||||||
|
@ -11,12 +11,6 @@ let
|
|||||||
sha256 = "166yxg4ff2jxvl9mbngd90dr1k3rdj6xmiccga41xynhh2zr0vmb";
|
sha256 = "166yxg4ff2jxvl9mbngd90dr1k3rdj6xmiccga41xynhh2zr0vmb";
|
||||||
};
|
};
|
||||||
|
|
||||||
# Needed for HTML manual
|
|
||||||
katex = builtins.fetchTarball
|
|
||||||
{ url = "https://github.com/KaTeX/KaTeX/releases/download/v0.15.1/katex.tar.gz";
|
|
||||||
sha256 = "007nv11r0z9fz593iwzn55nc0p0wj5lpgf0k2brhs1ynmikq9gjr";
|
|
||||||
};
|
|
||||||
|
|
||||||
# Exclude this file, .git and more from source
|
# Exclude this file, .git and more from source
|
||||||
sieve = path: type:
|
sieve = path: type:
|
||||||
!builtins.elem (baseNameOf path) (
|
!builtins.elem (baseNameOf path) (
|
||||||
@ -66,7 +60,7 @@ in
|
|||||||
makefile2graph graphviz
|
makefile2graph graphviz
|
||||||
|
|
||||||
# documentation
|
# documentation
|
||||||
help2man pandoc librsvg
|
help2man pandoc librsvg fontconfig
|
||||||
haskellPackages.pandoc-crossref
|
haskellPackages.pandoc-crossref
|
||||||
(texlive.combine {
|
(texlive.combine {
|
||||||
inherit (texlive) scheme-small xetex fontspec;
|
inherit (texlive) scheme-small xetex fontspec;
|
||||||
@ -95,7 +89,6 @@ in
|
|||||||
hardeningDisable = [ "format" ];
|
hardeningDisable = [ "format" ];
|
||||||
configureFlags = [
|
configureFlags = [
|
||||||
(lib.enableFeature static "static")
|
(lib.enableFeature static "static")
|
||||||
"--with-katex=${katex}"
|
|
||||||
"--enable-deterministic"
|
"--enable-deterministic"
|
||||||
];
|
];
|
||||||
|
|
||||||
|
207
doc/2.physics.md
207
doc/2.physics.md
@ -12,7 +12,7 @@ viewed from above.
|
|||||||
|
|
||||||
In addition to the right handed Cartesian orthogonal system specified above, we
|
In addition to the right handed Cartesian orthogonal system specified above, we
|
||||||
introduce also a right-handed cylindrical system $(R,φ,Z)$ with transformation
|
introduce also a right-handed cylindrical system $(R,φ,Z)$ with transformation
|
||||||
from the cylindrical to the Cartesian system given by $x= R\cosφ$, $y=R\sinφ$,
|
from the cylindrical to the Cartesian system given by $x= R\cos φ$, $y=R\sin φ$,
|
||||||
$z=Z$.
|
$z=Z$.
|
||||||
|
|
||||||
|
|
||||||
@ -20,28 +20,25 @@ $z=Z$.
|
|||||||
|
|
||||||
In the complex eikonal framework, a solution of the wave equation for the
|
In the complex eikonal framework, a solution of the wave equation for the
|
||||||
electric field is looked for in the form
|
electric field is looked for in the form
|
||||||
|
|
||||||
$$
|
$$
|
||||||
{\bf E}({\bf x},t) =
|
{\mathbf E}({\mathbf x},t) =
|
||||||
{\bf e}({\bf x}) E_0({\bf x})
|
{\mathbf e}({\mathbf x}) E_0({\mathbf x})
|
||||||
e^{-i k_0 S({\bf x}) + iωt}
|
e^{-i k_0 S({\mathbf x}) + iωt}
|
||||||
$$ {#eq:eikonal-ansatz}
|
$$ {#eq:eikonal-ansatz}
|
||||||
|
|
||||||
such that it allows for Gaussian beam descriptions.
|
such that it allows for Gaussian beam descriptions.
|
||||||
In [@eq:eikonal-ansatz], $ω$ is the real frequency, $k_0 = ω/c$ the wavevector
|
In [@eq:eikonal-ansatz], $ω$ is the real frequency, $k_0 = ω/c$ the wavevector
|
||||||
amplitude in vacuum, ${\bf e}({\bf x})$ the normalised polarisation (Jones)
|
amplitude in vacuum, ${\mathbf e}({\mathbf x})$ the normalised polarisation (Jones)
|
||||||
vector and $E_0({\bf x})$ the slowly varying wave amplitude.
|
vector and $E_0({\mathbf x})$ the slowly varying wave amplitude.
|
||||||
|
|
||||||
The function $S({\bf x})$ is the complex eikonal, $S = S_R({\bf x}) + i S_I
|
The function $S({\mathbf x})$ is the complex eikonal, $S = S_R({\mathbf x}) + i S_I
|
||||||
({\bf x})$, in which the real part $S_R({\bf x})$ is related to the beam
|
({\mathbf x})$, in which the real part $S_R({\mathbf x})$ is related to the beam
|
||||||
propagation as in the geometric optics (GO), and the imaginary part $S_I({\bf
|
propagation as in the geometric optics (GO), and the imaginary part $S_I({\mathbf
|
||||||
x}) (<0)$ to the beam intensity profile shape, as it is apparent writing
|
x}) (<0)$ to the beam intensity profile shape, as it is apparent writing
|
||||||
[@eq:eikonal-ansatz] as
|
[@eq:eikonal-ansatz] as
|
||||||
|
|
||||||
$$
|
$$
|
||||||
{\bf E}({\bf x},t) =
|
{\mathbf E}({\mathbf x},t) =
|
||||||
{\bf e}({\bf x}) E_0({\bf x})
|
{\mathbf e}({\mathbf x}) E_0({\mathbf x})
|
||||||
e^{k_0 S_I({\bf x})} e^{-i k_0 S_R({\bf x})+i ωt}
|
e^{k_0 S_I({\mathbf x})} e^{-i k_0 S_R({\mathbf x})+i ωt}
|
||||||
$$ {#eq:efri}
|
$$ {#eq:efri}
|
||||||
|
|
||||||
|
|
||||||
@ -53,7 +50,6 @@ the $\bar x$ axis lies in the horizontal plane (i.e., $z=\text{const}$), and
|
|||||||
two additional coordinate systems, $(\xi_w,\eta_w)$ and $(\xi_R,\eta_R)$ in the
|
two additional coordinate systems, $(\xi_w,\eta_w)$ and $(\xi_R,\eta_R)$ in the
|
||||||
$(\bar x, \bar y)$ plane, rotated by the angles $φ_w$ and $φ_R$,
|
$(\bar x, \bar y)$ plane, rotated by the angles $φ_w$ and $φ_R$,
|
||||||
respectively,
|
respectively,
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\bar x &= \xi_w \cos φ_w - \eta_w \sin φ_w
|
\bar x &= \xi_w \cos φ_w - \eta_w \sin φ_w
|
||||||
@ -67,9 +63,8 @@ In the $(\xi_w,\eta_w)$ and $(\xi_R,\eta_R)$ systems, the axes are aligned
|
|||||||
with the major and minor axes of the intensity and phase ellipses respectively,
|
with the major and minor axes of the intensity and phase ellipses respectively,
|
||||||
and the general astigmatic Gaussian beam in vacuum takes the simple form
|
and the general astigmatic Gaussian beam in vacuum takes the simple form
|
||||||
[@gaussian-beam]
|
[@gaussian-beam]
|
||||||
|
|
||||||
$$
|
$$
|
||||||
E ({\bf x}) \propto
|
E ({\mathbf x}) \propto
|
||||||
\exp{\left[- \left(\frac{{\xi}_w^2}{w_\xi^2}
|
\exp{\left[- \left(\frac{{\xi}_w^2}{w_\xi^2}
|
||||||
+\frac{{\eta}_w^2}{w_\eta^2}\right)
|
+\frac{{\eta}_w^2}{w_\eta^2}\right)
|
||||||
\right]}
|
\right]}
|
||||||
@ -83,19 +78,17 @@ parameters: the beam widths $w_{\xi,\eta}$, the phase front curvature radii
|
|||||||
$R_{c\xi,\eta}$ and the intensity and phase ellipses rotation angles $φ_{w,R}$.
|
$R_{c\xi,\eta}$ and the intensity and phase ellipses rotation angles $φ_{w,R}$.
|
||||||
|
|
||||||
Simple astigmatic beams can be described in terms of 5 parameters only, because
|
Simple astigmatic beams can be described in terms of 5 parameters only, because
|
||||||
the phase and intensity ellipses are aligned, i.e., $φ_w=φ_R\equivφ$:
|
the phase and intensity ellipses are aligned, i.e., $φ_w=φ_R\equiv φ$:
|
||||||
$w_{\xi,\eta}$, $R_{c\xi,\eta}$, $φ$ or alternatively by the beam waists
|
$w_{\xi,\eta}$, $R_{c\xi,\eta}$, $φ$ or alternatively by the beam waists
|
||||||
$w_{0\xi,\eta}$, the waists $\bar z$ coordinates $d_{0\xi,\eta}$, and $φ$,
|
$w_{0\xi,\eta}$, the waists $\bar z$ coordinates $d_{0\xi,\eta}$, and $φ$,
|
||||||
where $R_{c\xi,\eta}$, $w_{\xi,\eta}$ are related to $d_{0\xi,\eta}$,
|
where $R_{c\xi,\eta}$, $w_{\xi,\eta}$ are related to $d_{0\xi,\eta}$,
|
||||||
$w_{0\xi,\eta}$ by the following equations:
|
$w_{0\xi,\eta}$ by the following equations:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
R_{cj} &= [({\bar z}- d_{0j})^2+z_{Rj}^2]/({\bar z}- d_{0j}) \\
|
R_{cj} &= [({\bar z}- d_{0j})^2+z_{Rj}^2]/({\bar z}- d_{0j}) \\
|
||||||
w_j &= w_{0j} \sqrt{1+({\bar z}- d_{0j})^2/z_{Rj}^2},
|
w_j &= w_{0j} \sqrt{1+({\bar z}- d_{0j})^2/z_{Rj}^2},
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$ {#eq:rciw}
|
$$ {#eq:rciw}
|
||||||
|
|
||||||
and $z_{Rj}= k_0 w_{0j}^2/2$ is the Raylegh length. According to
|
and $z_{Rj}= k_0 w_{0j}^2/2$ is the Raylegh length. According to
|
||||||
[@eq:rciw], a convergent beam (${\bar z} < d_{0j}$) has $R_{cj}<0$, while a
|
[@eq:rciw], a convergent beam (${\bar z} < d_{0j}$) has $R_{cj}<0$, while a
|
||||||
divergent beam has $R_{cj}>0$.
|
divergent beam has $R_{cj}>0$.
|
||||||
@ -109,28 +102,23 @@ in detail in [@gray].
|
|||||||
The "extended" rays obey to the following quasi-optical ray-tracing equations
|
The "extended" rays obey to the following quasi-optical ray-tracing equations
|
||||||
that are coupled together through an additional constraint in the form of a
|
that are coupled together through an additional constraint in the form of a
|
||||||
partial differential equation:
|
partial differential equation:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\frac{d {\bf x}}{dσ} &=
|
\frac{d {\mathbf x}}{dσ} &= +\frac{∂Λ}{∂\mathbf N} \biggr |_{Λ=0} \\
|
||||||
+{∂ Λ \over ∂ {\bf N}} \biggr |_{Λ=0} \\
|
\frac{d {\mathbf N}}{dσ} &= -\frac{∂Λ}{∂\mathbf x} \biggr |_{Λ=0} \\
|
||||||
\frac{d {\bf N}}{dσ} &=
|
\frac{∂ Λ}{∂ {\mathbf N}} &\cdot ∇ S_I = 0
|
||||||
-{∂ Λ \over ∂ {\bf x}} \biggr |_{Λ=0} \\
|
|
||||||
\frac{∂ Λ}{∂ {\bf N}} &\cdot ∇ S_I = 0
|
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
where the function $Λ ({\mathbf x},{\mathbf k},ω)$ is the QO dispersion
|
||||||
where the function $Λ ({\bf x},{\bf k},ω)$ is the QO dispersion
|
|
||||||
relation, which reads
|
relation, which reads
|
||||||
|
|
||||||
$$
|
$$
|
||||||
Λ = N² - N_c²({\bf x}, N_\parallel, ω)
|
Λ = N² - N_c²({\mathbf x}, N_\parallel, ω)
|
||||||
- |∇ S_I|² + \frac{1}{2}(\mathbf{b} ⋅ ∇ S_I )^2
|
- |∇ S_I|² + \frac{1}{2}(\mathbf{b} ⋅ ∇ S_I )^2
|
||||||
\frac{∂² N_s²}{∂{N_\parallel}²} = 0
|
\frac{∂² N_s²}{∂{N_\parallel}²} = 0
|
||||||
$$ {#eq:eqlam}
|
$$ {#eq:eqlam}
|
||||||
|
|
||||||
being $\mathbf{b}=\mathbf{B}/B$, $N_\parallel = {\mathbf N} \cdot \mathbf{b}$,
|
being $\mathbf{b}=\mathbf{B}/B$, $N_\parallel = {\mathbf N} \cdot \mathbf{b}$,
|
||||||
and $N_c({\bf x}, N_\parallel, ω)$ the solution of the cold dispersion relation
|
and $N_c({\mathbf x}, N_\parallel, ω)$ the solution of the cold dispersion relation
|
||||||
for the considered mode.
|
for the considered mode.
|
||||||
|
|
||||||
In GRAY three choices for the integration variable $σ$ are available, i.e.:
|
In GRAY three choices for the integration variable $σ$ are available, i.e.:
|
||||||
@ -139,16 +127,15 @@ In GRAY three choices for the integration variable $σ$ are available, i.e.:
|
|||||||
3. the real part of the eikonal function $S_R$.
|
3. the real part of the eikonal function $S_R$.
|
||||||
|
|
||||||
The default option is the variable $s$ and the QO ray equations become:
|
The default option is the variable $s$ and the QO ray equations become:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\frac{d{\bf x}}{ds} &=
|
\frac{d{\mathbf x}}{ds} &=
|
||||||
+\frac{∂ Λ /∂ {\bf N}}
|
+\frac{∂ Λ /∂ {\mathbf N}}
|
||||||
{|∂ Λ /∂ {\bf N}|} \biggr |_{Λ=0} \\
|
{|∂ Λ /∂ {\mathbf N}|} \biggr |_{Λ=0} \\
|
||||||
\frac{d{\bf N}}{ds} &=
|
\frac{d{\mathbf N}}{ds} &=
|
||||||
-\frac{∂ Λ /∂ {\bf x}}
|
-\frac{∂ Λ /∂ {\mathbf x}}
|
||||||
{|∂ Λ /∂ {\bf N}|} \biggr |_{Λ=0} \\
|
{|∂ Λ /∂ {\mathbf N}|} \biggr |_{Λ=0} \\
|
||||||
\frac{∂ Λ}{∂ {\bf N}} &\cdot ∇ S_I = 0
|
\frac{∂ Λ}{∂ {\mathbf N}} &\cdot ∇ S_I = 0
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$ {#eq:qort}
|
$$ {#eq:qort}
|
||||||
|
|
||||||
@ -182,46 +169,40 @@ z_{Rj}$, the ray distribution used for the QO ray-tracing.
|
|||||||
The launching coordinates of the central ray of the EC beam will be denoted
|
The launching coordinates of the central ray of the EC beam will be denoted
|
||||||
either as $(x_0, y_0, z_0)$, or $(R_0, φ_0, Z_0)$, depending on the
|
either as $(x_0, y_0, z_0)$, or $(R_0, φ_0, Z_0)$, depending on the
|
||||||
coordinate system used (cartesian or cylindrical)
|
coordinate system used (cartesian or cylindrical)
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
x_0 &= R_0\cosφ_0 \\
|
x_0 &= R_0\cos φ_0 \\
|
||||||
y_0 &= R_0\sinφ_0 \\
|
y_0 &= R_0\sin φ_0 \\
|
||||||
z_0 &= Z_0.
|
z_0 &= Z_0.
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
and the launched wavevector $\mathbf N$ will have components $(N_{x0}, N_{y0},
|
||||||
and the launched wavevector $\bf N$ will have components $(N_{x0}, N_{y0},
|
|
||||||
N_{z0})$, and $(N_{R0}, N_{φ 0}, N_{Z0})$, related by
|
N_{z0})$, and $(N_{R0}, N_{φ 0}, N_{Z0})$, related by
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
N_{x0} &= N_{R0} \cosφ_0 - N_{φ 0} \sinφ_0, \\
|
N_{x0} &= N_{R0} \cos φ_0 - N_{φ 0} \sin φ_0, \\
|
||||||
N_{y0} &= N_{R0} \sinφ_0 + N_{φ 0} \cosφ_0, \\
|
N_{y0} &= N_{R0} \sin φ_0 + N_{φ 0} \cos φ_0, \\
|
||||||
N_{z0} &= N_{Z0}
|
N_{z0} &= N_{Z0}
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
## EC Launching angles ($α,β$)
|
## EC Launching angles ($α,β$)
|
||||||
|
|
||||||
The poloidal and toroidal angles $α, β$ are defined in terms of the
|
The poloidal and toroidal angles $α, β$ are defined in terms of the
|
||||||
cylindrical components of the wavevector
|
cylindrical components of the wavevector
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
N_{R0} &= -\cosβ \cosα, \\
|
N_{R0} &= -\cos β \cos α, \\
|
||||||
N_{φ0} &= +\sinβ, \\
|
N_{φ0} &= +\sin β, \\
|
||||||
N_{Z0} &= -\cosβ \sinα
|
N_{Z0} &= -\cos β \sin α
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$ {#eq:ncyl}
|
$$ {#eq:ncyl}
|
||||||
|
|
||||||
with $-180° ≤ α ≤ 180°$, and $-90° ≤ β ≤ 90°$, so that
|
with $-180° ≤ α ≤ 180°$, and $-90° ≤ β ≤ 90°$, so that
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\tanα &= N_{Z0}/N_{R0}, \\
|
\tan α &= N_{Z0}/N_{R0}, \\
|
||||||
\sinβ &= N_{φ 0}
|
\sin β &= N_{φ 0}
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$ {#eq:albt}
|
$$ {#eq:albt}
|
||||||
|
|
||||||
@ -239,24 +220,19 @@ This convention is the same used for the EC injection angles in ITER
|
|||||||
|
|
||||||
The EC power $P$ is assumed to evolve along the ray trajectory obeying to the
|
The EC power $P$ is assumed to evolve along the ray trajectory obeying to the
|
||||||
following equation
|
following equation
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\frac{dP}{ds} = -α P,
|
\frac{dP}{ds} = -α P,
|
||||||
$$ {#eq:pincta}
|
$$ {#eq:pincta}
|
||||||
|
|
||||||
where here $α$ is the absorption coefficient
|
where here $α$ is the absorption coefficient
|
||||||
|
|
||||||
$$
|
$$
|
||||||
α = 2 \frac{ω}{c} \frac {{\text{Im}}(Λ_w)}
|
α = 2 \frac{ω}{c} \frac {{\text{Im}}(Λ_w)}
|
||||||
{|∂ Λ /∂ {\bf{N}}|} \biggr|_{Λ=0}
|
{|∂ Λ /∂ {\mathbf{N}}|} \biggr|_{Λ=0}
|
||||||
≈ 4 \frac{ω}{c} {{\text {Im}}(N_{\perp w})}
|
≈ 4 \frac{ω}{c} {{\text {Im}}(N_{\perp w})}
|
||||||
\frac {N_{\perp}} {|{∂ Λ}/{∂ {\bf N}|}} \biggr|_{Λ=0}
|
\frac {N_{\perp}} {|{∂ Λ}/{∂ {\mathbf N}|}} \biggr|_{Λ=0}
|
||||||
= 2{{\text{Im}}(k_{\perp w})} \frac{v_{g\perp}} v_{g}.
|
= 2{{\text{Im}}(k_{\perp w})} \frac{v_{g\perp}} v_{g}.
|
||||||
$$ {#eq:alpha}
|
$$ {#eq:alpha}
|
||||||
|
|
||||||
being $N_{\perp w}$ (and $k_{\perp w}$) the perpendicular refractive index (and
|
being $N_{\perp w}$ (and $k_{\perp w}$) the perpendicular refractive index (and
|
||||||
wave vector) solution of the relativistic dispersion relation for EC waves
|
wave vector) solution of the relativistic dispersion relation for EC waves
|
||||||
|
|
||||||
$$
|
$$
|
||||||
Λ_w = N^2-N_{\parallel}^2-N_{\perp w}^2=0
|
Λ_w = N^2-N_{\parallel}^2-N_{\perp w}^2=0
|
||||||
$$
|
$$
|
||||||
@ -267,13 +243,11 @@ described in [@dispersion].
|
|||||||
|
|
||||||
Integration of [@eq:pincta] yields the local transmitted and deposited
|
Integration of [@eq:pincta] yields the local transmitted and deposited
|
||||||
power in terms of the optical depth $τ= \int_0^{s}{α(s') d s'}$ as
|
power in terms of the optical depth $τ= \int_0^{s}{α(s') d s'}$ as
|
||||||
|
|
||||||
$$
|
$$
|
||||||
P(s)=P_0 e^{-τ(s)},
|
P(s)=P_0 e^{-τ(s)},
|
||||||
\quad \mathrm{and} \quad
|
\quad \mathrm{and} \quad
|
||||||
P_{abs} (s)=P_0 [1-e^{-τ}] ,
|
P_{abs} (s)=P_0 [1-e^{-τ}] ,
|
||||||
$$
|
$$
|
||||||
|
|
||||||
respectively, being $P_0$ the injected power.
|
respectively, being $P_0$ the injected power.
|
||||||
|
|
||||||
The flux surface averaged absorbed power density $p(ρ)=dP_{abs}/dV$ is
|
The flux surface averaged absorbed power density $p(ρ)=dP_{abs}/dV$ is
|
||||||
@ -281,11 +255,9 @@ computed as the the ratio between the power deposited within the volume $dV$
|
|||||||
between two adjacent flux surfaces and the volume itself. At each position
|
between two adjacent flux surfaces and the volume itself. At each position
|
||||||
along the ray trajectory (parametrized by $s$), the absorbed power density can
|
along the ray trajectory (parametrized by $s$), the absorbed power density can
|
||||||
be written in terms of the absorption coefficient as
|
be written in terms of the absorption coefficient as
|
||||||
|
|
||||||
$$
|
$$
|
||||||
p = P₀ α(s) e^{-τ(s)} \frac{δs}{δV}
|
p = P₀ α(s) e^{-τ(s)} \frac{δs}{δV}
|
||||||
$$ {#eq:pav}
|
$$ {#eq:pav}
|
||||||
|
|
||||||
$δs$ being the ray length between two adjacent magnetic surfaces, and $δV$ the
|
$δs$ being the ray length between two adjacent magnetic surfaces, and $δV$ the
|
||||||
associated volume.
|
associated volume.
|
||||||
|
|
||||||
@ -294,63 +266,54 @@ associated volume.
|
|||||||
|
|
||||||
Within the framework of the linear adjoint formulation, the flux surface
|
Within the framework of the linear adjoint formulation, the flux surface
|
||||||
averaged EC driven current density is given by
|
averaged EC driven current density is given by
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\langle J_{\parallel}\rangle = {\mathcal R}^* \, p
|
\langle J_{\parallel}\rangle = {\mathcal R}^* \, p
|
||||||
$$ {#eq:jav}
|
$$ {#eq:jav}
|
||||||
|
where ${\mathcal R}^*$ is a current drive efficiency, which can be expressed as
|
||||||
where
|
a ratio between two integrals in momentum space
|
||||||
${\mathcal R}^*$ is a current drive efficiency, which can be expressed as a ratio
|
|
||||||
between two integrals in momentum space
|
|
||||||
|
|
||||||
$$
|
$$
|
||||||
{\mathcal R}^*= \frac{e}{m c \nu_c} \frac{\langle B \rangle}{B_m}
|
{\mathcal R}^*= \frac{e}{m c \nu_c} \frac{\langle B \rangle}{B_m}
|
||||||
\frac{\int{d{\bf u} {\mathcal P}({\bf u}) \,
|
\frac{\int{d{\mathbf u} {\mathcal P}({\mathbf u}) \,
|
||||||
\eta_{\bf u}({\bf u})}}{\int{d{\bf u} {\mathcal P}({\bf u}) }}
|
\eta_{\mathbf u}({\mathbf u})}}{\int{d{\mathbf u} {\mathcal P}({\mathbf u}) }}
|
||||||
$$ {#eq:effr}
|
$$ {#eq:effr}
|
||||||
|
|
||||||
where $\nu_c=4 \pi n e^4 Λ_c/(m^2 c^3)$ is the collision frequency, with
|
where $\nu_c=4 \pi n e^4 Λ_c/(m^2 c^3)$ is the collision frequency, with
|
||||||
$Λ_c$ the Coulomb logarithm, and $B_m$, $\langle B \rangle$ are the
|
$Λ_c$ the Coulomb logarithm, and $B_m$, $\langle B \rangle$ are the minimum
|
||||||
minimum value and the flux surface averaged value of the magnetic field on the
|
value and the flux surface averaged value of the magnetic field on the given
|
||||||
given magnetic surface, respectively.
|
magnetic surface, respectively.
|
||||||
The functions ${\mathcal P}({\bf u})$ and $\eta_{\bf u}({\bf u})$ are the
|
|
||||||
normalized absorbed power density and current drive efficiency per unit
|
The functions ${\mathcal P}({\mathbf u})$ and $\eta_{\mathbf u}({\mathbf u})$
|
||||||
momentum ${\bf u}={\bf p}/mc$ [@gray].
|
are the normalized absorbed power density and current drive efficiency per unit
|
||||||
Note that the warm wave polarisation is used to compute ${\mathcal P}({\bf u})$.
|
momentum ${\mathbf u}={\mathbf p}/mc$ [@gray].
|
||||||
In the adjoint formulation adopted here, the function $\eta_{\bf u}({\bf u})$
|
Note that the warm wave polarisation is used to compute ${\mathcal P}({\mathbf
|
||||||
is written in terms of the response function for the current, and its explicit
|
u})$. In the adjoint formulation adopted here, the function $\eta_{\mathbf
|
||||||
expression is related to the chosen ECCD model.
|
u}({\mathbf u})$ is written in terms of the response function for the current,
|
||||||
|
and its explicit expression is related to the chosen ECCD model.
|
||||||
|
|
||||||
The flux surface average driven current density [@eq:jav] can be written as
|
The flux surface average driven current density [@eq:jav] can be written as
|
||||||
[@gray]
|
[@gray]
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\langle J_{\parallel}\rangle =
|
\langle J_{\parallel}\rangle =
|
||||||
P_0 α(s) e^{-τ(s)} {\mathcal R}^*(s) \frac{δs}{δV}
|
P_0 α(s) e^{-τ(s)} {\mathcal R}^*(s) \frac{δs}{δV}
|
||||||
$$ {#eq:jrtav}
|
$$ {#eq:jrtav}
|
||||||
|
|
||||||
and the equation for the current evolution $I_{cd}$ along the ray trajectory as
|
and the equation for the current evolution $I_{cd}$ along the ray trajectory as
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\frac{dI_{cd}}{ds} =
|
\frac{dI_{cd}}{ds} =
|
||||||
-{\mathcal R}^*(s)\frac{1}{2 \pi R_J } \frac{dP}{ds},
|
-{\mathcal R}^*(s)\frac{1}{2 \pi R_J } \frac{dP}{ds},
|
||||||
$$
|
$$
|
||||||
|
|
||||||
where $R_J(\psi)$ is an effective radius for the computation of the driven
|
where $R_J(\psi)$ is an effective radius for the computation of the driven
|
||||||
current
|
current
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\frac{1}{R_J}
|
\frac{1}{R_J}
|
||||||
= \langle \frac{1}{R^2} \rangle \frac{f(\psi)}{ \langle B\rangle}
|
= \left\langle\frac{1}{R^2}\right\rangle \frac{f(\psi)}{ \langle B\rangle}
|
||||||
= \frac{ \langle {B_φ}/{R} \rangle}{ \langle B\rangle}
|
= \frac{ \langle {B_φ}/{R} \rangle}{ \langle B\rangle}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
being $f(\psi) =B_φ R$ the poloidal flux function.
|
being $f(\psi) =B_φ R$ the poloidal flux function.
|
||||||
|
|
||||||
|
|
||||||
## ECCD Models
|
## ECCD Models
|
||||||
|
|
||||||
Two models for $\eta_{\bf u}({\bf u})$ efficiency in [@eq:effr] are implemented
|
Two models for $\eta_{\mathbf u}({\mathbf u})$ efficiency in [@eq:effr] are implemented
|
||||||
for ECCD calculations, a Cohen-like module in the high-velocity limit and the
|
for ECCD calculations, a Cohen-like module in the high-velocity limit and the
|
||||||
momentum conserving model developed by Marushenko.
|
momentum conserving model developed by Marushenko.
|
||||||
The used Cohen-like module, developed explicitly for GRAY, is described in
|
The used Cohen-like module, developed explicitly for GRAY, is described in
|
||||||
@ -364,37 +327,31 @@ trapping is based on a local development.
|
|||||||
In GRAY, three outputs for the EC driven current density are given.
|
In GRAY, three outputs for the EC driven current density are given.
|
||||||
The EC flux surface averaged driven *parallel* current density $\langle
|
The EC flux surface averaged driven *parallel* current density $\langle
|
||||||
J_{\parallel}\rangle$, that is the output of the ECCD theory, defined as
|
J_{\parallel}\rangle$, that is the output of the ECCD theory, defined as
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\langle J_{\parallel}\rangle
|
\langle J_{\parallel}\rangle
|
||||||
= \left \langle\frac{{\bf J}_{cd} \cdot {\bf B}}{B} \right \rangle
|
= \left \langle\frac{{\mathbf J}_{cd} \cdot {\mathbf B}}{B} \right \rangle
|
||||||
= \frac{\langle {{\bf J}_{cd} \cdot {\bf B}}\rangle}
|
= \frac{\langle {{\mathbf J}_{cd} \cdot {\mathbf B}}\rangle}
|
||||||
{{\langle B^2 \rangle/}{\langle B \rangle}}.
|
{{\langle B^2 \rangle/}{\langle B \rangle}}.
|
||||||
$$
|
$$
|
||||||
|
|
||||||
a *toroidal* driven current density $J_φ$ defined as
|
a *toroidal* driven current density $J_φ$ defined as
|
||||||
|
|
||||||
$$
|
$$
|
||||||
J_φ =\frac{δ I_{cd}} {δ A}
|
J_φ =\frac{δ I_{cd}} {δ A}
|
||||||
$$ {#eq:jphia}
|
$$ {#eq:jphia}
|
||||||
|
|
||||||
being $δ I_{cd}$ the current driven within the volume $δ V$ between
|
being $δ I_{cd}$ the current driven within the volume $δ V$ between
|
||||||
two adjacent flux surfaces, and $δ A$ the poloidal area between the two
|
two adjacent flux surfaces, and $δ A$ the poloidal area between the two
|
||||||
adjacent flux surfaces, such that the total driven current is computed as
|
adjacent flux surfaces, such that the total driven current is computed as
|
||||||
$I_{cd}= \int J_φ dA$.
|
$I_{cd}= \int J_φ dA$.
|
||||||
|
|
||||||
Finally, an EC flux surface averaged driven current density $J_{cd}$ to be
|
Finally, an EC flux surface averaged driven current density $J_{cd}$ to be
|
||||||
compared with transport code outputs
|
compared with transport code outputs
|
||||||
|
|
||||||
$$
|
$$
|
||||||
J_{cd} = \frac{\langle {\bf J} \cdot {\bf B} \rangle} {B_{ref}}
|
J_{cd} = \frac{\langle {\mathbf J} \cdot {\mathbf B} \rangle} {B_{ref}}
|
||||||
$$ {#eq:jcd}
|
$$ {#eq:jcd}
|
||||||
|
|
||||||
with the $B_{ref}$ value dependent on the transport code, i.e, $B_{ref}=B_0$
|
with the $B_{ref}$ value dependent on the transport code, i.e, $B_{ref}=B_0$
|
||||||
for ASTRA and CRONOS, and $B_{ref}={\langle B \rangle}$ for JINTRAC.
|
for ASTRA and CRONOS, and $B_{ref}={\langle B \rangle}$ for JINTRAC.
|
||||||
|
|
||||||
The above definitions are related to each other in terms of flux surface
|
The above definitions are related to each other in terms of flux surface
|
||||||
averaged quantities, dependent on the equilibrium, i.e.,
|
averaged quantities, dependent on the equilibrium, i.e.,
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
J_φ &= \frac{f(\psi)}{\langle B \rangle}
|
J_φ &= \frac{f(\psi)}{\langle B \rangle}
|
||||||
@ -426,17 +383,14 @@ via [@eq:ratj] for the two $B_{ref}$ choices.
|
|||||||
The second approach applies also to non monotonic profiles. Two average
|
The second approach applies also to non monotonic profiles. Two average
|
||||||
quantities are computed for both power and current density profiles, namely,
|
quantities are computed for both power and current density profiles, namely,
|
||||||
the average radius $\langle ρ \rangle_a$ $(a=p,j)$
|
the average radius $\langle ρ \rangle_a$ $(a=p,j)$
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\langle ρ \rangle_p = \frac{\int dV ρ p(ρ)}{\int dV p(ρ)} , \qquad
|
\langle ρ \rangle_p = \frac{\int dV ρ p(ρ)}{\int dV p(ρ)} , \qquad
|
||||||
\langle ρ \rangle_j = \frac{\int dA ρ | J_{φ}(ρ)|} {\int dA |J_{φ}(ρ)|}
|
\langle ρ \rangle_j = \frac{\int dA ρ | J_{φ}(ρ)|} {\int dA |J_{φ}(ρ)|}
|
||||||
$$ {#eq:rav}
|
$$ {#eq:rav}
|
||||||
|
|
||||||
and average profile width ${δρ}_a$ defined in terms of the variance as
|
and average profile width ${δρ}_a$ defined in terms of the variance as
|
||||||
|
|
||||||
$$
|
$$
|
||||||
δ ρ_a = 2 \sqrt{2} \langle δ ρ \rangle_a
|
δ ρ_a = 2 \sqrt{2} \langle δ ρ \rangle_a
|
||||||
\qquad \mathrm {with } \qquad
|
\qquad \text{with } \qquad
|
||||||
\langle δ ρ \rangle_a^2 = \langle ρ^2 \rangle_a-(\langle ρ \rangle_a)^2
|
\langle δ ρ \rangle_a^2 = \langle ρ^2 \rangle_a-(\langle ρ \rangle_a)^2
|
||||||
$$ {#eq:drav}
|
$$ {#eq:drav}
|
||||||
|
|
||||||
@ -446,7 +400,6 @@ Consistently with the above average definitions, we introduce suitable peak
|
|||||||
values $p_{0}$ and $J_{φ 0}$, corresponding to those of a Gaussian profile
|
values $p_{0}$ and $J_{φ 0}$, corresponding to those of a Gaussian profile
|
||||||
characterized by [@eq:rav;@eq:drav] and same total absorbed power $P_{abs}$ and
|
characterized by [@eq:rav;@eq:drav] and same total absorbed power $P_{abs}$ and
|
||||||
driven current $I_{cd}$
|
driven current $I_{cd}$
|
||||||
|
|
||||||
$$
|
$$
|
||||||
p_0 = \frac{2}{\sqrt{\pi}} \frac{P_{abs}}{{ δ ρ}_p
|
p_0 = \frac{2}{\sqrt{\pi}} \frac{P_{abs}}{{ δ ρ}_p
|
||||||
\left ({dV}/{d ρ}\right)_{\langle ρ \rangle_p}},
|
\left ({dV}/{d ρ}\right)_{\langle ρ \rangle_p}},
|
||||||
@ -472,8 +425,8 @@ The beam vector at launch is computed from the polarisation ellipse parameters
|
|||||||
using the formula:
|
using the formula:
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\hat{e}₁ &= \cosχ\cosψ + i\sinχ\sinψ \\
|
\hat{e}₁ &= \cos χ\cos ψ + i\sin χ\sin ψ \\
|
||||||
\hat{e}₂ &= \cosχ\sinψ - i\sinχ\cosψ
|
\hat{e}₂ &= \cos χ\sin ψ - i\sin χ\cos ψ
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$ {#eq:ellipse2field}
|
$$ {#eq:ellipse2field}
|
||||||
|
|
||||||
@ -481,7 +434,7 @@ The following convention is assumed (illustrated in [@fig:ellipse]):
|
|||||||
|
|
||||||
- $ψ$ is the angle between the $x$ axis and the major axis.
|
- $ψ$ is the angle between the $x$ axis and the major axis.
|
||||||
|
|
||||||
- $χ = \tan(b/a)$ where $a,b$ are ellipse major and minor semi-axes, respectively.
|
- $χ{=}\tan(b/a)$ where $a,b$ are ellipse major and minor semi-axes, respectively.
|
||||||
|
|
||||||
- A positive $ψ$ corresponds to an ellipse rotated counterclockwise in the
|
- A positive $ψ$ corresponds to an ellipse rotated counterclockwise in the
|
||||||
$x∧y$ plane.
|
$x∧y$ plane.
|
||||||
@ -501,18 +454,18 @@ used to describe the beam reflection on the inner wall of the tokamak in the
|
|||||||
cases where only partial absorption occurs at the first pass in the plasma.
|
cases where only partial absorption occurs at the first pass in the plasma.
|
||||||
An ideal conductor is assumed for the reflecting surface, so that the full
|
An ideal conductor is assumed for the reflecting surface, so that the full
|
||||||
power of the incident beam is transferred to the reflected one. The vector
|
power of the incident beam is transferred to the reflected one. The vector
|
||||||
refractive index ${\bf N}_{\rm{refl}}$ and the Jones vector $\hat {\bf
|
refractive index ${\mathbf N}_\text{refl}$ and the Jones vector $\hat {\mathbf
|
||||||
e}_{\rm{refl}}$ of the reflected beam are
|
e}_\text{refl}$ of the reflected beam are
|
||||||
$$
|
$$
|
||||||
{\bf N}_{\rm{refl}} =
|
{\mathbf N}_\text{refl} =
|
||||||
{\bf N}_{\rm{in}} - 2 ({\bf N}_{\rm{in}}
|
{\mathbf N}_\text{in} - 2 ({\mathbf N}_\text{in}
|
||||||
\cdot \hat {\bf n}) \hat {\bf n}, \qquad
|
\cdot \hat {\mathbf n}) \hat {\mathbf n}, \qquad
|
||||||
\hat {\bf e}_{\rm{refl}} =
|
\hat {\mathbf e}_\text{refl} =
|
||||||
-\hat {\bf e}_{\rm{in}}
|
-\hat {\mathbf e}_\text{in}
|
||||||
+ 2 (\hat {\bf e}_{\rm{in}} \cdot \hat {\bf n}) \hat {\bf n},
|
+ 2 (\hat {\mathbf e}_\text{in} \cdot \hat {\mathbf n}) \hat {\mathbf n},
|
||||||
$$
|
$$
|
||||||
being ${\bf N}_{\rm{in}}$ and $\hat {\bf e}_{\rm{in}}$ the vector refractive
|
being ${\mathbf N}_\text{in}$ and $\hat {\mathbf e}_\text{in}$ the vector refractive
|
||||||
index and the Jones vector of the incoming wave, and $\hat {\bf n}$ the
|
index and the Jones vector of the incoming wave, and $\hat {\mathbf n}$ the
|
||||||
normal unit vector to the wall at the beam incidence point.
|
normal unit vector to the wall at the beam incidence point.
|
||||||
|
|
||||||
The reflected beam Jones vector is again used to compute the coupling
|
The reflected beam Jones vector is again used to compute the coupling
|
||||||
@ -520,14 +473,14 @@ to the plasma modes at the second and successive pass, with potentially
|
|||||||
$2^{n-1}$ independent modes being traced after n reflections.
|
$2^{n-1}$ independent modes being traced after n reflections.
|
||||||
|
|
||||||
Note that the Jones vectors of the ordinary and extraordinary modes are
|
Note that the Jones vectors of the ordinary and extraordinary modes are
|
||||||
orthogonal w.r.t. the standard Hermitian product: $\hat{\mathbf e}_{\rm
|
orthogonal w.r.t. the standard Hermitian product:
|
||||||
O}⋅\hat{\mathbf e}_{\rm X}^* = 0$.
|
$\hat{\mathbf{e}}_\mathrm{O}⋅\hat{\mathbf{e}}_\mathrm{X}^* = 0$.
|
||||||
From [@eq:ellipse2field] it then follows that these relations hold:
|
From [@eq:ellipse2field] it then follows that these relations hold:
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
ψ_{\rm O} &= ψ_{\rm X} + \frac{π}{2} \\
|
ψ_\textrm{O} &= ψ_\textrm{X} + \frac{π}{2} \\
|
||||||
χ_{\rm O} &= -χ_{\rm X} \\
|
χ_\textrm{O} &= -χ_\textrm{X} \\
|
||||||
1 &= c_{\rm O} + c_{\rm X}
|
1 &= c_\textrm{O} + c_\textrm{X}
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
with the latter meaning all the incoming power is coupled to the plasma.
|
with the latter meaning all the incoming power is coupled to the plasma.
|
||||||
|
@ -197,7 +197,6 @@ Table: **Plasma boundary** {#tbl:eqdisk-bound}
|
|||||||
### Toroidal Current Density
|
### Toroidal Current Density
|
||||||
|
|
||||||
The toroidal current $J_T$ (A/m²) is related to $P'(ψ)$ and $FF'(ψ)$ through
|
The toroidal current $J_T$ (A/m²) is related to $P'(ψ)$ and $FF'(ψ)$ through
|
||||||
|
|
||||||
$$
|
$$
|
||||||
J_T = R P'(ψ) + FF'(ψ) / R
|
J_T = R P'(ψ) + FF'(ψ) / R
|
||||||
$$
|
$$
|
||||||
@ -252,12 +251,12 @@ Variable Type Units Valid range Definition
|
|||||||
`P0` Real MW $x>0$ EC injected power.
|
`P0` Real MW $x>0$ EC injected power.
|
||||||
|
|
||||||
`Nrayr` Integer 1 $1 ≤ n ≤ 31$ Number of rays $N_r$ in radial direction + 1 in
|
`Nrayr` Integer 1 $1 ≤ n ≤ 31$ Number of rays $N_r$ in radial direction + 1 in
|
||||||
the center, ${\tt Nrayr} = N_r +1$.
|
the center, $\texttt{Nrayr} = N_r +1$.
|
||||||
|
|
||||||
`Nrayth` Integer 1 $1 ≤ n ≤ 36$ Number of rays $N_{\theta}$ in angular direction.
|
`Nrayth` Integer 1 $1 ≤ n ≤ 36$ Number of rays $N_{\theta}$ in angular direction.
|
||||||
|
|
||||||
`rwmax` Real $x > 0$ "cut-off" size $\tilde ρ_{max}$ of the gaussian beam.
|
`rwmax` Real $x > 0$ "cut-off" size $\tilde ρ_{max}$ of the gaussian beam.
|
||||||
(typical $1 ≤ {\tt rwmax} ≤ 1.5$), defined at page.
|
(typical $1 ≤ \texttt{rwmax} ≤ 1.5$), defined at page.
|
||||||
|
|
||||||
`x0` Real cm $X$ coordinate of the launching point.
|
`x0` Real cm $X$ coordinate of the launching point.
|
||||||
|
|
||||||
@ -291,7 +290,7 @@ Variable Type Units Valid range Definition
|
|||||||
2=$ψ$.
|
2=$ψ$.
|
||||||
|
|
||||||
`filenmbm` String len$(s)≤ 24$ Name of file (extension `.txt` appended) with beam.
|
`filenmbm` String len$(s)≤ 24$ Name of file (extension `.txt` appended) with beam.
|
||||||
parameters, used if ${\tt ibeam} >0$.
|
parameters, used if $\texttt{ibeam} >0$.
|
||||||
|
|
||||||
`iox` Integer 1, 2 1=Ordinary mode (OM), 2=Extraordinary (XM) mode.
|
`iox` Integer 1, 2 1=Ordinary mode (OM), 2=Extraordinary (XM) mode.
|
||||||
|
|
||||||
@ -331,19 +330,19 @@ Variable Type Units Valid range Definition
|
|||||||
1=normalized (obsolete, for some old files
|
1=normalized (obsolete, for some old files
|
||||||
psi$(R,z)$ in `filenmeqq`.
|
psi$(R,z)$ in `filenmeqq`.
|
||||||
|
|
||||||
`sspl` Real 1 $x > 0$ Tension of spline fit for psi (${\tt sspl} \ll 1$ typical),
|
`sspl` Real 1 $x > 0$ Tension of spline fit for psi ($\texttt{sspl} \ll 1$ typical),
|
||||||
0=interpolation.
|
0=interpolation.
|
||||||
|
|
||||||
`factb` Real 1 $x > 0$ Numerical factor to rescale the magnetic field
|
`factb` Real 1 $x > 0$ Numerical factor to rescale the magnetic field
|
||||||
$B \rightarrow B \cdot {\tt factb}$.
|
$B \rightarrow B \cdot \texttt{factb}$.
|
||||||
|
|
||||||
`factt` Real 1 $x > 0$ Numerical factor to rescale the electron temperature
|
`factt` Real 1 $x > 0$ Numerical factor to rescale the electron temperature
|
||||||
$T_e \rightarrow T_e \cdot {\tt factt}
|
$T_e \rightarrow T_e \cdot \texttt{factt}
|
||||||
\cdot {\tt factb}^{\tt ab}$.
|
\cdot \texttt{factb}^\texttt{ab}$.
|
||||||
|
|
||||||
`factn` Real 1 $x > 0$ Numerical factor to rescale the electron density
|
`factn` Real 1 $x > 0$ Numerical factor to rescale the electron density
|
||||||
$n_e \rightarrow n_e \cdot {\tt factn}
|
$n_e \rightarrow n_e \cdot \texttt{factn}
|
||||||
\cdot {\tt factb}^{\tt ab}$.
|
\cdot \texttt{factb}^\text{ab}$.
|
||||||
|
|
||||||
`iscal` Int 1, 2 Model for $n_e$, $T_e$ scaling with $B$:
|
`iscal` Int 1, 2 Model for $n_e$, $T_e$ scaling with $B$:
|
||||||
1=constant $n_{Greenwald}$ (`ab`=1),
|
1=constant $n_{Greenwald}$ (`ab`=1),
|
||||||
@ -352,7 +351,7 @@ Variable Type Units Valid range Definition
|
|||||||
`filenmprf` String len$(s) ≤ 24$ Name of file for kinetic profiles
|
`filenmprf` String len$(s) ≤ 24$ Name of file for kinetic profiles
|
||||||
|
|
||||||
`psdbnd` Real 1 $x > 0$ Normalized psi value at the plasma boundary where
|
`psdbnd` Real 1 $x > 0$ Normalized psi value at the plasma boundary where
|
||||||
$n_e$ is set to zero (typ. $1 ≤ {\tt psdbnd} ≤ 1.1$).
|
$n_e$ is set to zero (typ. $1 ≤ \texttt{psdbnd} ≤ 1.1$).
|
||||||
|
|
||||||
`sgnbphi` Real 1 -1, +1, 0 Force signum of toroidal B, used if nonzero
|
`sgnbphi` Real 1 -1, +1, 0 Force signum of toroidal B, used if nonzero
|
||||||
|
|
||||||
@ -374,7 +373,7 @@ Variable Type Units Valid range Definition
|
|||||||
3=fully relativistic (slow).
|
3=fully relativistic (slow).
|
||||||
|
|
||||||
`ilarm` Integer 1 $n ≥ 1$ Order of Larmor radius expansion for absorption
|
`ilarm` Integer 1 $n ≥ 1$ Order of Larmor radius expansion for absorption
|
||||||
computation ${\tt ilarm}>$ local EC harmonic number.
|
computation $\texttt{ilarm}>$ local EC harmonic number.
|
||||||
|
|
||||||
`ieccd` Integer 0, 1, 11 Current drive model:
|
`ieccd` Integer 0, 1, 11 Current drive model:
|
||||||
0=none,
|
0=none,
|
||||||
@ -384,7 +383,7 @@ Variable Type Units Valid range Definition
|
|||||||
|
|
||||||
`igrad` Integer 0, 1 Ray-tracing model:
|
`igrad` Integer 0, 1 Ray-tracing model:
|
||||||
0=optical,
|
0=optical,
|
||||||
1=quasi-optical (requires ${\tt nrayr} \ge 5$).
|
1=quasi-optical (requires $\texttt{nrayr} \ge 5$).
|
||||||
|
|
||||||
`idst` Integer 0, 1, 2 Ray-tracing integration variable:
|
`idst` Integer 0, 1, 2 Ray-tracing integration variable:
|
||||||
0=$s$,
|
0=$s$,
|
||||||
@ -396,10 +395,10 @@ Variable Type Units Valid range Definition
|
|||||||
|
|
||||||
`nstep` Integer 1 $0 ≤ n ≤ 8000$ Maximum number of integration steps.
|
`nstep` Integer 1 $0 ≤ n ≤ 8000$ Maximum number of integration steps.
|
||||||
|
|
||||||
`istpr` Integer 1 $1 ≤ n ≤ {\tt nstep}$ Subsampling factor for beam cross section
|
`istpr` Integer 1 $1 ≤ n ≤ \texttt{nstep}$ Subsampling factor for beam cross section
|
||||||
data output (units 8, 12).
|
data output (units 8, 12).
|
||||||
|
|
||||||
`istpl` Integer 1 $1 ≤ n ≤ {\tt nstep}$ Subsampling factor for outmost rays
|
`istpl` Integer 1 $1 ≤ n ≤ \texttt{nstep}$ Subsampling factor for outmost rays
|
||||||
data output (unit 33).
|
data output (unit 33).
|
||||||
|
|
||||||
`ipec` Integer 1, 2 Grid spacing for ECRH&CD profiles:
|
`ipec` Integer 1, 2 Grid spacing for ECRH&CD profiles:
|
||||||
@ -408,7 +407,7 @@ Variable Type Units Valid range Definition
|
|||||||
|
|
||||||
`nnd` Integer 1 $2 ≤ n ≤ 5001$ Number of points in the ECRH&CD profile grid.
|
`nnd` Integer 1 $2 ≤ n ≤ 5001$ Number of points in the ECRH&CD profile grid.
|
||||||
|
|
||||||
`ipass` Integer $-2,1, 2$ $\vert{\tt ipass}\vert$=number of passes into plasma:
|
`ipass` Integer $-2,1, 2$ $\vert\texttt{ipass}\vert$=number of passes into plasma:
|
||||||
-2=reflection at `rwallm`,
|
-2=reflection at `rwallm`,
|
||||||
+2=reflection at limiter.
|
+2=reflection at limiter.
|
||||||
Surface given in EQDSK.
|
Surface given in EQDSK.
|
||||||
@ -431,7 +430,7 @@ Variable Type Units Valid range Definition
|
|||||||
|
|
||||||
`ne` real 10¹⁹m⁻³ $x ≥ 0$ Electron density
|
`ne` real 10¹⁹m⁻³ $x ≥ 0$ Electron density
|
||||||
|
|
||||||
`Zeff` real 1 $x ≥ 0$ Effective charge, $Z_{\rm eff}$
|
`Zeff` real 1 $x ≥ 0$ Effective charge, $Z_\text{eff}$
|
||||||
----------------------------------------------------------------------------------------------------------------------------
|
----------------------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
Table: GRAY input data `filenmprf.prf` - plasma profiles {#tbl:profiles1}
|
Table: GRAY input data `filenmprf.prf` - plasma profiles {#tbl:profiles1}
|
||||||
@ -525,11 +524,11 @@ Variable Type Units Definition
|
|||||||
defined in [@eq:drav].
|
defined in [@eq:drav].
|
||||||
|
|
||||||
`ratjbmx` Real 1 Ratio $J_{cd}/J_{φ}$ at $ρ=$`rhotjava`,
|
`ratjbmx` Real 1 Ratio $J_{cd}/J_{φ}$ at $ρ=$`rhotjava`,
|
||||||
with $J_{cd}=\langle \bold{J}\cdot \bold{B} \rangle
|
with $J_{cd}=\langle \mathbf{J}\cdot \mathbf{B} \rangle
|
||||||
/\langle \mathbf{B} \rangle$.
|
/\langle \mathbf{B} \rangle$.
|
||||||
|
|
||||||
`ratjamx` Real 1 Ratio $J_{cd}/J_{φ}$ at $ρ=$`rhotjava`,
|
`ratjamx` Real 1 Ratio $J_{cd}/J_{φ}$ at $ρ=$`rhotjava`,
|
||||||
with $J_{cd}=\langle \bold{J}\cdot \bold{B} \rangle/B_0$
|
with $J_{cd}=\langle \mathbf{J}\cdot \mathbf{B} \rangle/B_0$
|
||||||
|
|
||||||
`stmx` Real cm Path from the launching point and peak $dP/dV$
|
`stmx` Real cm Path from the launching point and peak $dP/dV$
|
||||||
for the central ray.
|
for the central ray.
|
||||||
@ -555,7 +554,7 @@ Variable Type Units Definition
|
|||||||
with $A$ the area of the poloidal section labelled by $ρ$.
|
with $A$ the area of the poloidal section labelled by $ρ$.
|
||||||
|
|
||||||
`Jcdb` Real MA⋅m⁻² EC current density
|
`Jcdb` Real MA⋅m⁻² EC current density
|
||||||
$J_{cd}=\langle \bold{J}\cdot\bold{B} \rangle
|
$J_{cd}=\langle \mathbf{J}\cdot\mathbf{B} \rangle
|
||||||
/\langle \mathbf{B} \rangle$.
|
/\langle \mathbf{B} \rangle$.
|
||||||
|
|
||||||
`dPdV` Real MW⋅m⁻³ EC power density $p(ρ)=dP/dV$.
|
`dPdV` Real MW⋅m⁻³ EC power density $p(ρ)=dP/dV$.
|
||||||
|
@ -14,12 +14,11 @@ modes and the `index_rt` is updated as:
|
|||||||
```
|
```
|
||||||
|
|
||||||
It follows that ordinary(extraordinary) modes respectively have odd(even)
|
It follows that ordinary(extraordinary) modes respectively have odd(even)
|
||||||
indices and the number of passes is given by $\lfloor \log₂(1 + \tt index\_rt)
|
indices and the number of passes is given by $\lfloor \log₂(1 + \texttt{index\_rt})
|
||||||
\rfloor$. For example, an `index_rt`=19 denotes the following chain:
|
\rfloor$. For example, an `index_rt`=19 denotes the following chain:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\text{mode:} && O &→ X → O → O \\
|
\text{mode:} && O &→ X → O → O \\
|
||||||
\text{\tt index\_rt:} && 1 &→ 4 → 9 → 19
|
\texttt{index\_rt:} && 1 &→ 4 → 9 → 19
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
@ -8,7 +8,8 @@
|
|||||||
# Pandoc flags
|
# Pandoc flags
|
||||||
FLAGS = --filter pandoc-crossref --citeproc --toc --number-sections
|
FLAGS = --filter pandoc-crossref --citeproc --toc --number-sections
|
||||||
PDF_FLAGS = --pdf-engine=xelatex
|
PDF_FLAGS = --pdf-engine=xelatex
|
||||||
HTML_FLAGS = --standalone --katex$(KATEX_URL) --lua-filter filters/add-anchors.lua
|
HTML_FLAGS = --standalone --mathml --lua-filter filters/add-anchors.lua
|
||||||
|
MATHFONT ?= $(shell fc-match --format=%{file} 'Libertinus Math')
|
||||||
|
|
||||||
# Rebuild everything if the makefile changed
|
# Rebuild everything if the makefile changed
|
||||||
.EXTRA_PREREQS += Makefile
|
.EXTRA_PREREQS += Makefile
|
||||||
@ -34,6 +35,7 @@ $(DOCDIR)/manual.html: $(SECTIONS) res | $(DOCDIR)
|
|||||||
|
|
||||||
$(DOCDIR)/res: res | $(DOCDIR)
|
$(DOCDIR)/res: res | $(DOCDIR)
|
||||||
cp -Tfr $^ '$@'
|
cp -Tfr $^ '$@'
|
||||||
|
cp $(MATHFONT) '$@/mathfont.otf'
|
||||||
|
|
||||||
$(DOCDIR)/manual.pdf: $(SECTIONS) | $(DOCDIR)
|
$(DOCDIR)/manual.pdf: $(SECTIONS) | $(DOCDIR)
|
||||||
pandoc $(FLAGS) $(PDF_FLAGS) $^ -o '$@'
|
pandoc $(FLAGS) $(PDF_FLAGS) $^ -o '$@'
|
||||||
|
@ -3,15 +3,29 @@
|
|||||||
box-sizing: border-box;
|
box-sizing: border-box;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Set a compatible math font */
|
||||||
|
@font-face {
|
||||||
|
font-family: "Libertinus Math";
|
||||||
|
src: local("Libertinus Math"),
|
||||||
|
url("res/mathfont.otf") format("opentype");
|
||||||
|
}
|
||||||
|
body { font-family: "Libertinus Math", sans-serif; }
|
||||||
|
math { font-family: "Libertinus Math", math; }
|
||||||
|
|
||||||
/* Justify all text */
|
/* Justify all text */
|
||||||
body {
|
body {
|
||||||
text-align: justify;
|
text-align: justify;
|
||||||
hypens: auto;
|
hyphens: auto;
|
||||||
|
word-wrap: break-word;
|
||||||
|
overflow-wrap: break-word;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Slighlty increase size */
|
||||||
|
body { font-size: 1.1em }
|
||||||
|
|
||||||
/* Make headings smaller */
|
/* Make headings smaller */
|
||||||
h1 { font-size: 1.8em }
|
header > h1 { font-size: 2em }
|
||||||
|
h1 { font-size: 1.7em }
|
||||||
h2 { font-size: 1.4em }
|
h2 { font-size: 1.4em }
|
||||||
h3 { font-size: 1.1em }
|
h3 { font-size: 1.1em }
|
||||||
h1, h2, h3 { margin: 1em 0 }
|
h1, h2, h3 { margin: 1em 0 }
|
||||||
@ -37,16 +51,35 @@ h1:hover > .header-section-number,
|
|||||||
h2:hover > .header-section-number,
|
h2:hover > .header-section-number,
|
||||||
h3:hover > .header-section-number { opacity: 0; }
|
h3:hover > .header-section-number { opacity: 0; }
|
||||||
|
|
||||||
|
/* Fix equation alignment in chromium */
|
||||||
|
mtd {
|
||||||
|
margin-left: 0.1rem;
|
||||||
|
margin-right: 0.1rem;
|
||||||
|
padding-left: 0;
|
||||||
|
padding-right: 0;
|
||||||
|
}
|
||||||
|
mtr > mtd[columnalign="right"] { text-align: right; }
|
||||||
|
mtr > mtd[columnalign="left"] { text-align: left; }
|
||||||
|
|
||||||
/* Match math and normal mode fonts */
|
/* Fix in-paragraph math spacing */
|
||||||
body { font-size: 1.1em }
|
p > math[display="block"] {
|
||||||
.katex { font-size: 1.0em !important }
|
margin-top: 1em;
|
||||||
|
margin-bottom: 1em;
|
||||||
|
}
|
||||||
|
|
||||||
/* Fix spacing of numbered equations */
|
/* Fix numbered equations alignment */
|
||||||
td .katex-display { margin: 0 }
|
div[id^="eq"] table {
|
||||||
|
width: 100%;
|
||||||
/* Fix equations width */
|
position: relative;
|
||||||
div[id^="eq"] table { width: 100%; }
|
}
|
||||||
|
div[id^="eq"] td[style="text-align: center;"] {
|
||||||
|
width: 100%;
|
||||||
|
}
|
||||||
|
div[id^="eq"] td[style="text-align: right;"] {
|
||||||
|
position: absolute;
|
||||||
|
right: 0;
|
||||||
|
top: calc(50% - 0.6em);
|
||||||
|
}
|
||||||
|
|
||||||
/* Center the title */
|
/* Center the title */
|
||||||
header { text-align: center }
|
header { text-align: center }
|
||||||
|
Loading…
Reference in New Issue
Block a user