gray/tests/11-vacuum/__init__.py

163 lines
4.9 KiB
Python
Raw Normal View History

2023-12-18 00:52:11 +01:00
'''
Vacuum beam propagation
no plasma, no limiter nor reflections;
1D beam parameters;
general astigmatic beam
'''
from .. import TestCase, GrayTest
from .. import options, load_unit
import numpy as np
# SI unit converions
cm = 1e-2
mm = 1e-3
deg = np.pi/180
c = 299792458
def vectorize(*arg, **kwargs):
'''
Helper to use np.vectorize with keyword arguments as a decorator
'''
return lambda f: np.vectorize(f, *arg, **kwargs)
def rotate(angle: float):
'''
Builds a 2D rotation matrix
'''
c, s = np.cos(angle), np.sin(angle)
return np.array([[c, -s], [s, c]])
@vectorize(excluded=['k0', 'W', 'K', 'φ_w', 'φ_k'],
signature='(),(2,2),(2,2),(),(),(),()->()')
def eikonal_true(k0: float, W: np.array, K: np.array,
φ_w: float, φ_k: float, s: float,
ray: dict[str, float]):
'''
Computes the complex eikonal from the initial
beam parameters and the final ray position.
'''
r = np.array([ray['xt'], ray['yt']]) * cm
# Note: z = s₀ + z̅ where s₀ is the arclength of the
# central ray and z̅ the local beam coordinate.
z = (s + ray['zt']) * cm
# compute the complex curvature tensor
K = rotate(φ_k) @ K @ rotate(φ_k).T
W = rotate(φ_w) @ W @ rotate(φ_w).T
Q = K - 1j*W
# propagate the beam from 0→z
Q = Q @ np.linalg.inv(np.eye(2) + z*Q)
# Compute the eikonal
# Note: the Gouy phase is not treated by gray
S = k0 * (z + 1/2 * r @ Q @ r)
return S
@vectorize(excluded=['k0', 'W', 'K', 'φ_w', 'φ_k'],
signature='(),(2,2),(2,2),(),(),()->()')
def eikonal_gray(k0: float, W: np.array, K: np.array,
φ_w: float, φ_k: float, ray: dict[str, float]):
'''
Extracts the eikonal from the gray results
Notes:
1. the coordinates r,θ in the beam cross section
are defined by:
{ ξ_w = w_ξ r cosθ
{ η_w = w_η r cosθ,
2. for the (j,k)-th ray we have:
{ r = (j-1)/(n_r - 1)
{ θ = (k-1)/n_θ
so S_I = -(ξ_w²/w_ξ² + η_w²/w_η²) = -
and this should be independent of s.
3. S_R is given by k₀s, when integrating in
the phase (idst=2);
'''
r_max = 1.0
n_r = 6
δr = r_max / (n_r - 1)
r = (ray['j'] - 1) * δr
S_R = k0*ray['sst'] * cm
S_I = -r**2
return S_R + 1j * S_I
class Test(GrayTest, TestCase):
def test_eikonal(self):
'''
Check the correctness of beam propagation
by comparing the values of eikonal on each ray
at the final step.
'''
# Read the initial beam parameters
w_ξ, w_η, k_ξ, k_η, φ_w, φ_k = np.loadtxt(
str(self.inputs / 'beam.txt'),
usecols=[6, 7, 8, 9, 10, 11], skiprows=2,
unpack=True)
# Convert to SI
w_ξ, w_η = w_ξ * mm, w_η * mm
k_ξ, k_η = k_ξ / mm, k_η / mm
φ_w, φ_k = φ_w * deg, φ_k * deg
# Vacuum wavenumber
k0 = 2*np.pi/c * 170e9
# Beam width/curvature
W = 2/k0 * np.diag([1/w_ξ, 1/w_η])**2
K = np.diag([k_ξ, k_η])
# Load the final rays data
data = load_unit(self.candidate / 'fort.9')
# Complex eikonal: analytical and gray values
s0 = data['sst'][0]
S_true = eikonal_true(k0, W, K, φ_w, φ_k, s0, data)
S_gray = eikonal_gray(k0, W, K, φ_w, φ_k, data)
if options.visual:
import matplotlib.pyplot as plt
plt.suptitle(self.__module__ + '.test_eikonal')
plt.subplot(121, aspect='equal')
plt.title('$|S_R - S_{R,gray}|$', loc='left')
plt.tricontour(data['xt'], data['yt'],
abs(S_true.real - S_gray.real),
levels=8, linewidths=0.5, colors='k')
plt.tricontourf(data['xt'], data['yt'],
abs(S_true.real - S_gray.real),
levels=8, cmap='summer')
plt.colorbar()
plt.scatter(data['xt'], data['yt'], c='k', s=5)
plt.subplot(122, aspect='equal')
plt.title('$|S_I - S_{I,gray}|$', loc='left')
plt.tricontour(data['xt'], data['yt'],
abs(S_true.imag - S_gray.imag),
levels=8, linewidths=0.5, colors='k')
plt.tricontourf(data['xt'], data['yt'],
abs(S_true.imag - S_gray.imag),
levels=8, cmap='summer')
plt.colorbar()
plt.scatter(data['xt'], data['yt'], c='k', s=5)
plt.show()
# Compare the eikonal of each ray
for jk, ray in enumerate(data):
with self.subTest(ray=(int(ray['j']), int(ray['k']))):
self.assertAlmostEqual(S_true[jk].imag, S_gray[jk].imag, 2)
self.assertAlmostEqual(S_true[jk].real, S_gray[jk].real, 1)