src/coreprofiles: make psnbnd fully automatic

1. Fix the mismatch between the psnbnd in coreprofiles and gray_core.
   This happens whenever gray overrides the externally provided one
   (i.e. the density tail would become negative before psnbnd and is so
   rescaled to end exactly on the zero).

2. Make psnbnd no longer required by always computing it as in 1.
   It hasn't been removed, because gray_params.data is sacrosant,
   but it no longer has any effect.

3. Cleanup: mark public functions, restructure the global variables into
   three categories; add comments explaining the analytical profiles
   format, formulae and how the polynomial tail is computed.
This commit is contained in:
Michele Guerini Rocco 2022-05-21 22:56:57 +02:00
parent 63e2bf0b04
commit 45ef9c5eae
Signed by: rnhmjoj
GPG Key ID: BFBAF4C975F76450
3 changed files with 375 additions and 193 deletions

View File

@ -145,12 +145,6 @@ irho = 0
; Filepath of the equilibrium (relative to this file) ; Filepath of the equilibrium (relative to this file)
filenm = "profiles.txt" filenm = "profiles.txt"
; Value of ψ at the plasma boundary [multipass module]
; Notes:
; 1. boundary means zero density;
; 2. determines when a ray is considered inside the plasma
psnbnd = 1.007
; Tension of the density spline ; Tension of the density spline
; Note: 0 means perfect interpolation ; Note: 0 means perfect interpolation
sspld = 0.1 sspld = 0.1

View File

@ -1,136 +1,228 @@
! This modules handles the loading, interpolation and evaluation of the
! plasma profiles (density, temperature, effective charge)
!
! Two kinds of profiles are supported: analytical (suffix `_an` in the
! subroutine names) or numerical (suffix `_spline`). For the latter, the
! the data is interpolated using splines.
module coreprofiles module coreprofiles
use const_and_precisions, only : wp_, zero, one use const_and_precisions, only : wp_, zero, one
implicit none implicit none
integer, save :: npp, nsfd ! Parameters of the plasma profiles splines
real(wp_), save :: psdbnd, psnpp, denpp, ddenpp, d2denpp type spline_parameters
real(wp_), dimension(:), allocatable, save :: tfn, cfn, psrad integer :: ndata ! Number of data points
real(wp_), dimension(:, :), allocatable, save :: ct, cz integer :: nknots ! Number of spline knots
real(wp_), save :: dens0, aln1, aln2, te0, dte0, alt1, alt2, zeffan ! Density spline (ψ, knots, B-spline coefficients)
real(wp_), dimension(:), allocatable :: knots, coeffs
! Temperature and effective charge arrays (ψ, T(ψ), Zeff(ψ))
real(wp_), dimension(:), allocatable :: psi
real(wp_), dimension(:, :), allocatable :: temp, zeff
end type
! Parameters of the C² polynomial tail of the density spline
type density_tail
real(wp_) :: start ! ψ, start of the tail
real(wp_) :: end ! ψ, end of the end
real(wp_) :: value ! s(ψ), value at the start
real(wp_) :: deriv1 ! s'(ψ), first derivative at the start
real(wp_) :: deriv2 ! s"(ψ), second derivative at the start
end type
! Parameters of the analytical profiles model
type analytic_model
real(wp_) :: dens0 ! Density scaling factor
real(wp_) :: n1, n2 ! Density exponents
real(wp_) :: te0, te1 ! Temperature at ψ=0, ψ=1
real(wp_) :: t1, t2 ! Temperature exponents
real(wp_) :: zeff ! Effective charge
end type
! Global variable storing the state of the module
type(spline_parameters), save :: spline
type(density_tail), save :: tail
type(analytic_model), save :: model
private
public read_profiles, read_profiles_an ! Reading data files
public scale_profiles ! Applying rescaling
public density, temp, fzeff ! Accessing interpolated data
public set_profiles_spline, set_profiles_an ! Initialising internal state
public unset_profiles_spline ! Deinitialising internal state
contains contains
subroutine density(psin,dens,ddens) subroutine density(psin, dens, ddens)
! Computes the density its first derivative as a function of
! normalised poloidal flux.
!
! Note: density has units of 10¹ m³.
use gray_params, only : iprof use gray_params, only : iprof
use dierckx, only : splev,splder use dierckx, only : splev, splder
use logger, only : log_error use logger, only : log_error
implicit none implicit none
! subroutine arguments ! subroutine arguments
real(wp_), intent(in) :: psin real(wp_), intent(in) :: psin ! normalised poloidal flux
real(wp_), intent(out) :: dens,ddens real(wp_), intent(out) :: dens, ddens ! density and first derivative
! local variables ! local variables
integer :: ier,nu integer :: ier ! dierck error code
real(wp_) :: profd,dprofd,dpsib,tt,fp,dfp,fh,dfh real(wp_) :: f(1) ! dierck output (must be an array)
real(wp_), dimension(1) :: xxs,ffs real(wp_) :: wrkfd(spline%ndata+4) ! dierck working space array
real(wp_), dimension(npp+4) :: wrkfd character(256) :: msg ! for log messages formatting
character(256) :: msg
! ! Initialise both to zero
! Computation of density [10¹ m³] and derivative wrt ψ dens = zero
! ddens = zero
dens=zero
ddens=zero
if((psin >= psdbnd) .or. (psin < zero)) return
if(iprof == 0) then ! Outside the tail end both density and its
if(psin > one) return ! derivatives are identically zero
profd=(one-psin**aln1)**aln2 if (psin >= tail%end .or. psin < 0) return
dens=dens0*profd
dprofd=-aln1*aln2*psin**(aln1-one) &
*(one-psin**aln1)**(aln2-one)
ddens=dens0*dprofd
else
if(psin > psnpp) then
! Smooth interpolation for psnpp < psi < psdbnd if (iprof == 0) then
! dens = fp * fh ! Use the analytical model
! fp: parabola matched at psi=psnpp with given profile density
! fh=(1-t)^3(1+3t+6t^2) is a smoothing function:
! fh(0)=1, fh(1)=0 and zero first and second deriv at t=0,1
! !
dpsib=psin-psnpp ! n(ψ) = dens0(1 - ψ^aln1)^aln2
fp=denpp+dpsib*ddenpp+0.5_wp_*dpsib**2*d2denpp !
dfp=ddenpp+dpsib*d2denpp if (psin > 1) return
tt=dpsib/(psdbnd-psnpp) dens = model%dens0 * (1 - psin**model%n1)**model%n2
fh=(one-tt)**3*(one+3.0_wp_*tt+6.0_wp_*tt**2) ddens = -model%dens0 * model%n1*model%n2 * psin**(model%n1 - 1) &
dfh=-30.0_wp_*(one-tt)**2*tt**2/(psdbnd-psnpp) * (1 - psin**model%n1)**(model%n2 - 1)
dens=fp*fh else
ddens=dfp*fh+fp*dfh ! Use the numerical data
if (psin < tail%start) then
! Use the interpolating spline when in range
! Evaluate the spline
ier = 0
call splev(spline%knots, spline%nknots, spline%coeffs, &
3, [psin], f, 1, ier)
dens = f(1)
! Evaluate the spline 1st derivative
ier = 0
call splder(spline%knots, spline%nknots, spline%coeffs, &
3, 1, [psin], f, 1, wrkfd, ier)
ddens = f(1)
if (abs(dens) < 1.0e-10_wp_) dens = zero
else else
xxs(1)=psin ! Use a C² polynomial extension outside (ψ > ψ)
ier=0
call splev(tfn,nsfd,cfn,3,xxs,ffs,1,ier) ! The tail consists of the product p(ψ)h(t), where:
dens=ffs(1) !
nu=1 ! - p(ψ) is the 2nd order Taylor polynomial of the spline,
ier=0 ! centered at ψ. See set_profiles_spline for details.
call splder(tfn,nsfd,cfn,3,nu,xxs,ffs,1,wrkfd,ier) !
ddens=ffs(1) ! - h(t) is a "smoothing" polynomial in the variable
if(abs(dens) < 1.0e-10_wp_) dens=zero ! t = (ψ - ψ)/(ψ - ψ), defined as:
!
! h(t) = (1 - t)³(1 + 3t + 6t²)
!
! with the following properties:
!
! h(0) = 1 h'(0)=0 h"(0)=0
! h(1) = 0 h'(1)=0 h"(1)=0
block
real(wp_) :: dpsi, t, p, dp, h, dh
dpsi = psin - tail%start ! Δψ = (ψ - ψ)
! Taylor polynomial p(ψ) and its derivative
p = tail%value + dpsi*tail%deriv1 + dpsi**2*tail%deriv2/2
dp = tail%deriv1 + dpsi*tail%deriv2
! Smoothing polynomial h(t) and its derivative
t = dpsi/(tail%end - tail%start)
h = (1 - t)**3 * (1 + 3*t + 6*t**2)
dh = -30*(1 - t)**2 * t**2 / (tail%end - tail%start)
dens = p*h
ddens = dp*h + p*dh
end block
end if end if
if(dens < zero) then
if (dens < 0) then
write (msg, '("negative density:", 2(x,a,"=",g0.3))') & write (msg, '("negative density:", 2(x,a,"=",g0.3))') &
'ne', dens, 'ψ', psin 'ne', dens, 'ψ', psin
call log_error(msg, mod='coreprofiles', proc='density') call log_error(msg, mod='coreprofiles', proc='density')
end if end if
end if end if
end subroutine density end subroutine density
function temp(psin) function temp(psin)
use const_and_precisions, only : wp_,zero,one ! Computes the temperature as a function of the
use gray_params, only : iprof ! normalised poloidal flux.
use utils, only : locate !
use simplespline, only :spli ! Note: temperature has units of keV.
use gray_params, only : iprof
use utils, only : locate
use simplespline, only : spli
implicit none implicit none
! arguments
! subroutine arguments
real(wp_), intent(in) :: psin real(wp_), intent(in) :: psin
real(wp_) :: temp real(wp_) :: temp
! local variables
integer :: k
real(wp_) :: proft,dps
temp=zero ! local variables
if((psin >= one).or.(psin < zero)) return integer :: k
if(iprof == 0) then real(wp_) :: proft, dps
proft=(1.0_wp_-psin**alt1)**alt2
temp=(te0-dte0)*proft+dte0 temp = zero
if (psin >= 1 .or. psin < 0) return
if (iprof == 0) then
! Use the analytical model
!
! T(ψ) = (te0 - te1)(1 - ψ^t1)^t2 + te1
!
proft = (1 - psin**model%t1)**model%t2
temp = (model%te0 - model%te1)*proft + model%te1
else else
call locate(psrad,npp,psin,k) ! Use the interpolated numerical data
k=max(1,min(k,npp-1)) call locate(spline%psi, spline%ndata, psin, k)
dps=psin-psrad(k) k = max(1, min(k, spline%ndata - 1))
temp=spli(ct,npp,k,dps) dps = psin - spline%psi(k)
temp = spli(spline%temp, spline%ndata, k, dps)
endif endif
end function temp end function temp
function fzeff(psin) function fzeff(psin)
use const_and_precisions, only : wp_,zero,one ! Computes the effective charge Zeff as a
use gray_params, only : iprof ! function of the normalised poloidal flux.
use utils, only : locate use gray_params, only : iprof
use simplespline, only :spli use utils, only : locate
use simplespline, only : spli
implicit none implicit none
! arguments
! subroutine arguments
real(wp_), intent(in) :: psin real(wp_), intent(in) :: psin
real(wp_) :: fzeff real(wp_) :: fzeff
! local variables
! local variables
integer :: k integer :: k
real(wp_) :: dps real(wp_) :: dps
fzeff=one fzeff = one
if((psin >= one).or.(psin < zero)) return if (psin >= 1 .or. psin < 0) return
if(iprof == 0) then if (iprof == 0) then
fzeff=zeffan ! Use the analytical model (just a constant)
fzeff = model%zeff
else else
call locate(psrad,npp,psin,k) ! Use the interpolated numerical data
k=max(1,min(k,npp-1)) call locate(spline%psi, spline%ndata, psin, k)
dps=psin-psrad(k) k = max(1, min(k, spline%ndata - 1))
fzeff=spli(cz,npp,k,dps) dps = psin - spline%psi(k)
fzeff = spli(spline%zeff, spline%ndata, k, dps)
endif endif
end function fzeff end function fzeff
subroutine read_profiles(filenm, data, unit) subroutine read_profiles(filenm, data, unit)
! Reads the radial plasma profiles from `file` and store them ! Reads the radial plasma profiles from `file` and store them
! into `data`. If given, the file is opened in the `unit` number. ! into `data`. If given, the file is opened in the `unit` number.
@ -154,10 +246,10 @@ contains
integer :: err integer :: err
! Free the arrays when already allocated ! Free the arrays when already allocated
if(allocated(data%psrad)) deallocate(data%psrad) if (allocated(data%psrad)) deallocate(data%psrad)
if(allocated(data%terad)) deallocate(data%terad) if (allocated(data%terad)) deallocate(data%terad)
if(allocated(data%derad)) deallocate(data%derad) if (allocated(data%derad)) deallocate(data%derad)
if(allocated(data%zfc)) deallocate(data%zfc) if (allocated(data%zfc)) deallocate(data%zfc)
u = get_free_unit(unit) u = get_free_unit(unit)
@ -190,7 +282,14 @@ contains
! from params%filenm. ! from params%filenm.
! If given, the file is opened in the `unit` number. ! If given, the file is opened in the `unit` number.
! !
! TODO: add format description ! The file should be formatted as follows:
!
! 1 dens0 n1 n2
! 2 te0 te1 t1 t2
! 3 zeff
!
! See `density`, `temp`, `fzeff` subroutines for the meaning
! of the parameters (i.e. the formulae for n,T,Zeff).
use gray_params, only : profiles_data use gray_params, only : profiles_data
use utils, only : get_free_unit use utils, only : get_free_unit
use logger, only : log_error use logger, only : log_error
@ -205,7 +304,7 @@ contains
! local variables ! local variables
integer :: u integer :: u
integer :: err integer :: err
u = get_free_unit(unit) u = get_free_unit(unit)
if (allocated(data%terad)) deallocate(data%terad) if (allocated(data%terad)) deallocate(data%terad)
@ -220,9 +319,9 @@ contains
call exit(1) call exit(1)
end if end if
read (u,*) data%derad(1:3) ! dens0, aln1, aln2 read (u,*) data%derad(1:3) ! dens0, n1, n2
read (u,*) data%terad(1:4) ! te0, dte0, alt1, alt2 read (u,*) data%terad(1:4) ! te0, te1, t1, t2
read (u,*) data%zfc(1) ! zeffan read (u,*) data%zfc(1) ! zeff
close(u) close(u)
end subroutine read_profiles_an end subroutine read_profiles_an
@ -253,13 +352,13 @@ contains
aan = one aan = one
end if end if
if(params%iscal==2) then if (params%iscal==2) then
ffact = one ffact = one
else else
ffact = factb ffact = factb
end if end if
if(params%iprof==0) then if (params%iprof==0) then
last_te = 2 last_te = 2
last_ne = 1 last_ne = 1
else else
@ -272,140 +371,227 @@ contains
end subroutine scale_profiles end subroutine scale_profiles
subroutine set_profiles_spline(params, data) subroutine set_profiles_spline(params, data, launch_pos)
! Computes splines for the plasma profiles data and stores them ! Computes splines for the plasma profiles data and stores them
! in their respective global variables, see the top of this file. ! in their respective global variables, see the top of this file.
!
! When `launch_pos` (cartesian launch coordinates in cm) is present,
! the subroutine will also check that the wave launcher is strictly
! outside the reconstructed plasma density boundary.
use simplespline, only : difcs use simplespline, only : difcs
use dierckx, only : curfit, splev, splder use dierckx, only : curfit, splev, splder
use gray_params, only : profiles_parameters, profiles_data use gray_params, only : profiles_parameters, profiles_data
use logger, only : log_info, log_warning use logger, only : log_debug, log_info, log_warning, log_error
implicit none implicit none
! subroutine arguments ! subroutine arguments
type(profiles_parameters), intent(in) :: params type(profiles_parameters), intent(inout) :: params
type(profiles_data), intent(inout) :: data type(profiles_data), intent(inout) :: data
real(wp_), optional, intent(in) :: launch_pos(3)
! curfit parameters
integer, parameter :: iopt = 0 ! smoothing spline mode
integer, parameter :: kspl = 3 ! order of spline (cubic)
! local variables ! local variables
integer, parameter :: iopt=0, kspl=3 integer :: n, npest, ier
integer :: n, npest, lwrkf, ier real(wp_) :: xb, xe, fp, ssplne_loc
real(wp_) :: xb, xe, fp, xnv, xxp,xxm,delta2,ssplne_loc
real(wp_), dimension(:), allocatable :: wf, wrkf
integer, dimension(:), allocatable :: iwrkf
real(wp_), dimension(1) :: dedge,ddedge,d2dedge
character(256) :: msg ! for log messages formatting
n=size(data%psrad) ! working space arrays for the dierckx functions
npest=n+4 integer :: lwrkf
lwrkf=n*4+npest*16 real(wp_), dimension(:), allocatable :: wf, wrkf
allocate(wrkf(lwrkf),iwrkf(npest),wf(n)) integer, dimension(:), allocatable :: iwrkf
! for log messages formatting
character(256) :: msg
n = size(data%psrad)
npest = n + 4
lwrkf = n*4 + npest*16
allocate(wrkf(lwrkf), iwrkf(npest), wf(n))
ssplne_loc=params%sspld ssplne_loc=params%sspld
! if necessary, reallocate spline arrays ! If necessary, reallocate the spline arrays
if(.not.allocated(psrad)) then if (.not. allocated(spline%psi)) then
allocate(psrad(n),ct(n,4),cz(n,4)) allocate(spline%psi(n), spline%temp(n, 4), spline%zeff(n, 4))
else else
if(size(psrad)<n) then if (size(spline%psi) < n) then
deallocate(psrad,ct,cz) deallocate(spline%psi, spline%temp, spline%zeff)
allocate(psrad(n),ct(n,4),cz(n,4)) allocate(spline%psi(n), spline%temp(n, 4), spline%zeff(n, 4))
end if end if
end if end if
if(.not.allocated(cfn)) then if (.not. allocated(spline%coeffs)) then
allocate(tfn(npest),cfn(npest)) allocate(spline%knots(npest), spline%coeffs(npest))
else else
if(size(cfn)<npest) then if (size(spline%coeffs) < npest) then
deallocate(tfn,cfn) deallocate(spline%knots, spline%coeffs)
allocate(tfn(npest),cfn(npest)) allocate(spline%knots(npest), spline%coeffs(npest))
end if end if
end if end if
! spline approximation of temperature and data%zfc ! Spline interpolation of temperature and effective charge
call difcs(data%psrad,data%terad, n,iopt,ct,ier) call difcs(data%psrad, data%terad, n, iopt, spline%temp, ier)
call difcs(data%psrad,data%zfc,n,iopt,cz,ier) call difcs(data%psrad, data%zfc, n, iopt, spline%zeff, ier)
psrad=data%psrad spline%psi = data%psrad
npp=n spline%ndata = n
! spline approximation of density ! Spline interpolation of density
xb=zero xb = zero
xe=data%psrad(n) xe = data%psrad(n)
wf(:)=one wf(:) = one
call curfit(iopt,n,data%psrad,data%derad,wf,xb,xe,kspl,ssplne_loc,npest, & call curfit(iopt, n, data%psrad, data%derad, wf, xb, xe, kspl, &
nsfd,tfn,cfn,fp,wrkf,lwrkf,iwrkf,ier) ssplne_loc, npest, spline%nknots, spline%knots, &
spline%coeffs, fp, wrkf, lwrkf, iwrkf, ier)
! if ier=-1 data are re-fitted using sspl=0 ! if ier=-1 data are re-fitted using sspl=0
if(ier == -1) then if (ier == -1) then
call log_warning('curfit failed with error -1: re-fitting with '// & call log_warning('curfit failed with error -1: re-fitting with '// &
's=0', mod='coreprofiles', proc='density') 's=0', mod='coreprofiles', proc='density')
ssplne_loc=0.0_wp_ ssplne_loc = zero
call curfit(iopt,n,data%psrad,data%derad,wf,xb,xe,kspl,ssplne_loc,npest, & call curfit(iopt, n, data%psrad, data%derad, wf, xb, xe, kspl, &
nsfd,tfn,cfn,fp,wrkf,lwrkf,iwrkf,ier) ssplne_loc, npest, spline%nknots, spline%knots, &
spline%coeffs, fp, wrkf, lwrkf, iwrkf, ier)
end if end if
! compute polinomial extrapolation matching the spline boundary up to the ! Computation of the polynomial tail parameters
! 2nd order derivative, extending the profile up to psi=psdbnd where !
! data%derad=data%derad'=data%derad''=0 ! Note: The density is the only quantity that needs to be evaluated
! spline value and derivatives at the edge ! at the edge. The spline thus has to be extended to transition
call splev(tfn,nsfd,cfn,kspl,data%psrad(n:n),dedge(1:1),1,ier) ! smoothly from the last profile point to 0 outside the plasma.
call splder(tfn,nsfd,cfn,kspl,1,data%psrad(n:n),ddedge(1:1), 1,wrkf(1:nsfd),ier) block
call splder(tfn,nsfd,cfn,kspl,2,data%psrad(n:n),d2dedge(1:1),1,wrkf(1:nsfd),ier) real(wp_), dimension(1) :: s0, s1, s2 ! spline, 1st, 2nd derivative
! determination of the boundary real(wp_), dimension(1) :: delta4 ! discriminant Δ/4 of q(x)
psdbnd=params%psnbnd real(wp_), dimension(1) :: x0, x1 ! vertex of q(x), solution
psnpp=data%psrad(n) ! Compute the coefficients of a 2nd order Taylor polinomial to
denpp=dedge(1) ! extend the spline beyond the last point:
ddenpp=ddedge(1) !
d2denpp=d2dedge(1) ! p(ψ) = s(ψ) + (ψ - ψ)s'(ψ) + ½(ψ - ψ)²s"(ψ)
!
! where s(ψ) is the spline and ψ the last point.
!
call splev(spline%knots, spline%nknots, spline%coeffs, kspl, &
data%psrad(n:n), s0, 1, ier)
call splder(spline%knots, spline%nknots, spline%coeffs, kspl, 1, &
data%psrad(n:n), s1, 1, wrkf(1:spline%nknots), ier)
call splder(spline%knots, spline%nknots, spline%coeffs, kspl, 2, &
data%psrad(n:n), s2, 1, wrkf(1:spline%nknots), ier)
delta2=(ddenpp/d2denpp)**2-2.0_wp_*denpp/d2denpp ! Determine where to end the tail (to ensure the density remains
xnv=psnpp-ddenpp/d2denpp ! positive) from the zeros of the Taylor polynomial p(ψ)
if(delta2 < zero) then !
! if(xnv > psnpp) psdbnd=min(psdbnd,xnv) ! Define x=(ψ - ψ), then p(ψ)=0 is rewritten as
else !
xxm=xnv-sqrt(delta2) ! q(x) = x² + 2s'/s" x + 2s/s" = 0
xxp=xnv+sqrt(delta2) !
if(xxm > psnpp) then ! The discriminant is Δ/4 = (s'/s")² - 2(s/s") and
psdbnd=min(psdbnd,xxm) ! the solutions are x = x ± (Δ/4), with x = -s'/s".
else if (xxp > psnpp) then !
psdbnd=min(psdbnd,xxp) x0 = -s1 / s2 ! vertex of parabola y=q(x)
delta4 = (s1 / s2)**2 - 2*s0/s2 ! Δ/4 of q(x)
if (delta4(1) > 0) then
! Pick the smallest positive zero (implying >ψ)
x1 = x0 + sign(sqrt(delta4), sqrt(delta4) - x0)
else
! There are no zeros, use the parabola vertex
x1 = x0
call log_debug('spline extension has no zeros', &
mod='coreprofiles', proc='set_profiles_spline')
end if end if
write (msg, '(a,g0.3)') 'density boundary: ψ=', psdbnd
call log_info(msg, mod="coreprofiles", proc="set_profiles_spline") ! Store the tail parameters
tail%start = data%psrad(n)
tail%end = tail%start + x1(1)
tail%value = s0(1)
tail%deriv1 = s1(1)
tail%deriv2 = s2(1)
end block
! Make sure the wave launcher does not fall inside the tail
! Note: if it does, the initial wave conditions become
! invalid as they are given assuming a vacuum (N=1)
if (present(launch_pos)) then
block
use equilibrium, only : equinum_psi
real(wp_) :: R, Z, psi
real(wp_), parameter :: cm = 1.0e-2_wp_
! Convert from cartesian to cylindrical coordinates
R = hypot(launch_pos(1), launch_pos(2)) * cm ! R = (x²+y²)
z = launch_pos(3) * cm
! Get the poloidal flux at the launcher
! Note: this returns -1 when the data is not available
call equinum_psi(R, z, psi)
if (psi > tail%start .and. psi < tail%end) then
! Fall back to the midpoint of ψ and the launcher ψ
tail%end = (tail%start + psi)/2
call log_warning('downscaled tail to not reach the wave launcher', &
mod='coreprofiles', proc='set_profiles_spline')
end if
if (psi > 0 .and. psi < tail%start) then
! This must be a user error, stop here
write (msg, '(a, a, g0.3, a, g0.3)') &
'wave launcher is inside the plasma! ', &
'launcher: ψ=', psi, ' boundary: ψ=', tail%end
call log_error(msg, mod='coreprofiles', proc='set_profiles_spline')
call exit(2)
end if
end block
end if end if
deallocate(iwrkf,wrkf,wf) ! Set the density boundary ψ
! Note: this is used to detect entrance in the plasma
params%psnbnd = tail%end
write (msg, '(a,g0.4)') 'density boundary: ψ=', tail%end
call log_info(msg, mod='coreprofiles', proc='set_profiles_spline')
deallocate(iwrkf, wrkf, wf)
end subroutine set_profiles_spline end subroutine set_profiles_spline
subroutine unset_profiles_spline subroutine unset_profiles_spline
! Unsets the splines global variables, see the top of this file.
implicit none implicit none
if (allocated(psrad)) deallocate(psrad) if (allocated(spline%psi)) deallocate(spline%psi)
if (allocated(ct)) deallocate(ct) if (allocated(spline%temp)) deallocate(spline%temp)
if (allocated(cz)) deallocate(cz) if (allocated(spline%zeff)) deallocate(spline%zeff)
if (allocated(tfn)) deallocate(tfn) if (allocated(spline%knots)) deallocate(spline%knots)
if (allocated(cfn)) deallocate(cfn) if (allocated(spline%coeffs)) deallocate(spline%coeffs)
end subroutine unset_profiles_spline end subroutine unset_profiles_spline
subroutine set_profiles_an(data) subroutine set_profiles_an(params, data)
! Stores the analytical profiles data in their respective ! Stores the analytical profiles data in their respective
! global variables, see the top of this file. ! global variables, see the top of this file.
use gray_params, only : profiles_data use gray_params, only : profiles_parameters, profiles_data
implicit none implicit none
! subroutine arguments ! subroutine arguments
type(profiles_data), intent(in) :: data type(profiles_parameters), intent(inout) :: params
type(profiles_data), intent(in) :: data
model%te0 = data%terad(1)
model%te1 = data%terad(2)
model%t1 = data%terad(3)
model%t2 = data%terad(4)
model%dens0 = data%derad(1)
model%n1 = data%derad(2)
model%n2 = data%derad(3)
model%zeff = data%zfc(1)
! Define the plasma boundary to be exactly ψ=1
! Note: this is used to detect entrance in the plasma
params%psnbnd = one
te0 = data%terad(1)
dte0 = data%terad(2)
alt1 = data%terad(3)
alt2 = data%terad(4)
dens0 = data%derad(1)
aln1 = data%derad(2)
aln2 = data%derad(3)
zeffan = data%zfc(1)
psdbnd = one
end subroutine set_profiles_an end subroutine set_profiles_an
end module coreprofiles end module coreprofiles

View File

@ -63,8 +63,9 @@ program main
! Read the input data and set the global variables ! Read the input data and set the global variables
! of the respective module. Note: order matters. ! of the respective module. Note: order matters.
call init_equilibrium(params, data) call init_equilibrium(params, data)
call init_profiles(params%profiles, params%equilibrium%factb, data%profiles)
call init_antenna(params%antenna) call init_antenna(params%antenna)
call init_profiles(params%profiles, params%equilibrium%factb, &
params%antenna%pos, data%profiles)
call init_misc(params, data) call init_misc(params, data)
! Change the current directory to output files there ! Change the current directory to output files there
@ -241,7 +242,7 @@ contains
end subroutine deinit_equilibrium end subroutine deinit_equilibrium
subroutine init_profiles(params, factb, data) subroutine init_profiles(params, factb, launch_pos, data)
! Reads the plasma kinetic profiles file (containing the elecron ! Reads the plasma kinetic profiles file (containing the elecron
! temperature, density and plasma effective charge) and initialises ! temperature, density and plasma effective charge) and initialises
! the respective GRAY data structure. ! the respective GRAY data structure.
@ -253,9 +254,10 @@ contains
implicit none implicit none
! subroutine arguments ! subroutine arguments
type(profiles_parameters), intent(in) :: params type(profiles_parameters), intent(inout) :: params
real(wp_), intent(in) :: factb real(wp_), intent(in) :: factb
type(profiles_data), intent(out) :: data real(wp_), intent(in) :: launch_pos(3)
type(profiles_data), intent(out) :: data
if (params%iprof == 0) then if (params%iprof == 0) then
! Analytical profiles ! Analytical profiles
@ -280,10 +282,10 @@ contains
! Set global variables ! Set global variables
if (params%iprof == 0) then if (params%iprof == 0) then
! Analytical profiles ! Analytical profiles
call set_profiles_an(data) call set_profiles_an(params, data)
else else
! Numerical profiles ! Numerical profiles
call set_profiles_spline(params, data) call set_profiles_spline(params, data, launch_pos)
end if end if
end subroutine init_profiles end subroutine init_profiles