document the wave polarisation convention
This commit is contained in:
parent
16ec1a1d06
commit
0ab0fcbf60
@ -42,7 +42,7 @@ in
|
||||
makefile2graph graphviz
|
||||
|
||||
# documentation
|
||||
help2man pandoc
|
||||
help2man pandoc librsvg
|
||||
haskellPackages.pandoc-crossref
|
||||
(texlive.combine {
|
||||
inherit (texlive) scheme-small xetex fontspec;
|
||||
|
@ -5,7 +5,7 @@ author:
|
||||
- L. Figini[^1]
|
||||
- A. Mariani[^1]
|
||||
- M. Guerini Rocco[^2]
|
||||
date: 'November 30, 2012. Updated: November 30, 2021'
|
||||
date: 'November 30, 2012. Updated: November 9, 2024'
|
||||
|
||||
lang: en-GB
|
||||
language: english
|
||||
@ -124,8 +124,8 @@ header-includes: |
|
||||
```{=latex}
|
||||
% Set font only if available
|
||||
\IfFontExistsTF{Libertinus Serif}{\setmainfont{Libertinus Serif}}{}
|
||||
\IfFontExistsTF{Libertinus Math}{\setmonofont{Libertinus Math}}{}
|
||||
\IfFontExistsTF{blabla}{\setsansfont{blablabla}}{}
|
||||
\IfFontExistsTF{Libertinus Math}{\setmathfont{Libertinus Math}}{}
|
||||
\IfFontExistsTF{Julia Mono}{\setmathfont{Julia Mono}}{}
|
||||
```
|
||||
...
|
||||
|
||||
|
118
doc/2.physics.md
118
doc/2.physics.md
@ -3,22 +3,22 @@
|
||||
## Coordinate Reference systems
|
||||
|
||||
A few sets of coordinate systems are used in the code. The reference system is
|
||||
the right handed cartesian orthogonal system $(x, y, z)$ with $z$ axis being
|
||||
the right handed Cartesian orthogonal system $(x, y, z)$ with $z$ axis being
|
||||
the tokamak symmetry axis. For the purpose of the physics analysis this
|
||||
coordinate system may be rotated around the $z-$axis so that the $x z$ plane
|
||||
contains the launching point, i.e., $z$ vertical, $x$ radially outward through
|
||||
the port center, and $y$ pointing in the counter clockwise direction when
|
||||
viewed from above.
|
||||
|
||||
In addition to the right handed cartesian orthogonal system specified above, we
|
||||
In addition to the right handed Cartesian orthogonal system specified above, we
|
||||
introduce also a right-handed cylindrical system $(R,φ,Z)$ with transformation
|
||||
from the cylindrical to the cartesian system given by $x= R\cosφ$, $y=R\sinφ$,
|
||||
from the cylindrical to the Cartesian system given by $x= R\cosφ$, $y=R\sinφ$,
|
||||
$z=Z$.
|
||||
|
||||
|
||||
## Quasi-optical approximation
|
||||
|
||||
In the complex eikonal framework, the a solution of the wave equation for the
|
||||
In the complex eikonal framework, a solution of the wave equation for the
|
||||
electric field is looked for in the form
|
||||
|
||||
$$
|
||||
@ -28,9 +28,9 @@ $$
|
||||
$$ {#eq:eikonal-ansatz}
|
||||
|
||||
such that it allows for Gaussian beam descriptions.
|
||||
In [@eq:eikonal-ansatz], $ω$ is the real frequency, $k_0 = ω/c$ the
|
||||
wavevector amplitude in vacuum, ${\bf e}({\bf x})$ the polarisation versor and
|
||||
$E_0({\bf x})$ the slowly varying wave amplitude.
|
||||
In [@eq:eikonal-ansatz], $ω$ is the real frequency, $k_0 = ω/c$ the wavevector
|
||||
amplitude in vacuum, ${\bf e}({\bf x})$ the normalised polarisation (Jones)
|
||||
vector and $E_0({\bf x})$ the slowly varying wave amplitude.
|
||||
|
||||
The function $S({\bf x})$ is the complex eikonal, $S = S_R({\bf x}) + i S_I
|
||||
({\bf x})$, in which the real part $S_R({\bf x})$ is related to the beam
|
||||
@ -456,16 +456,53 @@ $$
|
||||
$$ {#eq:pjgauss}
|
||||
|
||||
|
||||
## Reflection at inner wall and polarisation
|
||||
## Mode coupling and reflection at inner wall
|
||||
|
||||
The polarisation of the beam is used to compute the coupling to the Ordinary
|
||||
(O) and Extraordinary (X) plasma modes when the beam crosses the
|
||||
vacuum-plasma interface. The fraction of power converted into a mode is given
|
||||
by the coupling coefficient
|
||||
$$
|
||||
c_\text{mode} = (\hat{\mathbf e}_\text{mode}⋅\hat{\mathbf e})²,
|
||||
$$
|
||||
where $\hat{\mathbf e}_\text{mode},\hat{\mathbf e}$ are the plasma mode and
|
||||
beam Jones vectors, respectively. The mode vector is defined as the
|
||||
eigenvector of the cold plasma dielectric tensor in the low density limit.
|
||||
The beam vector at launch is computed from the polarisation ellipse parameters
|
||||
using the formula:
|
||||
$$
|
||||
\begin{aligned}
|
||||
\hat{e}₁ &= \cosχ\cosψ + i\sinχ\sinψ \\
|
||||
\hat{e}₂ &= \cosχ\sinψ - i\sinχ\cosψ
|
||||
\end{aligned}
|
||||
$$ {#eq:ellipse2field}
|
||||
|
||||
The following convention is assumed (illustrated in [@fig:ellipse]):
|
||||
|
||||
- $ψ$ is the angle between the $x$ axis and the major axis.
|
||||
|
||||
- $χ = \tan(b/a)$ where $a,b$ are ellipse major and minor semi-axes, respectively.
|
||||
|
||||
- A positive $ψ$ corresponds to an ellipse rotated counterclockwise in the
|
||||
$x∧y$ plane.
|
||||
|
||||
- A positive $χ$ corresponds to an ellipse traced clockwise in the $x∧y$ plane
|
||||
with the $z$ axis in the direction of the wave propagation. In other words:
|
||||
negative helicity (projection of spin angular momentum unto wavevector) or
|
||||
left handed wave (IEEE convention).
|
||||
|
||||
If the initial polarisation is not specified, 100% coupling to a given mode
|
||||
is assumed.
|
||||
|
||||
![Polarisation ellipse](res/ellipse.svg){#fig:ellipse}
|
||||
|
||||
A model for wave reflection on a smooth surface is included in GRAY. This is
|
||||
used to describe beam reflection on the inner wall of the tokamak in the cases
|
||||
where only partial absorption occurs at the first pass in the plasma. An ideal
|
||||
conductor is assumed for the reflecting surface, so that the full power of the
|
||||
incident beam is transferred to the reflected one. The vector refractive index
|
||||
${\bf N}_{\rm{refl}}$ and the unit electric field $\hat {\bf e}_{\rm{refl}}$ of
|
||||
the reflected wave are
|
||||
|
||||
used to describe the beam reflection on the inner wall of the tokamak in the
|
||||
cases where only partial absorption occurs at the first pass in the plasma.
|
||||
An ideal conductor is assumed for the reflecting surface, so that the full
|
||||
power of the incident beam is transferred to the reflected one. The vector
|
||||
refractive index ${\bf N}_{\rm{refl}}$ and the Jones vector $\hat {\bf
|
||||
e}_{\rm{refl}}$ of the reflected beam are
|
||||
$$
|
||||
{\bf N}_{\rm{refl}} =
|
||||
{\bf N}_{\rm{in}} - 2 ({\bf N}_{\rm{in}}
|
||||
@ -474,50 +511,23 @@ $$
|
||||
-\hat {\bf e}_{\rm{in}}
|
||||
+ 2 (\hat {\bf e}_{\rm{in}} \cdot \hat {\bf n}) \hat {\bf n},
|
||||
$$
|
||||
|
||||
being ${\bf N}_{\rm{in}}$ and $\hat {\bf e}_{\rm{in}}$ the vector refractive
|
||||
index and the unit electric field of the incoming wave, and $\hat {\bf n}$ the
|
||||
index and the Jones vector of the incoming wave, and $\hat {\bf n}$ the
|
||||
normal unit vector to the wall at the beam incidence point.
|
||||
|
||||
The Stokes parameter for the unit electric vector $\hat {\bf e}$ in vacuum are
|
||||
defined in the beam reference system $({\bar x},{\bar y},{\bar z})$ as
|
||||
The reflected beam Jones vector is again used to compute the coupling
|
||||
to the plasma modes at the second and successive pass, with potentially
|
||||
$2^{n-1}$ independent modes being traced after n reflections.
|
||||
|
||||
Note that the Jones vectors of the ordinary and extraordinary modes are
|
||||
orthogonal w.r.t. the standard Hermitian product: $\hat{\mathbf e}_{\rm
|
||||
O}⋅\hat{\mathbf e}_{\rm X}^* = 0$.
|
||||
From [@eq:ellipse2field] it then follows that these relations hold:
|
||||
$$
|
||||
\begin{aligned}
|
||||
I &= \vert \hat e_{\bar x} \vert^2 + \vert \hat e_{\bar y} \vert^2 = 1 \\
|
||||
Q &= \vert \hat e_{\bar x} \vert^2 - \vert \hat e_{\bar y} \vert^2 \\
|
||||
U &= 2 \cdot {\rm Re} (\hat e_{\bar x} \hat e_{\bar y}^*) \\
|
||||
V &= 2 \cdot {\rm Im} (\hat e_{\bar x} \hat e_{\bar y}^*).
|
||||
\end{aligned}
|
||||
$$ {#eq:stokes}
|
||||
|
||||
Alternatively, the two angles $\psi_p$ and $\chi_p$ can be used:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
Q &= \cos {2 \psi_p} \cos {2 \chi_p} \\
|
||||
U &= \sin {2 \psi_p} \cos {2 \chi_p} \\
|
||||
V &= \sin {2 \chi_p}
|
||||
ψ_{\rm O} &= ψ_{\rm X} + \frac{π}{2} \\
|
||||
χ_{\rm O} &= -χ_{\rm X} \\
|
||||
1 &= c_{\rm O} + c_{\rm X}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
which define respectively the major axis orientation and the ellipticity of the
|
||||
polarisation ellipse. The polarisation parameters of the reflected wave are
|
||||
used to compute the coupling with the Ordinary (OM) and Extraordinary (XM)
|
||||
modes at the vacuum-plasma interface before the calculation of the second pass
|
||||
in the plasma. At the second pass both modes are traced, taking into account
|
||||
that the power fraction coupled to each mode is
|
||||
|
||||
$$
|
||||
P_{\rm O,X} =
|
||||
\frac{P_{\rm in}}{2}
|
||||
(1 + Q_{\rm in} Q_{\rm O,X}
|
||||
+ U_{\rm in} U_{\rm O,X}
|
||||
+ V_{\rm in} V_{\rm O,X}).
|
||||
$$
|
||||
|
||||
Note that the polarisation vectors of OM and XM form an orthogonal base:
|
||||
$\psi_{p{\rm O}}=\psi_{p{\rm X}}+\pi/2$, $\chi_{p{\rm O}}=-\chi_{p{\rm X}}$ and
|
||||
as a consequence $Q_{\rm O}=-Q_{\rm X}$, $U_{\rm O}=-U_{\rm X}$, and $V_{\rm
|
||||
O}=-V_{\rm X}$, so that $P_{\rm O} + P_{\rm X} = P_{\rm in}$, i.e. all the
|
||||
incoming power is coupled to the plasma.
|
||||
with the latter meaning all the incoming power is coupled to the plasma.
|
||||
|
@ -113,14 +113,21 @@ Antenna/beam launcher parameters
|
||||
- *MODE_X*, extraordinary (X)
|
||||
|
||||
**psi** (default: **0.0**)
|
||||
: ψ (deg), angle between the principal axes of the polarisation
|
||||
ellipse and the (x,y) axes
|
||||
: ψ (deg), angle between the x and the major axis of the
|
||||
polarisation ellipse. ψ∈[-90, 90] and is positive for
|
||||
rotating counterclockwise.
|
||||
|
||||
Note: only used in alternative to *iox* if *ipol=.true.*.
|
||||
|
||||
**chi** (default: **0.0**)
|
||||
: χ=atan(ε) (deg), where ε is the ellipticity of the polarisation
|
||||
ellipse
|
||||
: χ (deg), angle between the principal axes of the polarisation
|
||||
ellipse. χ∈[-45, 45] and is defined by tan(χ) = b/a, where
|
||||
a,b are the major,minor semi-axis, respective.
|
||||
|
||||
χ>0 means the ellipse is traced clockwise in the x∧y plane
|
||||
with the z axis in the direction of the wave propagation.
|
||||
In other words: negative helicity (projection of spin angular
|
||||
momentum unto wavevector) or left handed wave (IEEE convention).
|
||||
|
||||
Note: only used in alternative to *iox* if *ipol=.true.*.
|
||||
|
||||
|
367
doc/res/ellipse.svg
Normal file
367
doc/res/ellipse.svg
Normal file
@ -0,0 +1,367 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
width="269.48"
|
||||
height="238.78"
|
||||
version="1.1"
|
||||
viewBox="0 0 269.48 238.78"
|
||||
id="svg21"
|
||||
sodipodi:docname="ellipse-new.svg"
|
||||
inkscape:version="1.3.2 (091e20ef0f, 2023-11-25)"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:svg="http://www.w3.org/2000/svg">
|
||||
<sodipodi:namedview
|
||||
id="namedview21"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#000000"
|
||||
borderopacity="0.25"
|
||||
inkscape:showpageshadow="2"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pagecheckerboard="0"
|
||||
inkscape:deskcolor="#d1d1d1"
|
||||
inkscape:zoom="1.881902"
|
||||
inkscape:cx="118.49713"
|
||||
inkscape:cy="103.08719"
|
||||
inkscape:window-width="1155"
|
||||
inkscape:window-height="1042"
|
||||
inkscape:window-x="16"
|
||||
inkscape:window-y="16"
|
||||
inkscape:window-maximized="1"
|
||||
inkscape:current-layer="svg21" />
|
||||
<defs
|
||||
id="defs6">
|
||||
<marker
|
||||
id="marker2"
|
||||
overflow="visible"
|
||||
markerHeight="1"
|
||||
markerWidth="1"
|
||||
orient="auto-start-reverse"
|
||||
preserveAspectRatio="xMidYMid"
|
||||
viewBox="0 0 1 1">
|
||||
<path
|
||||
transform="scale(-.5)"
|
||||
d="m0 0 5-5-17.5 5 17.5 5z"
|
||||
fill="context-stroke"
|
||||
fill-rule="evenodd"
|
||||
id="path1" />
|
||||
</marker>
|
||||
<marker
|
||||
id="marker43"
|
||||
overflow="visible"
|
||||
markerHeight="1"
|
||||
markerWidth="1"
|
||||
orient="auto-start-reverse"
|
||||
preserveAspectRatio="xMidYMid"
|
||||
viewBox="0 0 1 1">
|
||||
<path
|
||||
transform="scale(-.5)"
|
||||
d="m0 0 5-5-17.5 5 17.5 5z"
|
||||
fill="context-stroke"
|
||||
fill-rule="evenodd"
|
||||
id="path2" />
|
||||
</marker>
|
||||
<marker
|
||||
id="marker42"
|
||||
overflow="visible"
|
||||
markerHeight="1"
|
||||
markerWidth="1"
|
||||
orient="auto-start-reverse"
|
||||
preserveAspectRatio="xMidYMid"
|
||||
viewBox="0 0 1 1">
|
||||
<path
|
||||
transform="scale(-.5)"
|
||||
d="m0 0 5-5-17.5 5 17.5 5z"
|
||||
fill="context-stroke"
|
||||
fill-rule="evenodd"
|
||||
id="path3" />
|
||||
</marker>
|
||||
<marker
|
||||
id="marker35"
|
||||
overflow="visible"
|
||||
markerHeight="1"
|
||||
markerWidth="1"
|
||||
orient="auto-start-reverse"
|
||||
preserveAspectRatio="xMidYMid"
|
||||
viewBox="0 0 1 1">
|
||||
<path
|
||||
transform="scale(-.5)"
|
||||
d="m0 0 5-5-17.5 5 17.5 5z"
|
||||
fill="context-stroke"
|
||||
fill-rule="evenodd"
|
||||
id="path4" />
|
||||
</marker>
|
||||
<marker
|
||||
id="DartArrow"
|
||||
overflow="visible"
|
||||
markerHeight="1"
|
||||
markerWidth="1"
|
||||
orient="auto-start-reverse"
|
||||
preserveAspectRatio="xMidYMid"
|
||||
viewBox="0 0 1 1">
|
||||
<path
|
||||
transform="scale(-.5)"
|
||||
d="m0 0 5-5-17.5 5 17.5 5z"
|
||||
fill="context-stroke"
|
||||
fill-rule="evenodd"
|
||||
id="path5" />
|
||||
</marker>
|
||||
<marker
|
||||
id="marker2-7"
|
||||
overflow="visible"
|
||||
markerHeight="1"
|
||||
markerWidth="1"
|
||||
orient="auto-start-reverse"
|
||||
preserveAspectRatio="xMidYMid"
|
||||
viewBox="0 0 1 1">
|
||||
<path
|
||||
transform="scale(-.5)"
|
||||
d="m0 0 5-5-17.5 5 17.5 5z"
|
||||
fill="context-stroke"
|
||||
fill-rule="evenodd"
|
||||
id="path6" />
|
||||
</marker>
|
||||
</defs>
|
||||
<g
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
id="g9">
|
||||
<text
|
||||
transform="scale(.99979 1.0002)"
|
||||
x="175.37907"
|
||||
y="118.1233"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
xml:space="preserve"
|
||||
id="text6"><tspan
|
||||
x="175.37907"
|
||||
y="118.1233"
|
||||
fill="#02709c"
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
id="tspan6">ψ</tspan></text>
|
||||
<text
|
||||
transform="scale(.99979 1.0002)"
|
||||
x="81.71257"
|
||||
y="158.67409"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
xml:space="preserve"
|
||||
id="text7"><tspan
|
||||
x="81.71257"
|
||||
y="158.67409"
|
||||
fill="#f97306"
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
id="tspan7">χ</tspan></text>
|
||||
<text
|
||||
transform="scale(.99979 1.0002)"
|
||||
x="150.09697"
|
||||
y="167.58904"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
xml:space="preserve"
|
||||
id="text8"><tspan
|
||||
x="150.09697"
|
||||
y="167.58904"
|
||||
fill="#f97306"
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
id="tspan8">b</tspan></text>
|
||||
<text
|
||||
transform="scale(.99979 1.0002)"
|
||||
x="55.318287"
|
||||
y="146.13136"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
xml:space="preserve"
|
||||
id="text9"><tspan
|
||||
x="55.318287"
|
||||
y="146.13136"
|
||||
fill="#f97306"
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
id="tspan9">a</tspan></text>
|
||||
</g>
|
||||
<g
|
||||
fill="none"
|
||||
stroke-linejoin="bevel"
|
||||
id="g11">
|
||||
<path
|
||||
d="m130.12 6v232.3"
|
||||
marker-start="url(#DartArrow)"
|
||||
stroke="#000"
|
||||
stroke-linecap="round"
|
||||
stroke-opacity=".88235"
|
||||
stroke-width=".96"
|
||||
id="path9" />
|
||||
<path
|
||||
d="m263.48 124.36h-263"
|
||||
marker-start="url(#marker35)"
|
||||
stroke="#000"
|
||||
stroke-linecap="round"
|
||||
stroke-opacity=".88235"
|
||||
stroke-width=".96"
|
||||
id="path10" />
|
||||
<path
|
||||
d="m104.03 60.298 25.663 63.519"
|
||||
stroke="#bdbdbd"
|
||||
stroke-linecap="square"
|
||||
stroke-width="1.44"
|
||||
style="paint-order:stroke fill markers"
|
||||
id="path11" />
|
||||
</g>
|
||||
<g
|
||||
stroke-linecap="square"
|
||||
id="g14">
|
||||
<path
|
||||
d="m166.34 124.38a36.331 36.331 0 0 0-2.688-14.289l-33.639 13.725z"
|
||||
fill="#02709c"
|
||||
fill-opacity=".51765"
|
||||
fill-rule="evenodd"
|
||||
stroke-width=".90828"
|
||||
id="path12" />
|
||||
<path
|
||||
d="m73.602 169.44a36.331 36.331 0 0 0-1.785-21.794l-33.639 13.725z"
|
||||
fill="#f97306"
|
||||
fill-opacity=".52"
|
||||
fill-rule="evenodd"
|
||||
stroke-width=".90828"
|
||||
id="path13" />
|
||||
<path
|
||||
d="m73.335 169.2a36.331 36.331 0 0 0-0.0427-16.322"
|
||||
fill="none"
|
||||
marker-end="url(#marker42)"
|
||||
stroke="#f97306"
|
||||
stroke-width=".90816"
|
||||
id="path14" />
|
||||
</g>
|
||||
<path
|
||||
d="m38.178 161.37 117.28 26.504"
|
||||
fill="#f97306"
|
||||
fill-opacity=".52"
|
||||
fill-rule="evenodd"
|
||||
stroke="#bdbdbd"
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="bevel"
|
||||
stroke-width="1.44"
|
||||
style="paint-order:stroke fill markers"
|
||||
id="path15" />
|
||||
<g
|
||||
fill="none"
|
||||
id="g19">
|
||||
<g
|
||||
stroke-linejoin="bevel"
|
||||
stroke-width="1.44"
|
||||
id="g18">
|
||||
<path
|
||||
d="m221.41 87.341-91.616 37.015"
|
||||
stroke="#bdbdbd"
|
||||
stroke-linecap="square"
|
||||
style="paint-order:stroke fill markers"
|
||||
id="path16" />
|
||||
<path
|
||||
d="m129.79 124.36-91.616 37.015"
|
||||
stroke="#f97306"
|
||||
stroke-linecap="round"
|
||||
style="paint-order:stroke fill markers"
|
||||
id="path17" />
|
||||
<path
|
||||
d="m129.79 124.36 25.663 63.519"
|
||||
stroke="#f97306"
|
||||
stroke-linecap="square"
|
||||
style="paint-order:stroke fill markers"
|
||||
id="path18" />
|
||||
</g>
|
||||
<ellipse
|
||||
transform="rotate(158)"
|
||||
cx="-74.162"
|
||||
cy="-163.5"
|
||||
rx="98.811"
|
||||
ry="68.508"
|
||||
stroke="#01709c"
|
||||
stroke-width="1.44"
|
||||
id="ellipse18" />
|
||||
<path
|
||||
d="m166.34 123.82a36.331 36.331 0 0 0-0.92734-8.7385"
|
||||
marker-end="url(#marker43)"
|
||||
stroke="#01709c"
|
||||
stroke-linecap="square"
|
||||
stroke-width=".90816"
|
||||
id="path19" />
|
||||
</g>
|
||||
<text
|
||||
transform="scale(.99979 1.0002)"
|
||||
x="251.976"
|
||||
y="138.61607"
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
xml:space="preserve"
|
||||
id="text19"><tspan
|
||||
x="251.976"
|
||||
y="138.61607"
|
||||
fill="#000000"
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
id="tspan19">x</tspan></text>
|
||||
<text
|
||||
transform="scale(.99979 1.0002)"
|
||||
x="113.74474"
|
||||
y="19.958412"
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
xml:space="preserve"
|
||||
id="text20"><tspan
|
||||
x="113.74474"
|
||||
y="19.958412"
|
||||
fill="#000000"
|
||||
font-family="'Libertinus Serif'"
|
||||
font-size="16px"
|
||||
font-style="italic"
|
||||
stroke-width=".64013"
|
||||
style="font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal"
|
||||
id="tspan20">y</tspan></text>
|
||||
<path
|
||||
d="m 182.12056,54.142472 2.3128,0.79999"
|
||||
fill-opacity="0.51765"
|
||||
fill-rule="evenodd"
|
||||
marker-end="url(#marker2)"
|
||||
stroke="#01709c"
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="bevel"
|
||||
stroke-width="1.44"
|
||||
style="paint-order:stroke fill markers"
|
||||
id="path20" />
|
||||
<path
|
||||
d="m 75.368217,192.67564 -0.74963,-0.29058"
|
||||
fill-opacity="0.51765"
|
||||
fill-rule="evenodd"
|
||||
marker-end="url(#marker2-7)"
|
||||
stroke="#01709c"
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="bevel"
|
||||
stroke-width="1.44"
|
||||
style="paint-order:stroke fill markers"
|
||||
id="path21" />
|
||||
</svg>
|
After Width: | Height: | Size: 11 KiB |
@ -3,6 +3,12 @@
|
||||
box-sizing: border-box;
|
||||
}
|
||||
|
||||
/* Justify all text */
|
||||
body {
|
||||
text-align: justify;
|
||||
hypens: auto;
|
||||
}
|
||||
|
||||
|
||||
/* Make headings smaller */
|
||||
h1 { font-size: 1.8em }
|
||||
@ -39,10 +45,15 @@ h3:hover > .header-section-number { opacity: 0; }
|
||||
/* Fix spacing of numbered equations */
|
||||
td .katex-display { margin: 0 }
|
||||
|
||||
/* Fix equations width */
|
||||
div[id^="eq"] table { width: 100%; }
|
||||
|
||||
/* Center the title */
|
||||
header { text-align: center }
|
||||
|
||||
/* Center figures */
|
||||
figure { text-align: center }
|
||||
|
||||
/* Inline the authors */
|
||||
header .author {
|
||||
display: inline-block;
|
||||
@ -95,7 +106,7 @@ nav {
|
||||
color: #d0d6e2;
|
||||
padding: 1.2em;
|
||||
padding-left: 0;
|
||||
overflow-y: scroll;
|
||||
overflow-y: auto;
|
||||
}
|
||||
nav a:link { text-decoration: none }
|
||||
nav a:link, a:visited { color: #d0d6e2 }
|
||||
|
@ -17,33 +17,41 @@ contains
|
||||
! polarisation ellipse angles ψ, χ
|
||||
!
|
||||
! Notes:
|
||||
! - ψ∈[-π/2, π/2] is the angle between the x and the major axis
|
||||
! - ψ∈[-π/2, π/2] is the angle between the x and the major axis.
|
||||
!
|
||||
! - χ∈[-π/4, π/4] is defined by tan(χ) = b/a, where a,b are the
|
||||
! major,minor semi-axis, respectively; χ>0 for positive helicity
|
||||
! (left-handed wave), χ<0 for negative helicity (right-handed wave).
|
||||
! major,minor semi-axis, respectively.
|
||||
!
|
||||
! - χ>0 means the ellipse is traced clockwise in the x∧y plane
|
||||
! with the z axis in the direction of the wave propagation.
|
||||
! In other words: negative helicity (projection of spin angular
|
||||
! momentum unto wavevector) or left handed wave (IEEE convention).
|
||||
!
|
||||
! - ψ>0 rotates the ellipse counterclockwise
|
||||
|
||||
! subroutine arguments
|
||||
real(wp_), intent(in) :: psi, chi
|
||||
complex(wp_), intent(out) :: e_x(:), e_y(:)
|
||||
|
||||
! The Eikonal ansatz is:
|
||||
! Consider a plane wave with the electric field given as
|
||||
!
|
||||
! E̅(r̅, t) = Re e̅(r̅) exp(-ik₀S(r̅) + iωt)
|
||||
! E̅(r̅, t) = Re e̅(r̅) exp(ik̅⋅r̅ - iωt)
|
||||
!
|
||||
! where e̅(r̅) = [|e₁|exp(iφ₁), |e₂|exp(iφ₂), 0], since the wave
|
||||
! is transversal in vacuum. At a fixed position r̅=0, ignoring
|
||||
! the third component, we have:
|
||||
! where k̅ = k₀z and e̅(r̅) = [|e₁|exp(iφ₁), |e₂|exp(iφ₂), 0],
|
||||
! since the wave is transversal in a vacuum. At a fixed position
|
||||
! r̅=0, ignoring the third component, we have:
|
||||
!
|
||||
! E̅(0, t) = [|e₁|cos(φ₁ + ωt), |e₂|cos(φ₂ + ωt)]
|
||||
! = [|e₁|cos(φ₁)cos(ωt) - |e₁|sin(φ₁)sin(ωt),
|
||||
! |e₂|cos(φ₂)cos(ωt) - |e₂|sin(φ₂)sin(ωt)]
|
||||
! E̅(0, t) = [|e₁|cos(φ₁ - ωt), |e₂|cos(φ₂ - ωt)]
|
||||
! = [|e₁|cos(φ₁)cos(ωt) + |e₁|sin(φ₁)sin(ωt),
|
||||
! |e₂|cos(φ₂)cos(ωt) + |e₂|sin(φ₂)sin(ωt)]
|
||||
!
|
||||
! Then, we compare this to the parametric equation of
|
||||
! an ellipse rotated by ψ through the origin,
|
||||
! Then, we compare this to the parametric equation of an ellipse
|
||||
! rotated by ψ through the origin (traced in the same direction
|
||||
! as for the electric field),
|
||||
!
|
||||
! P̅(t) = R(ψ) [acos(ωt), bsin(ωt)]
|
||||
! = [cos(ψ)a⋅cos(ωt), -sin(ψ)b⋅sin(ωt),
|
||||
! sin(ψ)a⋅cos(ωt), cos(ψ)b⋅sin(ωt)]
|
||||
! P̅(t) = R(ψ) [a⋅cos(ωt), -b⋅sin(ωt)]
|
||||
! = [cos(ψ)a⋅cos(ωt) +sin(ψ)b⋅sin(ωt),
|
||||
! sin(ψ)a⋅cos(ωt) -cos(ψ)b⋅sin(ωt)]
|
||||
!
|
||||
! at ωt=0 and ωt=π/2, so:
|
||||
!
|
||||
@ -76,6 +84,7 @@ contains
|
||||
!
|
||||
e_x = cosd(chi)*cosd(psi) + im * sind(chi)*sind(psi)
|
||||
e_y = cosd(chi)*sind(psi) - im * sind(chi)*cosd(psi)
|
||||
|
||||
end subroutine ellipse_to_field
|
||||
|
||||
|
||||
@ -118,17 +127,27 @@ contains
|
||||
!
|
||||
chi = asind(imag(2 * e_x * conjg(e_y))) / 2
|
||||
psi = atan2d(real(2 * e_x * conjg(e_y)), abs(e_x)**2 - abs(e_y)**2) / 2
|
||||
|
||||
end subroutine field_to_ellipse
|
||||
|
||||
|
||||
pure subroutine pol_limit(N, B, Bres, sox, e_x, e_y)
|
||||
! Computes the Jones vectors of the cold plasma dispersion
|
||||
! relation in the limit of vanishing electron density
|
||||
!
|
||||
! Note: the Jones vectors are given in the local beam frame,
|
||||
! that is, the z axis is aligned with the wave vector and x axis
|
||||
! lies in the tokamak equatorial plane.
|
||||
! This allows to directly compare the beam polarisation with
|
||||
! the plasma modes Jones vectors to obtain the power couplings.
|
||||
! Notes:
|
||||
! - The Jones vectors are given in the local beam frame,
|
||||
! that is, the z axis is aligned with the wave vector
|
||||
! and the x axis lies in the tokamak equatorial plane.
|
||||
! This allows to directly compare the beam polarisation with
|
||||
! the plasma modes Jones vectors to obtain the power couplings.
|
||||
!
|
||||
! - The dielectric tensor is obtained using the convention
|
||||
!
|
||||
! E̅(r̅, t) = ∫ d³k dω/(2π)⁴ E̅(k̅, ω) exp(ik̅⋅r̅ - iωt)
|
||||
!
|
||||
! for the Fourier transform. This is commonplace, but it's
|
||||
! the opposite of the eikonal ansatz, so the Jones vector
|
||||
|
||||
! subroutine arguments
|
||||
real(wp_), intent(in) :: N(3) ! N̅ refractive index
|
||||
@ -287,6 +306,7 @@ contains
|
||||
e = matmul(R, e)
|
||||
e_x = e(1)
|
||||
e_y = e(2)
|
||||
|
||||
end subroutine pol_limit
|
||||
|
||||
end module polarization
|
||||
|
Loading…
Reference in New Issue
Block a user