Improve documentation build
- Documentation is not built anymore with the default `all` rule to improve portability. It must be built explicitly with `make docs`. - Font types are not specified to allow building on systems with a restricted set of fonts. - Syntax fixes in the documentation Markdown.
This commit is contained in:
parent
ddfc5db039
commit
10dc3ba3d0
5
Makefile
5
Makefile
@ -88,7 +88,7 @@ endif
|
||||
|
||||
.PHONY: all clean install docs
|
||||
|
||||
all: $(BINARIES) $(LIBRARIES) docs
|
||||
all: $(BINARIES) $(LIBRARIES)
|
||||
|
||||
# Remove all generated files
|
||||
clean:
|
||||
@ -102,6 +102,9 @@ install: $(BINARIES) $(LIBRARIES) $(SHAREDIR)/doc $(SHAREDIR)/gray.1
|
||||
install -Dm644 -t $(PREFIX)/share/doc/res $(SHAREDIR)/doc/res/*
|
||||
install -Dm644 -t $(PREFIX)/share/man/man1 $(SHAREDIR)/gray.1
|
||||
|
||||
# dependencies
|
||||
$(OBJDIR)/%.o: $(OBJDIR)/%.d
|
||||
|
||||
# GRAY binary
|
||||
$(GRAY): $(shell ./depend $(OBJDIR)/main.o) | $(BINDIR)
|
||||
$(LD) $(LDFLAGS) -o '$@' $^
|
||||
|
@ -106,9 +106,9 @@ references:
|
||||
issued: 2003-3-5, 2003-4-5
|
||||
|
||||
# Font
|
||||
mainfont: Libertinus Serif
|
||||
mathfont: Libertinus Math
|
||||
monofont: Fira Mono
|
||||
# mainfont: Libertinus Serif
|
||||
# mathfont: Libertinus Math
|
||||
# monofont: Fira Mono
|
||||
|
||||
# PDF output options
|
||||
classoptions:
|
||||
|
@ -20,11 +20,13 @@ $z=Z$.
|
||||
|
||||
In the complex eikonal framework, the a solution of the wave equation for the
|
||||
electric field is looked for in the form
|
||||
|
||||
$$
|
||||
{\bf E}({\bf x},t) =
|
||||
{\bf e}({\bf x}) E_0({\bf x})
|
||||
e^{-i k_0 S({\bf x}) + iωt}
|
||||
$$ {#eq:eikonal-ansatz}
|
||||
|
||||
such that it allows for Gaussian beam descriptions.
|
||||
In [@eq:eikonal-ansatz], $ω$ is the real frequency, $k_0 = ω/c$ the
|
||||
wavevector amplitude in vacuum, ${\bf e}({\bf x})$ the polarisation versor and
|
||||
@ -35,6 +37,7 @@ The function $S({\bf x})$ is the complex eikonal, $S = S_R({\bf x}) + i S_I
|
||||
propagation as in the geometric optics (GO), and the imaginary part $S_I({\bf
|
||||
x}) (<0)$ to the beam intensity profile shape, as it is apparent writing
|
||||
[@eq:eikonal-ansatz] as
|
||||
|
||||
$$
|
||||
{\bf E}({\bf x},t) =
|
||||
{\bf e}({\bf x}) E_0({\bf x})
|
||||
@ -50,6 +53,7 @@ the $\bar x$ axis lies in the horizontal plane (i.e., $z=\text{const}$), and
|
||||
two additional coordinate systems, $(\xi_w,\eta_w)$ and $(\xi_R,\eta_R)$ in the
|
||||
$(\bar x, \bar y)$ plane, rotated by the angles $φ_w$ and $φ_R$,
|
||||
respectively,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\bar x &= \xi_w \cos φ_w - \eta_w \sin φ_w
|
||||
@ -58,10 +62,12 @@ $$
|
||||
= \xi_R \sin φ_R + \eta_R \cos φ_R
|
||||
\end{aligned}
|
||||
$$ {#eq:phiwr}
|
||||
|
||||
In the $(\xi_w,\eta_w)$ and $(\xi_R,\eta_R)$ systems, the axes are aligned
|
||||
with the major and minor axes of the intensity and phase ellipses respectively,
|
||||
and the general astigmatic Gaussian beam in vacuum takes the simple form
|
||||
[@gaussian-beam]
|
||||
|
||||
$$
|
||||
E ({\bf x}) \propto
|
||||
\exp{\left[- \left(\frac{{\xi}_w^2}{w_\xi^2}
|
||||
@ -82,6 +88,7 @@ $w_{\xi,\eta}$, $R_{c\xi,\eta}$, $φ$ or alternatively by the beam waists
|
||||
$w_{0\xi,\eta}$, the waists $\bar z$ coordinates $d_{0\xi,\eta}$, and $φ$,
|
||||
where $R_{c\xi,\eta}$, $w_{\xi,\eta}$ are related to $d_{0\xi,\eta}$,
|
||||
$w_{0\xi,\eta}$ by the following equations:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
R_{cj} &= [({\bar z}- d_{0j})^2+z_{Rj}^2]/({\bar z}- d_{0j}) \\
|
||||
@ -102,6 +109,7 @@ in detail in [@gray].
|
||||
The "extended" rays obey to the following quasi-optical ray-tracing equations
|
||||
that are coupled together through an additional constraint in the form of a
|
||||
partial differential equation:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{d {\bf x}}{dσ} &=
|
||||
@ -111,24 +119,27 @@ $$
|
||||
\frac{∂ Λ}{∂ {\bf N}} &\cdot ∇ S_I = 0
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
where the function $Λ ({\bf x},{\bf k},ω)$ is the QO dispersion
|
||||
relation, which reads
|
||||
|
||||
$$
|
||||
Λ = N² - N_c²({\bf x}, N_\parallel, ω)
|
||||
- |∇ S_I|² + \frac{1}{2}(\mathbf{b} ⋅ ∇ S_I )^2
|
||||
\frac{∂² N_s²}{∂{N_\parallel}²} = 0
|
||||
$$ {#eq:eqlam}
|
||||
|
||||
being $\mathbf{b}=\mathbf{B}/B$, $N_\parallel = {\mathbf N} \cdot \mathbf{b}$,
|
||||
and $N_c({\bf x}, N_\parallel, ω)$ the solution of the cold dispersion relation
|
||||
for the considered mode.
|
||||
|
||||
In GRAY three choices for the integration variable $σ$ are available, i.e.:
|
||||
|
||||
1. the arclength along the trajectory $s$,
|
||||
2. the time $τ=ct$, and
|
||||
3. the real part of the eikonal function $S_R$.
|
||||
|
||||
The default option is the variable $s$ and the QO ray equations become:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\frac{d{\bf x}}{ds} &=
|
||||
@ -141,6 +152,7 @@ $$
|
||||
\end{aligned}
|
||||
$$ {#eq:qort}
|
||||
|
||||
|
||||
## Ray initial conditions
|
||||
|
||||
The QO ray equations [@eq:qort] are solved for $N_T= N_r \times N_\vartheta
|
||||
@ -170,6 +182,7 @@ z_{Rj}$, the ray distribution used for the QO ray-tracing.
|
||||
The launching coordinates of the central ray of the EC beam will be denoted
|
||||
either as $(x_0, y_0, z_0)$, or $(R_0, φ_0, Z_0)$, depending on the
|
||||
coordinate system used (cartesian or cylindrical)
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
x_0 &= R_0\cosφ_0 \\
|
||||
@ -177,8 +190,10 @@ $$
|
||||
z_0 &= Z_0.
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
and the launched wavevector $\bf N$ will have components $(N_{x0}, N_{y0},
|
||||
N_{z0})$, and $(N_{R0}, N_{φ 0}, N_{Z0})$, related by
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
N_{x0} &= N_{R0} \cosφ_0 - N_{φ 0} \sinφ_0, \\
|
||||
@ -192,6 +207,7 @@ $$
|
||||
|
||||
The poloidal and toroidal angles $α, β$ are defined in terms of the
|
||||
cylindrical components of the wavevector
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
N_{R0} &= -\cosβ \cosα, \\
|
||||
@ -199,7 +215,9 @@ $$
|
||||
N_{Z0} &= -\cosβ \sinα
|
||||
\end{aligned}
|
||||
$$ {#eq:ncyl}
|
||||
|
||||
with $-180° ≤ α ≤ 180°$, and $-90° ≤ β ≤ 90°$, so that
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\tanα &= N_{Z0}/N_{R0}, \\
|
||||
@ -221,10 +239,13 @@ This convention is the same used for the EC injection angles in ITER
|
||||
|
||||
The EC power $P$ is assumed to evolve along the ray trajectory obeying to the
|
||||
following equation
|
||||
|
||||
$$
|
||||
\frac{dP}{ds} = -α P,
|
||||
$$ {#eq:pincta}
|
||||
|
||||
where here $α$ is the absorption coefficient
|
||||
|
||||
$$
|
||||
α = 2 \frac{ω}{c} \frac {{\text{Im}}(Λ_w)}
|
||||
{|∂ Λ /∂ {\bf{N}}|} \biggr|_{Λ=0}
|
||||
@ -232,8 +253,10 @@ $$
|
||||
\frac {N_{\perp}} {|{∂ Λ}/{∂ {\bf N}|}} \biggr|_{Λ=0}
|
||||
= 2{{\text{Im}}(k_{\perp w})} \frac{v_{g\perp}} v_{g}.
|
||||
$$ {#eq:alpha}
|
||||
|
||||
being $N_{\perp w}$ (and $k_{\perp w}$) the perpendicular refractive index (and
|
||||
wave vector) solution of the relativistic dispersion relation for EC waves
|
||||
|
||||
$$
|
||||
Λ_w = N^2-N_{\parallel}^2-N_{\perp w}^2=0
|
||||
$$
|
||||
@ -244,11 +267,13 @@ described in [@dispersion].
|
||||
|
||||
Integration of [@eq:pincta] yields the local transmitted and deposited
|
||||
power in terms of the optical depth $τ= \int_0^{s}{α(s') d s'}$ as
|
||||
|
||||
$$
|
||||
P(s)=P_0 e^{-τ(s)},
|
||||
\quad \mathrm{and} \quad
|
||||
P_{abs} (s)=P_0 [1-e^{-τ}] ,
|
||||
$$
|
||||
|
||||
respectively, being $P_0$ the injected power.
|
||||
|
||||
The flux surface averaged absorbed power density $p(ρ)=dP_{abs}/dV$ is
|
||||
@ -256,9 +281,11 @@ computed as the the ratio between the power deposited within the volume $dV$
|
||||
between two adjacent flux surfaces and the volume itself. At each position
|
||||
along the ray trajectory (parametrized by $s$), the absorbed power density can
|
||||
be written in terms of the absorption coefficient as
|
||||
|
||||
$$
|
||||
p = P₀ α(s) e^{-τ(s)} \frac{δs}{δV}
|
||||
$$ {#eq:pav}
|
||||
|
||||
$δs$ being the ray length between two adjacent magnetic surfaces, and $δV$ the
|
||||
associated volume.
|
||||
|
||||
@ -267,17 +294,21 @@ associated volume.
|
||||
|
||||
Within the framework of the linear adjoint formulation, the flux surface
|
||||
averaged EC driven current density is given by
|
||||
|
||||
$$
|
||||
\langle J_{\parallel}\rangle = {\mathcal R}^* \, p
|
||||
$$ {#eq:jav}
|
||||
|
||||
where
|
||||
${\mathcal R}^*$ is a current drive efficiency, which can be expressed as a ratio
|
||||
between two integrals in momentum space
|
||||
|
||||
$$
|
||||
{\mathcal R}^*= \frac{e}{m c \nu_c} \frac{\langle B \rangle}{B_m}
|
||||
\frac{\int{d{\bf u} {\mathcal P}({\bf u}) \,
|
||||
\eta_{\bf u}({\bf u})}}{\int{d{\bf u} {\mathcal P}({\bf u}) }}
|
||||
$$ {#eq:effr}
|
||||
|
||||
where $\nu_c=4 \pi n e^4 Λ_c/(m^2 c^3)$ is the collision frequency, with
|
||||
$Λ_c$ the Coulomb logarithm, and $B_m$, $\langle B \rangle$ are the
|
||||
minimum value and the flux surface averaged value of the magnetic field on the
|
||||
@ -292,22 +323,28 @@ expression is related to the chosen ECCD model.
|
||||
|
||||
The flux surface average driven current density [@eq:jav] can be written as
|
||||
[@gray]
|
||||
|
||||
$$
|
||||
\langle J_{\parallel}\rangle =
|
||||
P_0 α(s) e^{-τ(s)} {\mathcal R}^*(s) \frac{δs}{δV}
|
||||
$$ {#eq:jrtav}
|
||||
|
||||
and the equation for the current evolution $I_{cd}$ along the ray trajectory as
|
||||
|
||||
$$
|
||||
\frac{dI_{cd}}{ds} =
|
||||
-{\mathcal R}^*(s)\frac{1}{2 \pi R_J } \frac{dP}{ds},
|
||||
$$
|
||||
|
||||
where $R_J(\psi)$ is an effective radius for the computation of the driven
|
||||
current
|
||||
|
||||
$$
|
||||
\frac{1}{R_J}
|
||||
= \langle \frac{1}{R^2} \rangle \frac{f(\psi)}{ \langle B\rangle}
|
||||
= \frac{ \langle {B_φ}/{R} \rangle}{ \langle B\rangle}
|
||||
$$
|
||||
|
||||
being $f(\psi) =B_φ R$ the poloidal flux function.
|
||||
|
||||
|
||||
@ -327,31 +364,37 @@ trapping is based on a local development.
|
||||
In GRAY, three outputs for the EC driven current density are given.
|
||||
The EC flux surface averaged driven *parallel* current density $\langle
|
||||
J_{\parallel}\rangle$, that is the output of the ECCD theory, defined as
|
||||
|
||||
$$
|
||||
\langle J_{\parallel}\rangle
|
||||
= \left \langle\frac{{\bf J}_{cd} \cdot {\bf B}}{B} \right \rangle
|
||||
= \frac{\langle {{\bf J}_{cd} \cdot {\bf B}}\rangle}
|
||||
{{\langle B^2 \rangle/}{\langle B \rangle}}.
|
||||
$$
|
||||
|
||||
a *toroidal* driven current density $J_φ$ defined as
|
||||
\begin{equation}
|
||||
|
||||
$$
|
||||
J_φ =\frac{δ I_{cd}} {δ A}
|
||||
\label{eq:jphia}
|
||||
\end{equation}
|
||||
$$ {#eq:jphia}
|
||||
|
||||
being $δ I_{cd}$ the current driven within the volume $δ V$ between
|
||||
two adjacent flux surfaces, and $δ A$ the poloidal area between the two
|
||||
adjacent flux surfaces, such that the total driven current is computed as
|
||||
$I_{cd}= \int J_φ dA$.
|
||||
Finally, an EC flux surface averaged driven current density $J_{cd}$ to be
|
||||
compared with transport code outputs
|
||||
|
||||
$$
|
||||
J_{cd} = \frac{\langle {\bf J} \cdot {\bf B} \rangle} {B_{ref}}
|
||||
$$ {#eq:jcd}
|
||||
|
||||
with the $B_{ref}$ value dependent on the transport code, i.e, $B_{ref}=B_0$
|
||||
for ASTRA and CRONOS, and $B_{ref}={\langle B \rangle}$ for JINTRAC.
|
||||
|
||||
The above definitions are related to each other in terms of flux surface
|
||||
averaged quantities, dependent on the equilibrium, i.e.,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
J_φ &= \frac{f(\psi)}{\langle B \rangle}
|
||||
@ -383,22 +426,27 @@ via [@eq:ratj] for the two $B_{ref}$ choices.
|
||||
The second approach applies also to non monotonic profiles. Two average
|
||||
quantities are computed for both power and current density profiles, namely,
|
||||
the average radius $\langle ρ \rangle_a$ $(a=p,j)$
|
||||
|
||||
$$
|
||||
\langle ρ \rangle_p = \frac{\int dV ρ p(ρ)}{\int dV p(ρ)} , \qquad
|
||||
\langle ρ \rangle_j = \frac{\int dA ρ | J_{φ}(ρ)|} {\int dA |J_{φ}(ρ)|}
|
||||
$$ {#eq:rav}
|
||||
|
||||
and average profile width ${δρ}_a$ defined in terms of the variance as
|
||||
|
||||
$$
|
||||
δ ρ_a = 2 \sqrt{2} \langle δ ρ \rangle_a
|
||||
\qquad \mathrm {with } \qquad
|
||||
\langle δ ρ \rangle_a^2 = \langle ρ^2 \rangle_a-(\langle ρ \rangle_a)^2
|
||||
$$ {#eq:drav}
|
||||
|
||||
Factor $\sqrt{8}$ is introduced to match with the definition of the full
|
||||
profile width in case of Gaussian profiles.
|
||||
Consistently with the above average definitions, we introduce suitable peak
|
||||
values $p_{0}$ and $J_{φ 0}$, corresponding to those of a Gaussian profile
|
||||
characterized by [@eq:rav;@eq:drav] and same total absorbed power $P_{abs}$ and
|
||||
driven current $I_{cd}$
|
||||
|
||||
$$
|
||||
p_0 = \frac{2}{\sqrt{\pi}} \frac{P_{abs}}{{ δ ρ}_p
|
||||
\left ({dV}/{d ρ}\right)_{\langle ρ \rangle_p}},
|
||||
@ -417,20 +465,23 @@ conductor is assumed for the reflecting surface, so that the full power of the
|
||||
incident beam is transferred to the reflected one. The vector refractive index
|
||||
${\bf N}_{\rm{refl}}$ and the unit electric field $\hat {\bf e}_{\rm{refl}}$ of
|
||||
the reflected wave are
|
||||
\begin{equation}
|
||||
|
||||
$$
|
||||
{\bf N}_{\rm{refl}} =
|
||||
{\bf N}_{\rm{in}} - 2 ({\bf N}_{\rm{in}}
|
||||
\cdot \hat {\bf n}) \hat {\bf n}, \qquad
|
||||
\hat {\bf e}_{\rm{refl}} =
|
||||
-\hat {\bf e}_{\rm{in}}
|
||||
+ 2 (\hat {\bf e}_{\rm{in}} \cdot \hat {\bf n}) \hat {\bf n},
|
||||
\end{equation}
|
||||
$$
|
||||
|
||||
being ${\bf N}_{\rm{in}}$ and $\hat {\bf e}_{\rm{in}}$ the vector refractive
|
||||
index and the unit electric field of the incoming wave, and $\hat {\bf n}$ the
|
||||
normal unit vector to the wall at the beam incidence point.
|
||||
|
||||
The Stokes parameter for the unit electric vector $\hat {\bf e}$ in vacuum are
|
||||
defined in the beam reference system $({\bar x},{\bar y},{\bar z})$ as
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
I &= \vert \hat e_{\bar x} \vert^2 + \vert \hat e_{\bar y} \vert^2 = 1 \\
|
||||
@ -439,7 +490,9 @@ $$
|
||||
V &= 2 \cdot {\rm Im} (\hat e_{\bar x} \hat e_{\bar y}^*).
|
||||
\end{aligned}
|
||||
$$ {#eq:stokes}
|
||||
|
||||
Alternatively, the two angles $\psi_p$ and $\chi_p$ can be used:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
Q &= \cos {2 \psi_p} \cos {2 \chi_p} \\
|
||||
@ -447,12 +500,14 @@ $$
|
||||
V &= \sin {2 \chi_p}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
which define respectively the major axis orientation and the ellipticity of the
|
||||
polarisation ellipse. The polarisation parameters of the reflected wave are
|
||||
used to compute the coupling with the Ordinary (OM) and Extraordinary (XM)
|
||||
modes at the vacuum-plasma interface before the calculation of the second pass
|
||||
in the plasma. At the second pass both modes are traced, taking into account
|
||||
that the power fraction coupled to each mode is
|
||||
|
||||
$$
|
||||
P_{\rm O,X} =
|
||||
\frac{P_{\rm in}}{2}
|
||||
|
@ -197,6 +197,7 @@ Table: **Plasma boundary** {#tbl:eqdisk-bound}
|
||||
### Toroidal Current Density
|
||||
|
||||
The toroidal current $J_T$ (A/m²) is related to $P'(ψ)$ and $FF'(ψ)$ through
|
||||
|
||||
$$
|
||||
J_T = R P'(ψ) + FF'(ψ) / R
|
||||
$$
|
||||
|
@ -16,6 +16,7 @@ modes and the `index_rt` is updated as:
|
||||
It follows that ordinary(extraordinary) modes respectively have odd(even)
|
||||
indices and the number of passes is given by $\lfloor \log₂(1 + \tt index\_rt)
|
||||
\rfloor$. For example, an `index_rt`=19 denotes the following chain:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\text{mode:} && O &→ X → O → O \\
|
||||
|
Loading…
Reference in New Issue
Block a user