src/coreprofiles: make psnbnd fully automatic

1. Fix the mismatch between the psnbnd in coreprofiles and gray_core.
   This happens whenever gray overrides the externally provided one
   (i.e. the density tail would become negative before psnbnd and is so
   rescaled to end exactly on the zero).

2. Make psnbnd no longer required by always computing it as in 1.
   It hasn't been removed, because gray_params.data is sacrosant,
   but it no longer has any effect.

3. Cleanup: mark public functions, restructure the global variables into
   three categories; add comments explaining the analytical profiles
   format, formulae and how the polynomial tail is computed.
This commit is contained in:
Michele Guerini Rocco 2022-05-21 22:56:57 +02:00
parent 63e2bf0b04
commit 45ef9c5eae
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450
3 changed files with 375 additions and 193 deletions

View File

@ -145,12 +145,6 @@ irho = 0
; Filepath of the equilibrium (relative to this file)
filenm = "profiles.txt"
; Value of ψ at the plasma boundary [multipass module]
; Notes:
; 1. boundary means zero density;
; 2. determines when a ray is considered inside the plasma
psnbnd = 1.007
; Tension of the density spline
; Note: 0 means perfect interpolation
sspld = 0.1

View File

@ -1,132 +1,224 @@
! This modules handles the loading, interpolation and evaluation of the
! plasma profiles (density, temperature, effective charge)
!
! Two kinds of profiles are supported: analytical (suffix `_an` in the
! subroutine names) or numerical (suffix `_spline`). For the latter, the
! the data is interpolated using splines.
module coreprofiles
use const_and_precisions, only : wp_, zero, one
implicit none
integer, save :: npp, nsfd
real(wp_), save :: psdbnd, psnpp, denpp, ddenpp, d2denpp
real(wp_), dimension(:), allocatable, save :: tfn, cfn, psrad
real(wp_), dimension(:, :), allocatable, save :: ct, cz
real(wp_), save :: dens0, aln1, aln2, te0, dte0, alt1, alt2, zeffan
! Parameters of the plasma profiles splines
type spline_parameters
integer :: ndata ! Number of data points
integer :: nknots ! Number of spline knots
! Density spline (ψ, knots, B-spline coefficients)
real(wp_), dimension(:), allocatable :: knots, coeffs
! Temperature and effective charge arrays (ψ, T(ψ), Zeff(ψ))
real(wp_), dimension(:), allocatable :: psi
real(wp_), dimension(:, :), allocatable :: temp, zeff
end type
! Parameters of the C² polynomial tail of the density spline
type density_tail
real(wp_) :: start ! ψ, start of the tail
real(wp_) :: end ! ψ, end of the end
real(wp_) :: value ! s(ψ), value at the start
real(wp_) :: deriv1 ! s'(ψ), first derivative at the start
real(wp_) :: deriv2 ! s"(ψ), second derivative at the start
end type
! Parameters of the analytical profiles model
type analytic_model
real(wp_) :: dens0 ! Density scaling factor
real(wp_) :: n1, n2 ! Density exponents
real(wp_) :: te0, te1 ! Temperature at ψ=0, ψ=1
real(wp_) :: t1, t2 ! Temperature exponents
real(wp_) :: zeff ! Effective charge
end type
! Global variable storing the state of the module
type(spline_parameters), save :: spline
type(density_tail), save :: tail
type(analytic_model), save :: model
private
public read_profiles, read_profiles_an ! Reading data files
public scale_profiles ! Applying rescaling
public density, temp, fzeff ! Accessing interpolated data
public set_profiles_spline, set_profiles_an ! Initialising internal state
public unset_profiles_spline ! Deinitialising internal state
contains
subroutine density(psin,dens,ddens)
subroutine density(psin, dens, ddens)
! Computes the density its first derivative as a function of
! normalised poloidal flux.
!
! Note: density has units of 10¹ m³.
use gray_params, only : iprof
use dierckx, only : splev,splder
use dierckx, only : splev, splder
use logger, only : log_error
implicit none
! subroutine arguments
real(wp_), intent(in) :: psin
real(wp_), intent(out) :: dens,ddens
real(wp_), intent(in) :: psin ! normalised poloidal flux
real(wp_), intent(out) :: dens, ddens ! density and first derivative
! local variables
integer :: ier,nu
real(wp_) :: profd,dprofd,dpsib,tt,fp,dfp,fh,dfh
real(wp_), dimension(1) :: xxs,ffs
real(wp_), dimension(npp+4) :: wrkfd
character(256) :: msg
integer :: ier ! dierck error code
real(wp_) :: f(1) ! dierck output (must be an array)
real(wp_) :: wrkfd(spline%ndata+4) ! dierck working space array
character(256) :: msg ! for log messages formatting
!
! Computation of density [10¹ m³] and derivative wrt ψ
!
dens=zero
ddens=zero
if((psin >= psdbnd) .or. (psin < zero)) return
! Initialise both to zero
dens = zero
ddens = zero
if(iprof == 0) then
if(psin > one) return
profd=(one-psin**aln1)**aln2
dens=dens0*profd
dprofd=-aln1*aln2*psin**(aln1-one) &
*(one-psin**aln1)**(aln2-one)
ddens=dens0*dprofd
else
if(psin > psnpp) then
! Outside the tail end both density and its
! derivatives are identically zero
if (psin >= tail%end .or. psin < 0) return
! Smooth interpolation for psnpp < psi < psdbnd
! dens = fp * fh
! fp: parabola matched at psi=psnpp with given profile density
! fh=(1-t)^3(1+3t+6t^2) is a smoothing function:
! fh(0)=1, fh(1)=0 and zero first and second deriv at t=0,1
if (iprof == 0) then
! Use the analytical model
!
dpsib=psin-psnpp
fp=denpp+dpsib*ddenpp+0.5_wp_*dpsib**2*d2denpp
dfp=ddenpp+dpsib*d2denpp
tt=dpsib/(psdbnd-psnpp)
fh=(one-tt)**3*(one+3.0_wp_*tt+6.0_wp_*tt**2)
dfh=-30.0_wp_*(one-tt)**2*tt**2/(psdbnd-psnpp)
dens=fp*fh
ddens=dfp*fh+fp*dfh
! n(ψ) = dens0(1 - ψ^aln1)^aln2
!
if (psin > 1) return
dens = model%dens0 * (1 - psin**model%n1)**model%n2
ddens = -model%dens0 * model%n1*model%n2 * psin**(model%n1 - 1) &
* (1 - psin**model%n1)**(model%n2 - 1)
else
! Use the numerical data
if (psin < tail%start) then
! Use the interpolating spline when in range
! Evaluate the spline
ier = 0
call splev(spline%knots, spline%nknots, spline%coeffs, &
3, [psin], f, 1, ier)
dens = f(1)
! Evaluate the spline 1st derivative
ier = 0
call splder(spline%knots, spline%nknots, spline%coeffs, &
3, 1, [psin], f, 1, wrkfd, ier)
ddens = f(1)
if (abs(dens) < 1.0e-10_wp_) dens = zero
else
xxs(1)=psin
ier=0
call splev(tfn,nsfd,cfn,3,xxs,ffs,1,ier)
dens=ffs(1)
nu=1
ier=0
call splder(tfn,nsfd,cfn,3,nu,xxs,ffs,1,wrkfd,ier)
ddens=ffs(1)
if(abs(dens) < 1.0e-10_wp_) dens=zero
! Use a C² polynomial extension outside (ψ > ψ)
! The tail consists of the product p(ψ)h(t), where:
!
! - p(ψ) is the 2nd order Taylor polynomial of the spline,
! centered at ψ. See set_profiles_spline for details.
!
! - h(t) is a "smoothing" polynomial in the variable
! t = (ψ - ψ)/(ψ - ψ), defined as:
!
! h(t) = (1 - t)³(1 + 3t + 6t²)
!
! with the following properties:
!
! h(0) = 1 h'(0)=0 h"(0)=0
! h(1) = 0 h'(1)=0 h"(1)=0
block
real(wp_) :: dpsi, t, p, dp, h, dh
dpsi = psin - tail%start ! Δψ = (ψ - ψ)
! Taylor polynomial p(ψ) and its derivative
p = tail%value + dpsi*tail%deriv1 + dpsi**2*tail%deriv2/2
dp = tail%deriv1 + dpsi*tail%deriv2
! Smoothing polynomial h(t) and its derivative
t = dpsi/(tail%end - tail%start)
h = (1 - t)**3 * (1 + 3*t + 6*t**2)
dh = -30*(1 - t)**2 * t**2 / (tail%end - tail%start)
dens = p*h
ddens = dp*h + p*dh
end block
end if
if(dens < zero) then
if (dens < 0) then
write (msg, '("negative density:", 2(x,a,"=",g0.3))') &
'ne', dens, 'ψ', psin
call log_error(msg, mod='coreprofiles', proc='density')
end if
end if
end subroutine density
function temp(psin)
use const_and_precisions, only : wp_,zero,one
use gray_params, only : iprof
use utils, only : locate
use simplespline, only :spli
! Computes the temperature as a function of the
! normalised poloidal flux.
!
! Note: temperature has units of keV.
use gray_params, only : iprof
use utils, only : locate
use simplespline, only : spli
implicit none
! arguments
! subroutine arguments
real(wp_), intent(in) :: psin
real(wp_) :: temp
! local variables
integer :: k
real(wp_) :: proft,dps
temp=zero
if((psin >= one).or.(psin < zero)) return
if(iprof == 0) then
proft=(1.0_wp_-psin**alt1)**alt2
temp=(te0-dte0)*proft+dte0
! local variables
integer :: k
real(wp_) :: proft, dps
temp = zero
if (psin >= 1 .or. psin < 0) return
if (iprof == 0) then
! Use the analytical model
!
! T(ψ) = (te0 - te1)(1 - ψ^t1)^t2 + te1
!
proft = (1 - psin**model%t1)**model%t2
temp = (model%te0 - model%te1)*proft + model%te1
else
call locate(psrad,npp,psin,k)
k=max(1,min(k,npp-1))
dps=psin-psrad(k)
temp=spli(ct,npp,k,dps)
! Use the interpolated numerical data
call locate(spline%psi, spline%ndata, psin, k)
k = max(1, min(k, spline%ndata - 1))
dps = psin - spline%psi(k)
temp = spli(spline%temp, spline%ndata, k, dps)
endif
end function temp
function fzeff(psin)
use const_and_precisions, only : wp_,zero,one
use gray_params, only : iprof
use utils, only : locate
use simplespline, only :spli
! Computes the effective charge Zeff as a
! function of the normalised poloidal flux.
use gray_params, only : iprof
use utils, only : locate
use simplespline, only : spli
implicit none
! arguments
! subroutine arguments
real(wp_), intent(in) :: psin
real(wp_) :: fzeff
! local variables
! local variables
integer :: k
real(wp_) :: dps
fzeff=one
if((psin >= one).or.(psin < zero)) return
if(iprof == 0) then
fzeff=zeffan
fzeff = one
if (psin >= 1 .or. psin < 0) return
if (iprof == 0) then
! Use the analytical model (just a constant)
fzeff = model%zeff
else
call locate(psrad,npp,psin,k)
k=max(1,min(k,npp-1))
dps=psin-psrad(k)
fzeff=spli(cz,npp,k,dps)
! Use the interpolated numerical data
call locate(spline%psi, spline%ndata, psin, k)
k = max(1, min(k, spline%ndata - 1))
dps = psin - spline%psi(k)
fzeff = spli(spline%zeff, spline%ndata, k, dps)
endif
end function fzeff
@ -154,10 +246,10 @@ contains
integer :: err
! Free the arrays when already allocated
if(allocated(data%psrad)) deallocate(data%psrad)
if(allocated(data%terad)) deallocate(data%terad)
if(allocated(data%derad)) deallocate(data%derad)
if(allocated(data%zfc)) deallocate(data%zfc)
if (allocated(data%psrad)) deallocate(data%psrad)
if (allocated(data%terad)) deallocate(data%terad)
if (allocated(data%derad)) deallocate(data%derad)
if (allocated(data%zfc)) deallocate(data%zfc)
u = get_free_unit(unit)
@ -190,7 +282,14 @@ contains
! from params%filenm.
! If given, the file is opened in the `unit` number.
!
! TODO: add format description
! The file should be formatted as follows:
!
! 1 dens0 n1 n2
! 2 te0 te1 t1 t2
! 3 zeff
!
! See `density`, `temp`, `fzeff` subroutines for the meaning
! of the parameters (i.e. the formulae for n,T,Zeff).
use gray_params, only : profiles_data
use utils, only : get_free_unit
use logger, only : log_error
@ -220,9 +319,9 @@ contains
call exit(1)
end if
read (u,*) data%derad(1:3) ! dens0, aln1, aln2
read (u,*) data%terad(1:4) ! te0, dte0, alt1, alt2
read (u,*) data%zfc(1) ! zeffan
read (u,*) data%derad(1:3) ! dens0, n1, n2
read (u,*) data%terad(1:4) ! te0, te1, t1, t2
read (u,*) data%zfc(1) ! zeff
close(u)
end subroutine read_profiles_an
@ -253,13 +352,13 @@ contains
aan = one
end if
if(params%iscal==2) then
if (params%iscal==2) then
ffact = one
else
ffact = factb
end if
if(params%iprof==0) then
if (params%iprof==0) then
last_te = 2
last_ne = 1
else
@ -272,140 +371,227 @@ contains
end subroutine scale_profiles
subroutine set_profiles_spline(params, data)
subroutine set_profiles_spline(params, data, launch_pos)
! Computes splines for the plasma profiles data and stores them
! in their respective global variables, see the top of this file.
!
! When `launch_pos` (cartesian launch coordinates in cm) is present,
! the subroutine will also check that the wave launcher is strictly
! outside the reconstructed plasma density boundary.
use simplespline, only : difcs
use dierckx, only : curfit, splev, splder
use gray_params, only : profiles_parameters, profiles_data
use logger, only : log_info, log_warning
use logger, only : log_debug, log_info, log_warning, log_error
implicit none
! subroutine arguments
type(profiles_parameters), intent(in) :: params
type(profiles_parameters), intent(inout) :: params
type(profiles_data), intent(inout) :: data
real(wp_), optional, intent(in) :: launch_pos(3)
! curfit parameters
integer, parameter :: iopt = 0 ! smoothing spline mode
integer, parameter :: kspl = 3 ! order of spline (cubic)
! local variables
integer, parameter :: iopt=0, kspl=3
integer :: n, npest, lwrkf, ier
real(wp_) :: xb, xe, fp, xnv, xxp,xxm,delta2,ssplne_loc
real(wp_), dimension(:), allocatable :: wf, wrkf
integer, dimension(:), allocatable :: iwrkf
real(wp_), dimension(1) :: dedge,ddedge,d2dedge
character(256) :: msg ! for log messages formatting
integer :: n, npest, ier
real(wp_) :: xb, xe, fp, ssplne_loc
n=size(data%psrad)
npest=n+4
lwrkf=n*4+npest*16
allocate(wrkf(lwrkf),iwrkf(npest),wf(n))
! working space arrays for the dierckx functions
integer :: lwrkf
real(wp_), dimension(:), allocatable :: wf, wrkf
integer, dimension(:), allocatable :: iwrkf
! for log messages formatting
character(256) :: msg
n = size(data%psrad)
npest = n + 4
lwrkf = n*4 + npest*16
allocate(wrkf(lwrkf), iwrkf(npest), wf(n))
ssplne_loc=params%sspld
! if necessary, reallocate spline arrays
if(.not.allocated(psrad)) then
allocate(psrad(n),ct(n,4),cz(n,4))
! If necessary, reallocate the spline arrays
if (.not. allocated(spline%psi)) then
allocate(spline%psi(n), spline%temp(n, 4), spline%zeff(n, 4))
else
if(size(psrad)<n) then
deallocate(psrad,ct,cz)
allocate(psrad(n),ct(n,4),cz(n,4))
if (size(spline%psi) < n) then
deallocate(spline%psi, spline%temp, spline%zeff)
allocate(spline%psi(n), spline%temp(n, 4), spline%zeff(n, 4))
end if
end if
if(.not.allocated(cfn)) then
allocate(tfn(npest),cfn(npest))
if (.not. allocated(spline%coeffs)) then
allocate(spline%knots(npest), spline%coeffs(npest))
else
if(size(cfn)<npest) then
deallocate(tfn,cfn)
allocate(tfn(npest),cfn(npest))
if (size(spline%coeffs) < npest) then
deallocate(spline%knots, spline%coeffs)
allocate(spline%knots(npest), spline%coeffs(npest))
end if
end if
! spline approximation of temperature and data%zfc
call difcs(data%psrad,data%terad, n,iopt,ct,ier)
call difcs(data%psrad,data%zfc,n,iopt,cz,ier)
psrad=data%psrad
npp=n
! Spline interpolation of temperature and effective charge
call difcs(data%psrad, data%terad, n, iopt, spline%temp, ier)
call difcs(data%psrad, data%zfc, n, iopt, spline%zeff, ier)
spline%psi = data%psrad
spline%ndata = n
! spline approximation of density
xb=zero
xe=data%psrad(n)
wf(:)=one
call curfit(iopt,n,data%psrad,data%derad,wf,xb,xe,kspl,ssplne_loc,npest, &
nsfd,tfn,cfn,fp,wrkf,lwrkf,iwrkf,ier)
! Spline interpolation of density
xb = zero
xe = data%psrad(n)
wf(:) = one
call curfit(iopt, n, data%psrad, data%derad, wf, xb, xe, kspl, &
ssplne_loc, npest, spline%nknots, spline%knots, &
spline%coeffs, fp, wrkf, lwrkf, iwrkf, ier)
! if ier=-1 data are re-fitted using sspl=0
if(ier == -1) then
if (ier == -1) then
call log_warning('curfit failed with error -1: re-fitting with '// &
's=0', mod='coreprofiles', proc='density')
ssplne_loc=0.0_wp_
call curfit(iopt,n,data%psrad,data%derad,wf,xb,xe,kspl,ssplne_loc,npest, &
nsfd,tfn,cfn,fp,wrkf,lwrkf,iwrkf,ier)
ssplne_loc = zero
call curfit(iopt, n, data%psrad, data%derad, wf, xb, xe, kspl, &
ssplne_loc, npest, spline%nknots, spline%knots, &
spline%coeffs, fp, wrkf, lwrkf, iwrkf, ier)
end if
! compute polinomial extrapolation matching the spline boundary up to the
! 2nd order derivative, extending the profile up to psi=psdbnd where
! data%derad=data%derad'=data%derad''=0
! spline value and derivatives at the edge
call splev(tfn,nsfd,cfn,kspl,data%psrad(n:n),dedge(1:1),1,ier)
call splder(tfn,nsfd,cfn,kspl,1,data%psrad(n:n),ddedge(1:1), 1,wrkf(1:nsfd),ier)
call splder(tfn,nsfd,cfn,kspl,2,data%psrad(n:n),d2dedge(1:1),1,wrkf(1:nsfd),ier)
! determination of the boundary
psdbnd=params%psnbnd
! Computation of the polynomial tail parameters
!
! Note: The density is the only quantity that needs to be evaluated
! at the edge. The spline thus has to be extended to transition
! smoothly from the last profile point to 0 outside the plasma.
block
real(wp_), dimension(1) :: s0, s1, s2 ! spline, 1st, 2nd derivative
real(wp_), dimension(1) :: delta4 ! discriminant Δ/4 of q(x)
real(wp_), dimension(1) :: x0, x1 ! vertex of q(x), solution
psnpp=data%psrad(n)
denpp=dedge(1)
ddenpp=ddedge(1)
d2denpp=d2dedge(1)
! Compute the coefficients of a 2nd order Taylor polinomial to
! extend the spline beyond the last point:
!
! p(ψ) = s(ψ) + (ψ - ψ)s'(ψ) + ½(ψ - ψ)²s"(ψ)
!
! where s(ψ) is the spline and ψ the last point.
!
call splev(spline%knots, spline%nknots, spline%coeffs, kspl, &
data%psrad(n:n), s0, 1, ier)
call splder(spline%knots, spline%nknots, spline%coeffs, kspl, 1, &
data%psrad(n:n), s1, 1, wrkf(1:spline%nknots), ier)
call splder(spline%knots, spline%nknots, spline%coeffs, kspl, 2, &
data%psrad(n:n), s2, 1, wrkf(1:spline%nknots), ier)
delta2=(ddenpp/d2denpp)**2-2.0_wp_*denpp/d2denpp
xnv=psnpp-ddenpp/d2denpp
if(delta2 < zero) then
! if(xnv > psnpp) psdbnd=min(psdbnd,xnv)
else
xxm=xnv-sqrt(delta2)
xxp=xnv+sqrt(delta2)
if(xxm > psnpp) then
psdbnd=min(psdbnd,xxm)
else if (xxp > psnpp) then
psdbnd=min(psdbnd,xxp)
! Determine where to end the tail (to ensure the density remains
! positive) from the zeros of the Taylor polynomial p(ψ)
!
! Define x=(ψ - ψ), then p(ψ)=0 is rewritten as
!
! q(x) = x² + 2s'/s" x + 2s/s" = 0
!
! The discriminant is Δ/4 = (s'/s")² - 2(s/s") and
! the solutions are x = x ± (Δ/4), with x = -s'/s".
!
x0 = -s1 / s2 ! vertex of parabola y=q(x)
delta4 = (s1 / s2)**2 - 2*s0/s2 ! Δ/4 of q(x)
if (delta4(1) > 0) then
! Pick the smallest positive zero (implying >ψ)
x1 = x0 + sign(sqrt(delta4), sqrt(delta4) - x0)
else
! There are no zeros, use the parabola vertex
x1 = x0
call log_debug('spline extension has no zeros', &
mod='coreprofiles', proc='set_profiles_spline')
end if
write (msg, '(a,g0.3)') 'density boundary: ψ=', psdbnd
call log_info(msg, mod="coreprofiles", proc="set_profiles_spline")
! Store the tail parameters
tail%start = data%psrad(n)
tail%end = tail%start + x1(1)
tail%value = s0(1)
tail%deriv1 = s1(1)
tail%deriv2 = s2(1)
end block
! Make sure the wave launcher does not fall inside the tail
! Note: if it does, the initial wave conditions become
! invalid as they are given assuming a vacuum (N=1)
if (present(launch_pos)) then
block
use equilibrium, only : equinum_psi
real(wp_) :: R, Z, psi
real(wp_), parameter :: cm = 1.0e-2_wp_
! Convert from cartesian to cylindrical coordinates
R = hypot(launch_pos(1), launch_pos(2)) * cm ! R = (x²+y²)
z = launch_pos(3) * cm
! Get the poloidal flux at the launcher
! Note: this returns -1 when the data is not available
call equinum_psi(R, z, psi)
if (psi > tail%start .and. psi < tail%end) then
! Fall back to the midpoint of ψ and the launcher ψ
tail%end = (tail%start + psi)/2
call log_warning('downscaled tail to not reach the wave launcher', &
mod='coreprofiles', proc='set_profiles_spline')
end if
if (psi > 0 .and. psi < tail%start) then
! This must be a user error, stop here
write (msg, '(a, a, g0.3, a, g0.3)') &
'wave launcher is inside the plasma! ', &
'launcher: ψ=', psi, ' boundary: ψ=', tail%end
call log_error(msg, mod='coreprofiles', proc='set_profiles_spline')
call exit(2)
end if
end block
end if
deallocate(iwrkf,wrkf,wf)
! Set the density boundary ψ
! Note: this is used to detect entrance in the plasma
params%psnbnd = tail%end
write (msg, '(a,g0.4)') 'density boundary: ψ=', tail%end
call log_info(msg, mod='coreprofiles', proc='set_profiles_spline')
deallocate(iwrkf, wrkf, wf)
end subroutine set_profiles_spline
subroutine unset_profiles_spline
! Unsets the splines global variables, see the top of this file.
implicit none
if (allocated(psrad)) deallocate(psrad)
if (allocated(ct)) deallocate(ct)
if (allocated(cz)) deallocate(cz)
if (allocated(tfn)) deallocate(tfn)
if (allocated(cfn)) deallocate(cfn)
if (allocated(spline%psi)) deallocate(spline%psi)
if (allocated(spline%temp)) deallocate(spline%temp)
if (allocated(spline%zeff)) deallocate(spline%zeff)
if (allocated(spline%knots)) deallocate(spline%knots)
if (allocated(spline%coeffs)) deallocate(spline%coeffs)
end subroutine unset_profiles_spline
subroutine set_profiles_an(data)
subroutine set_profiles_an(params, data)
! Stores the analytical profiles data in their respective
! global variables, see the top of this file.
use gray_params, only : profiles_data
use gray_params, only : profiles_parameters, profiles_data
implicit none
! subroutine arguments
type(profiles_data), intent(in) :: data
type(profiles_parameters), intent(inout) :: params
type(profiles_data), intent(in) :: data
model%te0 = data%terad(1)
model%te1 = data%terad(2)
model%t1 = data%terad(3)
model%t2 = data%terad(4)
model%dens0 = data%derad(1)
model%n1 = data%derad(2)
model%n2 = data%derad(3)
model%zeff = data%zfc(1)
! Define the plasma boundary to be exactly ψ=1
! Note: this is used to detect entrance in the plasma
params%psnbnd = one
te0 = data%terad(1)
dte0 = data%terad(2)
alt1 = data%terad(3)
alt2 = data%terad(4)
dens0 = data%derad(1)
aln1 = data%derad(2)
aln2 = data%derad(3)
zeffan = data%zfc(1)
psdbnd = one
end subroutine set_profiles_an
end module coreprofiles

View File

@ -63,8 +63,9 @@ program main
! Read the input data and set the global variables
! of the respective module. Note: order matters.
call init_equilibrium(params, data)
call init_profiles(params%profiles, params%equilibrium%factb, data%profiles)
call init_antenna(params%antenna)
call init_profiles(params%profiles, params%equilibrium%factb, &
params%antenna%pos, data%profiles)
call init_misc(params, data)
! Change the current directory to output files there
@ -241,7 +242,7 @@ contains
end subroutine deinit_equilibrium
subroutine init_profiles(params, factb, data)
subroutine init_profiles(params, factb, launch_pos, data)
! Reads the plasma kinetic profiles file (containing the elecron
! temperature, density and plasma effective charge) and initialises
! the respective GRAY data structure.
@ -253,9 +254,10 @@ contains
implicit none
! subroutine arguments
type(profiles_parameters), intent(in) :: params
real(wp_), intent(in) :: factb
type(profiles_data), intent(out) :: data
type(profiles_parameters), intent(inout) :: params
real(wp_), intent(in) :: factb
real(wp_), intent(in) :: launch_pos(3)
type(profiles_data), intent(out) :: data
if (params%iprof == 0) then
! Analytical profiles
@ -280,10 +282,10 @@ contains
! Set global variables
if (params%iprof == 0) then
! Analytical profiles
call set_profiles_an(data)
call set_profiles_an(params, data)
else
! Numerical profiles
call set_profiles_spline(params, data)
call set_profiles_spline(params, data, launch_pos)
end if
end subroutine init_profiles