2024-03-12 16:42:19 +01:00
|
|
|
|
! This module contains subroutines to convert between different descriptions
|
|
|
|
|
! of the wave polarisation and to compute the polarisation of the plasma modes
|
2015-11-18 17:34:33 +01:00
|
|
|
|
module polarization
|
2024-01-27 12:09:56 +01:00
|
|
|
|
|
2024-03-12 16:42:19 +01:00
|
|
|
|
use const_and_precisions, only : wp_, pi, im
|
|
|
|
|
|
2024-01-27 12:09:56 +01:00
|
|
|
|
implicit none
|
|
|
|
|
|
2024-03-12 16:42:19 +01:00
|
|
|
|
private
|
|
|
|
|
public ellipse_to_field, field_to_ellipse ! Converting between descriptions
|
|
|
|
|
public pol_limit ! Plasma modes polarisations
|
2015-11-18 17:34:33 +01:00
|
|
|
|
|
|
|
|
|
contains
|
2024-03-12 16:42:19 +01:00
|
|
|
|
|
|
|
|
|
pure subroutine ellipse_to_field(psi, chi, e_x, e_y)
|
|
|
|
|
! Computes the normalised Jones vector from the
|
|
|
|
|
! polarisation ellipse angles ψ, χ
|
|
|
|
|
!
|
|
|
|
|
! Notes:
|
|
|
|
|
! - ψ∈[-π/2, π/2] is the angle between the x and the major axis
|
|
|
|
|
! - χ∈[-π/4, π/4] is defined by tan(χ) = b/a, where a,b are the
|
|
|
|
|
! major,minor semi-axis, respectively; χ>0 for positive helicity
|
|
|
|
|
! (left-handed wave), χ<0 for negative helicity (right-handed wave).
|
|
|
|
|
|
|
|
|
|
! subroutine arguments
|
|
|
|
|
real(wp_), intent(in) :: psi, chi
|
|
|
|
|
complex(wp_), intent(out) :: e_x(:), e_y(:)
|
|
|
|
|
|
|
|
|
|
! The Eikonal ansatz is:
|
|
|
|
|
!
|
|
|
|
|
! E̅(r̅, t) = Re e̅(r̅) exp(-ik₀S(r̅) + iωt)
|
|
|
|
|
!
|
|
|
|
|
! where e̅(r̅) = [|e₁|exp(iφ₁), |e₂|exp(iφ₂), 0], since the wave
|
|
|
|
|
! is transversal in vacuum. At a fixed position r̅=0, ignoring
|
|
|
|
|
! the third component, we have:
|
|
|
|
|
!
|
|
|
|
|
! E̅(0, t) = [|e₁|cos(φ₁ + ωt), |e₂|cos(φ₂ + ωt)]
|
|
|
|
|
! = [|e₁|cos(φ₁)cos(ωt) - |e₁|sin(φ₁)sin(ωt),
|
|
|
|
|
! |e₂|cos(φ₂)cos(ωt) - |e₂|sin(φ₂)sin(ωt)]
|
|
|
|
|
!
|
|
|
|
|
! Then, we compare this to the parametric equation of
|
|
|
|
|
! an ellipse rotated by ψ through the origin,
|
|
|
|
|
!
|
|
|
|
|
! P̅(t) = R(ψ) [acos(ωt), bsin(ωt)]
|
|
|
|
|
! = [cos(ψ)a⋅cos(ωt), -sin(ψ)b⋅sin(ωt),
|
|
|
|
|
! sin(ψ)a⋅cos(ωt), cos(ψ)b⋅sin(ωt)]
|
|
|
|
|
!
|
|
|
|
|
! at ωt=0 and ωt=π/2, so:
|
|
|
|
|
!
|
|
|
|
|
! 1. |e₁|cos(φ₁) = a⋅cos(ψ)
|
|
|
|
|
! 2. |e₂|cos(φ₂) = a⋅sin(ψ)
|
|
|
|
|
! 3. |e₁|sin(φ₁) = b⋅sin(ψ)
|
|
|
|
|
! 4. |e₂|sin(φ₂) = -b⋅cos(ψ)
|
|
|
|
|
!
|
|
|
|
|
! From 1²+3² and 2²+4² we have
|
|
|
|
|
!
|
|
|
|
|
! |e₁|² = a²cos(ψ)²+b²sin(ψ)²
|
|
|
|
|
! |e₂|² = a²sin(ψ)²+b²cos(ψ)²
|
|
|
|
|
!
|
|
|
|
|
! ⇒ |e₁|² + |e₂|² = a² + b²
|
|
|
|
|
!
|
|
|
|
|
! Assuming e̅ is normalised, that is e̅⋅e̅*=|e₁|²+|e₂|²=1,
|
|
|
|
|
! we have a²+b²=1, so we can define a=cos(χ), b=sin(χ).
|
|
|
|
|
!
|
|
|
|
|
! We can then rewrite:
|
|
|
|
|
!
|
|
|
|
|
! 1. Re e₁ = cos(χ)cos(ψ)
|
|
|
|
|
! 2. Re e₂ = cos(χ)sin(ψ)
|
|
|
|
|
! 3. Im e₁ = +sin(χ)sin(ψ)
|
|
|
|
|
! 4. Im e₂ = -sin(χ)cos(ψ)
|
|
|
|
|
!
|
|
|
|
|
! from which:
|
|
|
|
|
!
|
|
|
|
|
! e₁ = cos(χ)cos(ψ) + i⋅sin(χ)sin(ψ)
|
|
|
|
|
! e₂ = cos(χ)sin(ψ) - i⋅sin(χ)cos(ψ)
|
|
|
|
|
!
|
|
|
|
|
e_x = cosd(chi)*cosd(psi) + im * sind(chi)*sind(psi)
|
|
|
|
|
e_y = cosd(chi)*sind(psi) - im * sind(chi)*cosd(psi)
|
|
|
|
|
end subroutine ellipse_to_field
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pure subroutine field_to_ellipse(e_x, e_y, psi, chi)
|
|
|
|
|
! Computes the polarisation ellipse angles ψ, χ
|
|
|
|
|
! from the normalised Jones vector
|
|
|
|
|
|
|
|
|
|
! subroutine arguments
|
|
|
|
|
complex(wp_), intent(in) :: e_x, e_y
|
|
|
|
|
real(wp_), intent(out) :: psi, chi
|
|
|
|
|
|
|
|
|
|
! First, to make the map (ψ, χ) → unit ellipse
|
|
|
|
|
! unique we restricted its domain to
|
|
|
|
|
! [-π/2, π/2]×[-π/4, π/4]. Then, starting from
|
|
|
|
|
!
|
|
|
|
|
! e₁ = cos(χ)cos(ψ) + i⋅sin(χ)sin(ψ)
|
|
|
|
|
! e₂ = cos(χ)sin(ψ) - i⋅sin(χ)cos(ψ)
|
|
|
|
|
!
|
|
|
|
|
! (see `ellipse_to_field`), we obtain χ doing
|
|
|
|
|
!
|
|
|
|
|
! 2e₁e₂* = cos(2χ)sin(2ψ) + i sin(2χ)
|
|
|
|
|
! ⇒ χ = ½ asin(Im(2e₁e₂*))
|
|
|
|
|
!
|
|
|
|
|
! This gives the angle χ in the correct interval since
|
|
|
|
|
! the range of asin is [-π/2, π/2] by definition.
|
|
|
|
|
!
|
|
|
|
|
! For ψ notice that:
|
|
|
|
|
!
|
|
|
|
|
! e⋅e = e₁²-e₂² = cos(χ)²cos(2ψ) - sin(χ)²cos(2ψ)
|
|
|
|
|
! = cos(2χ)cos(2ψ)
|
|
|
|
|
!
|
|
|
|
|
! Combining this to the previous expression:
|
|
|
|
|
!
|
|
|
|
|
! tan(2ψ) = Re(2e₁e₂*)/(e⋅e)
|
|
|
|
|
!
|
|
|
|
|
! Finally, since atan2 gives the principal branch
|
|
|
|
|
! (-π, π], ψ is given within the correct interval as:
|
|
|
|
|
!
|
|
|
|
|
! ψ = ½ atan2(Re(2e₁e₂*), (e⋅e))
|
|
|
|
|
!
|
|
|
|
|
chi = asind(imag(2 * e_x * conjg(e_y))) / 2
|
|
|
|
|
psi = atan2d(real(2 * e_x * conjg(e_y)), abs(e_x)**2 - abs(e_y)**2) / 2
|
|
|
|
|
end subroutine field_to_ellipse
|
|
|
|
|
|
|
|
|
|
pure subroutine pol_limit(N, B, Bres, sox, e_x, e_y)
|
|
|
|
|
! Computes the Jones vectors of the cold plasma dispersion
|
|
|
|
|
! relation in the limit of vanishing electron density
|
|
|
|
|
!
|
|
|
|
|
! Note: the Jones vectors are given in the local beam frame,
|
|
|
|
|
! that is, the z axis is aligned with the wave vector and x axis
|
|
|
|
|
! lies in the tokamak equatorial plane.
|
|
|
|
|
! This allows to directly compare the beam polarisation with
|
|
|
|
|
! the plasma modes Jones vectors to obtain the power couplings.
|
|
|
|
|
|
|
|
|
|
! subroutine arguments
|
|
|
|
|
real(wp_), intent(in) :: N(3) ! N̅ refractive index
|
|
|
|
|
real(wp_), intent(in) :: B(3) ! B̅ magnetic field
|
|
|
|
|
real(wp_), intent(in) :: Bres ! resonant magnetic field
|
|
|
|
|
! sign of polarisation mode: -1 ⇒ O, +1 ⇒ X
|
|
|
|
|
integer, intent(in) :: sox
|
|
|
|
|
! Components of the Jones vector
|
|
|
|
|
complex(wp_), intent(out) :: e_x, e_y
|
|
|
|
|
|
|
|
|
|
! local variables
|
|
|
|
|
real(wp_) :: Y, Npl, delta
|
|
|
|
|
real(wp_) :: z(3), R(2,2), gamma
|
|
|
|
|
complex(wp_) :: f, e(2)
|
|
|
|
|
|
|
|
|
|
Y = norm2(B) / Bres ! Y = ω_ce/ω
|
|
|
|
|
Npl = dot_product(N, B) / norm2(B) ! N∥ = N̅⋅B̅/B
|
|
|
|
|
|
|
|
|
|
! Coordinate systems in use
|
|
|
|
|
! 1. plasma basis, definition of dielectric tensor
|
|
|
|
|
! x̅ = N̅⊥/N⊥
|
|
|
|
|
! y̅ = B̅/B×N̅/N
|
|
|
|
|
! z̅ = B̅/B
|
|
|
|
|
! 2. polarisation basis, definition of Ẽ₁/Ẽ₂
|
|
|
|
|
! x̅ = -N̅/N×(B̅/B×N̅/N)= -B̅⊥/B⊥
|
|
|
|
|
! y̅ = B̅/B×N̅/N
|
|
|
|
|
! z̅ = N̅/N
|
|
|
|
|
! 3. beam basis, definition of rays initial conditions
|
|
|
|
|
! x̅ = N̅/N×e̅₃
|
|
|
|
|
! y̅ = N̅/N×(N̅/N×e̅₃)
|
|
|
|
|
! z̅ = N̅/N
|
|
|
|
|
|
|
|
|
|
! The cold plasma dispersion relation tensor in the plasma
|
|
|
|
|
! basis (the usual one) is:
|
|
|
|
|
!
|
|
|
|
|
! [ (R+L)/2 - N∥² -i(R-L)/2 N∥N⊥ ]
|
|
|
|
|
! Λ = [i(R-L)/2 (R+L)/2 - N² 0 ]
|
|
|
|
|
! [N∥N⊥ 0 P - N⊥²]
|
|
|
|
|
!
|
|
|
|
|
! where P = 1 - X
|
|
|
|
|
! L = 1 - X/(1+Y)
|
|
|
|
|
! R = 1 - X/(1-Y)
|
|
|
|
|
! X = (ω_p/ω)²
|
|
|
|
|
! Y = ω_c/ω
|
|
|
|
|
!
|
|
|
|
|
! To compute the polarisation (the ratio Ẽ₁/Ẽ₂ in the wave
|
|
|
|
|
! transverse plane) we switch to the polarisation basis.
|
|
|
|
|
! The relations between the new and old unit vectors are:
|
|
|
|
|
!
|
|
|
|
|
! y̅' = y̅
|
|
|
|
|
! z̅' = N̅/N = (N̅∥ + N̅⊥)/N = (N∥/N)z̅ + (N⊥/N)x̅
|
|
|
|
|
! x̅' = y̅'×z̅' = y̅×z̅' = (N∥/N)x̅ - (N⊥/N)z̅
|
|
|
|
|
!
|
|
|
|
|
! so the change of basis matrix is:
|
|
|
|
|
!
|
|
|
|
|
! [ N∥/N 0 N⊥/N]
|
|
|
|
|
! M = [ 0 1 0 ]
|
|
|
|
|
! [-N⊥/N 0 N∥/N]
|
|
|
|
|
!
|
|
|
|
|
! which is equivalent to a clockwise rotation of the
|
|
|
|
|
! x̅∧z̅ plane around y̅ by the pitch angle θ: N̅∥ = Ncosθ.
|
|
|
|
|
!
|
|
|
|
|
! Consequently the tensor Λ in this basis is given by:
|
|
|
|
|
!
|
|
|
|
|
! Λ' = M⁻¹ Λ M
|
|
|
|
|
!
|
|
|
|
|
! Substituting the solution of the dispersion relation
|
|
|
|
|
! N⊥=N⊥(X, Y, N∥, ±) into Λ' and taking lim X→0 yields:
|
|
|
|
|
!
|
|
|
|
|
! [ ½XY²(N∥²-1∓Δ) -iXYN∥ XY²N∥√(1-N∥²)]
|
|
|
|
|
! Λ' = [ iXYN∥ ½XY²(1-N∥²∓Δ) iXY√(1-N∥²)] + o(X²)
|
|
|
|
|
! [XY²N∥√(1-N∥²) -iXY√(1-N∥²) -XY²N∥²+X+Y²-1]
|
|
|
|
|
!
|
|
|
|
|
! where Δ = √[4N∥²/Y² + (1 - N∥²)²]
|
|
|
|
|
!
|
|
|
|
|
! At exactly X=0, Λ' reduces to diag(0,0,1), so for Λ'E=0 we must
|
|
|
|
|
! have E₃=0, meaning we can effectively ignore the third column.
|
|
|
|
|
!
|
|
|
|
|
! The polarisation is determined by the ratio
|
|
|
|
|
!
|
|
|
|
|
! Ẽ₁/Ẽ₂ = -Λ₁₂/Λ₁₁ = -i Y[N∥² -1 ∓ Δ(X=0)]/(2N∥)
|
|
|
|
|
! = i [Y(N∥²-1) ± Δ']/(2N∥)
|
|
|
|
|
! ≡ i f±
|
|
|
|
|
!
|
|
|
|
|
! where Δ' = YΔ(X=0) = √[4N∥² + Y²(1 - N∥²)²]
|
|
|
|
|
!
|
|
|
|
|
if (sox == -1 .and. Npl == 0) then
|
|
|
|
|
! If Ẽ₂=0, the direction of the electric field is e̅ = (1, 0).
|
|
|
|
|
! This happens for O mode at N∥=0, the polarisation here is
|
|
|
|
|
! linear with Ẽ ∥ x̅ ∥ B̅.
|
|
|
|
|
! This case is handled separately to avoid a division by zero.
|
|
|
|
|
e = [1, 0]
|
|
|
|
|
else
|
|
|
|
|
! In general, if Ẽ₂≠0, the direction of the electric field is
|
|
|
|
|
!
|
|
|
|
|
! (Ẽ₁, Ẽ₂) ~ (Ẽ₁/Ẽ₂, 1) ~ (iẼ₁/Ẽ₂, i) = (f±, i)
|
|
|
|
|
!
|
|
|
|
|
! so, the polarisation is elliptical and the Jones vector is:
|
|
|
|
|
!
|
|
|
|
|
! e̅ = (f±, i) / √(1 + f±²)
|
|
|
|
|
!
|
|
|
|
|
delta = sqrt(4*Npl**2 + Y**2*(1 - Npl**2)**2)
|
|
|
|
|
f = (Y*(Npl**2 - 1) + sox * delta) / (2*Npl)
|
|
|
|
|
e = [f, im] / sqrt(1 + f**2)
|
2015-11-18 17:34:33 +01:00
|
|
|
|
end if
|
|
|
|
|
|
2024-03-12 16:42:19 +01:00
|
|
|
|
! To obtain the polarisation in the beam basis we must compute the
|
|
|
|
|
! angle γ such that a rotation of γ around z̅=N̅/N aligns the x̅ axis
|
|
|
|
|
! of the wave transverse plane to the equatorial plane of the
|
|
|
|
|
! tokamak, that is:
|
|
|
|
|
!
|
|
|
|
|
! R(γ,z̅)(x̅) ⋅ e̅₃ = 0
|
|
|
|
|
!
|
|
|
|
|
! where R(γ,n̅) is given by Rodrigues' rotation formula;
|
|
|
|
|
! x̅ = -B̅⊥/B⊥ (x axis in polarisation basis);
|
|
|
|
|
! z̅ = N̅/N is (z axis in polarization basis)
|
|
|
|
|
! e̅₃ is the vertical direction (standard basis).
|
|
|
|
|
!
|
|
|
|
|
! Since the rotation is a linear operation,
|
|
|
|
|
!
|
|
|
|
|
! R(γ,z̅)(-B̅⊥/B⊥) ⋅ e̅₃ = 0 ⇒ R(γ,z̅)B̅⊥ ⋅ e̅₃ = 0
|
|
|
|
|
!
|
|
|
|
|
! and the condition simplifies to:
|
|
|
|
|
!
|
|
|
|
|
! R(γ,z̅)B̅⊥ ⋅ e̅₃
|
|
|
|
|
! = [B̅⊥cosγ + z̅×B̅⊥sinγ + z̅(z̅⋅B̅⊥)(1-cosγ)] ⋅ e̅₃
|
|
|
|
|
! = (B̅⊥cosγ + z̅×B̅⊥sinγ) ⋅ e̅₃
|
|
|
|
|
! = B⊥₃cosγ + (z̅×B̅⊥)₃sinγ
|
|
|
|
|
! = 0
|
|
|
|
|
!
|
|
|
|
|
! By definition B̅⊥ = z̅×(B̅×z̅)=B̅-(z̅⋅B̅)z̅, so:
|
|
|
|
|
!
|
|
|
|
|
! B⊥₃ = B̅₃ - (z̅⋅B̅)z̅₃
|
|
|
|
|
!
|
|
|
|
|
! (z̅×B̅⊥) = [z̅×(z̅×(B̅×z̅))]₃
|
|
|
|
|
! = [-(z̅×(B̅×z̅))×z̅]₃
|
|
|
|
|
! = -(B̅×z̅)₃
|
|
|
|
|
! = (z₁B₂-z₂B₁)
|
|
|
|
|
!
|
|
|
|
|
! Substituting, we obtain:
|
|
|
|
|
!
|
|
|
|
|
! [B̅₃ - (z̅⋅B̅)z̅₃]cosγ + (z₁B₂-z₂B₁)sinγ = 0
|
|
|
|
|
!
|
|
|
|
|
! ⇒ γ = atan2((z̅⋅B̅)z̅₃-B̅₃, z₁B₂-z₂B₁)
|
|
|
|
|
!
|
|
|
|
|
z = N / norm2(N)
|
|
|
|
|
gamma = atan2(dot_product(B, z) * z(3) - B(3), z(1)*B(2) - z(2)*B(1))
|
|
|
|
|
|
|
|
|
|
! Apply the rotation R(γ,z̅) to the Jones vector
|
|
|
|
|
!
|
|
|
|
|
! Note: Jones vectors transform as normal vectors under rotations
|
|
|
|
|
! in physical space (SO(3) group); but as spinors on the Poincaré
|
|
|
|
|
! sphere (SU(2) group). For example, a rotation by γ around z̅
|
|
|
|
|
! changes the longitude φ=2ψ by 2γ.
|
|
|
|
|
R = reshape([cos(gamma), -sin(gamma), sin(gamma), cos(gamma)], [2, 2])
|
|
|
|
|
e = matmul(R, e)
|
|
|
|
|
e_x = e(1)
|
|
|
|
|
e_y = e(2)
|
2015-11-18 17:34:33 +01:00
|
|
|
|
end subroutine pol_limit
|
|
|
|
|
|
|
|
|
|
end module polarization
|