gray/src/graycore.f90

1938 lines
58 KiB
Fortran
Raw Normal View History

2015-11-18 17:34:33 +01:00
module graycore
use const_and_precisions, only : wp_
implicit none
contains
subroutine gray_main(rv,zv,psin,psia,psinr,fpol,qpsi,rvac,rax,zax,rbnd,zbnd, &
eqp,psrad,terad,derad,zfc,prfp, rlim,zlim, &
2015-11-18 17:34:33 +01:00
p0,fghz,alpha0,beta0,xv0,w1,w2,ri1,ri2,phiw,phir,iox0, &
psipol0,chipol0, dpdv,jcd,pabs,icd, outp,rtrp,hcdp,ierr, rhout)
2015-11-18 17:34:33 +01:00
use const_and_precisions, only : zero, one
use coreprofiles, only : set_prfan, set_prfspl, temp, fzeff
use dispersion, only : expinit
use gray_params, only : eqparam_type, prfparam_type, outparam_type, &
rtrparam_type, hcdparam_type, set_codepar, iequil, iprof, ieccd, &
iwarm, ipec, istpr0, igrad
use beams, only : read_beam0, read_beam1, launchangles2n, xgygcoeff
use beamdata, only : pweight, rayi2jk
2015-11-18 17:34:33 +01:00
use equilibrium, only : set_equian, set_eqspl, setqphi_num, set_rhospl, &
zbinf, zbsup
use errcodes, only : check_err, print_errn, print_errhcd
2015-11-18 17:34:33 +01:00
use magsurf_data, only : flux_average
use beamdata, only : init_btr, dealloc_beam, nray, nstep, dst
2015-11-18 17:34:33 +01:00
use pec, only : pec_init, spec, postproc_profiles, dealloc_pec, &
rhop_tab, rhot_tab
use limiter, only : set_lim
2015-11-18 17:34:33 +01:00
use utils, only : vmaxmin
implicit none
! arguments
type(eqparam_type), intent(in) :: eqp
type(prfparam_type), intent(in) :: prfp
type(outparam_type), intent(in) :: outp
type(rtrparam_type), intent(in) :: rtrp
type(hcdparam_type), intent(in) :: hcdp
real(wp_), dimension(:), intent(in) :: psrad, terad, derad, zfc
real(wp_), dimension(:), intent(in) :: rv, zv, psinr, fpol, qpsi
real(wp_), dimension(:), intent(in) :: rbnd, zbnd, rlim, zlim
real(wp_), dimension(:,:), intent(in) :: psin
2015-11-18 17:34:33 +01:00
real(wp_), intent(in) :: psia, rvac, rax, zax
integer, intent(in) :: iox0
real(wp_), intent(in) :: p0, fghz, psipol0, chipol0
real(wp_), intent(in) :: alpha0,beta0, w1,w2, ri1,ri2, phiw,phir
real(wp_), dimension(3), intent(in) :: xv0
real(wp_), intent(out) :: pabs,icd
real(wp_), dimension(:), intent(out) :: dpdv,jcd
real(wp_), dimension(:), intent(in), optional :: rhout
2015-11-18 17:34:33 +01:00
integer, intent(out) :: ierr
! local variables
real(wp_), parameter :: taucr = 12._wp_
real(wp_), dimension(:), allocatable :: rhotn
real(wp_) :: sox,ak0,bres,xgcn,xg,yg,zzm,alpha,didp,anpl,anpr,anprim,anprre
real(wp_) :: chipol,psipol,btot,psinv,dens,tekev,dersdst,derdnm,st,st0
real(wp_) :: tau,pow,dids,ddr,ddi,taumn,taumx
real(wp_) :: rhotpav,drhotpav,rhotjava,drhotjava,dpdvp,jphip
real(wp_) :: rhotp,drhotp,rhotj,drhotj,dpdvmx,jphimx,ratjamx,ratjbmx
2015-11-18 17:34:33 +01:00
real(wp_), dimension(3) :: xv,anv0,anv
real(wp_), dimension(:,:), allocatable :: yw,ypw,gri
real(wp_), dimension(:,:,:), allocatable :: xc,du1,ggri
integer :: i,jk,iox,nharm,nhf,nnd,iokhawa,istop,ierrn,ierrhcd,index_rt=1
2015-11-18 17:34:33 +01:00
logical :: ins_pl, somein, allout
real(wp_), dimension(:,:), allocatable :: psjki,ppabs,ccci
real(wp_), dimension(:), allocatable :: tau0,alphaabs0,dids0,ccci0
2015-11-18 17:34:33 +01:00
real(wp_), dimension(:), allocatable :: p0jk
complex(wp_), dimension(:), allocatable :: ext, eyt
integer, dimension(:), allocatable :: iiv
real(wp_), dimension(:), allocatable :: jphi,pins,currins
! ======= set environment BEGIN ======
call set_codepar(eqp,prfp,outp,rtrp,hcdp)
call set_lim(rlim,zlim)
if(iequil<2) then
call set_equian(rv(1),zv(1),rv(2), fpol(1)/rv(1), qpsi(1),qpsi(2),qpsi(3))
else
call set_eqspl(rv,zv,psin, psia, psinr,fpol, qpsi, eqp%ssplps,eqp%ssplf, &
rvac, rax,zax, rbnd,zbnd, eqp%ixp)
! qpsi used for rho_pol/rho_tor mapping (initializes fq,frhotor,frhopol)
2015-11-18 17:34:33 +01:00
end if
! compute flux surface averaged quantities
call flux_average ! requires frhotor for dadrhot,dvdrhot
2015-11-18 17:34:33 +01:00
if(iprof==0) then
call set_prfan(terad,derad,zfc)
else
call set_prfspl(psrad, terad, derad, zfc, prfp%sspld, prfp%psnbnd)
end if
call xgygcoeff(fghz,ak0,bres,xgcn)
call launchangles2n(alpha0,beta0,xv0,anv0)
call init_btr(rtrp,yw,ypw,xc,du1,gri,ggri,psjki,ppabs,ccci, &
tau0,alphaabs0,dids0,ccci0,p0jk,ext,eyt,iiv)
2015-11-18 17:34:33 +01:00
if(iwarm > 1) call expinit
! ======= set environment END ======
! ======= pre-proc prints BEGIN ======
call print_headers
! print psi surface for q=1.5 and q=2 on file and psi,rhot,rhop on stdout
call print_surfq((/1.5_wp_,2.0_wp_/))
! print
print*,' '
print'(a,2f8.3)','alpha0, beta0 = ',alpha0,beta0
print'(a,4f8.3)','x00, y00, z00 = ',xv0
2015-11-18 17:34:33 +01:00
! print Btot=Bres
! print ne, Te, q, Jphi versus psi, rhop, rhot
call print_bres(bres)
call print_prof
2015-11-18 17:34:33 +01:00
! ======= pre-proc prints END ======
! ======= main loop BEGIN ======
iox=iox0
sox=-1.0_wp_
if(iox==2) sox=1.0_wp_
call vectinit(psjki,ppabs,ccci,tau0,alphaabs0,dids0,ccci0,iiv)
2015-11-18 17:34:33 +01:00
call ic_gb(xv0,anv0,ak0,w1,w2,ri1,ri2,phiw,phir,yw,ypw,xc,du1,gri,ggri)
psipol=psipol0
chipol=chipol0
call set_pol(yw,bres,sox,psipol,chipol,ext,eyt)
call pweight(p0,p0jk)
st0 = zero
if(nray>1) call print_projxyzt(st0,yw,0) ! iproj=0 ==> nfilp=8
somein = .false. ! becomes true if at least part of the beam enters the plasma
2015-11-18 17:34:33 +01:00
! beam/ray propagation
do i=1,nstep
! advance one step with "frozen" grad(S_I)
st=i*dst+st0
do jk=1,nray
call rkstep(sox,bres,xgcn,yw(:,jk),ypw(:,jk),gri(:,jk),ggri(:,:,jk))
end do
! update position and grad
if(igrad == 1) call gradi_upd(yw,ak0,xc,du1,gri,ggri)
allout = .true. ! becomes false if at least part of the beam is inside the plsama
ierr = 0
2015-11-18 17:34:33 +01:00
do jk=1,nray
! compute derivatives with updated gradient and local plasma values
xv = yw(1:3,jk)
anv = yw(4:6,jk)
call ywppla_upd(xv,anv,gri(:,jk),ggri(:,:,jk),sox,bres,xgcn,ypw(:,jk), &
psinv,dens,btot,xg,yg,anpl,anpr,ddr,ddi,dersdst,derdnm,ierrn)
! update global error code and print message
if (ierrn/=0) then
ierr = ior(ierr,ierrn)
call print_errn(ierrn,i,anpl)
2015-11-18 17:34:33 +01:00
end if
zzm = xv(3)*0.01_wp_
ins_pl = (psinv>=zero .and. psinv<one .and. zzm>=zbinf .and. zzm<=zbsup)
! test if the beam is completely out of the plsama
2015-11-18 17:34:33 +01:00
allout = allout .and. .not.ins_pl
! test if at least part of the beam has entered the plsama
2015-11-18 17:34:33 +01:00
somein = somein .or. ins_pl
! compute ECRH&CD
if(ierrn==0 .and. iwarm>0 .and. ins_pl .and. tau0(jk)<=taucr) then
2015-11-18 17:34:33 +01:00
tekev=temp(psinv)
call alpha_effj(psinv,xg,yg,dens,tekev,ak0,bres,derdnm,anpl,anpr, &
sox,anprre,anprim,alpha,didp,nharm,nhf,iokhawa,ierrhcd)
if (ierrhcd/=0) then
ierr = ior(ierr,ierrhcd)
call print_errhcd(ierrhcd,i,anprre,anprim,alpha)
end if
2015-11-18 17:34:33 +01:00
else
tekev=zero
alpha=zero
didp=zero
anprim=zero
anprre=anpr
nharm=0
nhf=0
iokhawa=0
end if
if(nharm>0) iiv(jk)=i
psjki(jk,i) = psinv
! computation of optical depth tau, dP/ds, P(s), dI/ds, I(s)
tau=tau0(jk)+0.5_wp_*(alphaabs0(jk)+alpha)*dersdst*dst
2015-11-18 17:34:33 +01:00
pow=p0jk(jk)*exp(-tau) !*exp(-tau1v(jk))
ppabs(jk,i)=p0jk(jk)-pow
dids=didp*pow*alpha
ccci(jk,i)=ccci0(jk)+0.5_wp_*(dids0(jk)+dids)*dersdst*dst
tau0(jk)=tau
alphaabs0(jk)=alpha
dids0(jk)=dids
ccci0(jk)=ccci(jk,i)
2015-11-18 17:34:33 +01:00
call print_output(i,jk,st,p0jk(jk)/p0,xv,psinv,btot,ak0,anpl,anpr, &
anprim,dens,tekev,alpha,tau,dids,nhf,iokhawa,index_rt,ddr,ddi)
2015-11-18 17:34:33 +01:00
end do
! print ray positions for j=nrayr in local reference system
if (mod(i,istpr0) == 0) then
if(nray > 1) call print_projxyzt(st,yw,0)
end if
! check for any error code and stop if necessary
call check_err(ierr,istop)
! test whether further trajectory integration is unnecessary
call vmaxmin(tau0,nray,taumn,taumx)
if ((taumn > taucr) .or. (somein .and. allout)) istop = 1
2015-11-18 17:34:33 +01:00
if(istop == 1) exit
end do
! compute total absorbed power and driven current
if (i>nstep) i=nstep
pabs = sum(ppabs(:,i))
icd = sum(ccci(:,i))
2015-11-18 17:34:33 +01:00
! ======= main loop END ======
! ======= post-proc BEGIN ======
! print final results on screen
write(*,*)
write(*,'(a,f9.4)') 'final step (s, ct, Sr) = ',st
write(*,'(a,2e12.5)') 'taumn, taumx = ', taumn,taumx
write(*,'(a,f9.4)') 'Pabs_tot (MW) = ',pabs
write(*,'(a,f9.4)') 'I_tot (kA) = ',icd*1.0e3_wp_
! print all ray positions in local reference system
if(nray > 1) call print_projxyzt(st,yw,1)
2015-11-18 17:34:33 +01:00
! compute power and current density profiles for all rays
call pec_init(ipec,rhout)
2015-11-18 17:34:33 +01:00
nnd=size(rhop_tab)
allocate(jphi(nnd),pins(nnd),currins(nnd))
call spec(psjki,ppabs,ccci,iiv,pabs,icd,dpdv,jphi,jcd,pins,currins)
! print power and current density profiles
call print_pec(rhop_tab,rhot_tab,jphi,jcd,dpdv,currins,pins,index_rt)
! compute profiles width
call postproc_profiles(pabs,icd,rhot_tab,dpdv,jphi, &
rhotpav,drhotpav,rhotjava,drhotjava,dpdvp,jphip, &
rhotp,drhotp,rhotj,drhotj,dpdvmx,jphimx,ratjamx,ratjbmx)
! print 0D results
call print_finals(pabs,icd,dpdvp,jphip,rhotpav,rhotjava,drhotpav, &
drhotjava,dpdvmx,jphimx,rhotp,rhotj,drhotp,drhotj,ratjamx,ratjbmx, &
st,psipol,chipol,index_rt)
2015-11-18 17:34:33 +01:00
! ======= post-proc END ======
! ======= free memory BEGIN ======
! call unset_eqspl
! call unset_q
! call unset_rhospl
! call unset_prfspl
! call unset_lim
! call dealloc_surfvec
! call dealloc_beam(yw,ypw,xc,du1,gri,ggri,psjki,ppabs,ccci, &
! tau0,alphaabs0,dids0,ccci0,p0jk,ext,eyt,iiv)
! call dealloc_pec
deallocate(jphi,pins,currins)
2015-11-18 17:34:33 +01:00
! ======= free memory END ======
end subroutine gray_main
2015-11-18 17:34:33 +01:00
subroutine vectinit(psjki,ppabs,ccci,tau0,alphaabs0,dids0,ccci0,iiv)
2015-11-18 17:34:33 +01:00
use const_and_precisions, only : wp_, zero
implicit none
! arguments
real(wp_), dimension(:,:), intent(out) :: psjki,ppabs,ccci
real(wp_), dimension(:), intent(out) :: tau0,alphaabs0,dids0,ccci0
2015-11-18 17:34:33 +01:00
integer, dimension(:), intent(out) :: iiv
!! common/external functions/variables
! integer :: jclosest
! real(wp_), dimension(3) :: anwcl,xwcl
!
! common/refln/anwcl,xwcl,jclosest
!
! jclosest=nrayr+1
! anwcl(1:3)=0.0_wp_
! xwcl(1:3)=0.0_wp_
psjki = zero
ppabs = zero
ccci = zero
tau0 = zero
alphaabs0 = zero
dids0 = zero
ccci0 = zero
iiv = 1
2015-11-18 17:34:33 +01:00
end subroutine vectinit
2015-11-18 17:34:33 +01:00
subroutine ic_gb(xv0c,anv0c,ak0,wcsi,weta,rcicsi,rcieta,phiw,phir, &
ywrk0,ypwrk0,xc0,du10,gri,ggri)
! beam tracing initial conditions igrad=1
! !!!!!! check ray tracing initial conditions igrad=0 !!!!!!
use const_and_precisions, only : wp_,izero,zero,one,pi,half,two,degree,ui=>im
use math, only : catand
use gray_params, only : idst
use beamdata, only : nray,nrayr,nrayth,rwmax
implicit none
! arguments
real(wp_), dimension(3), intent(in) :: xv0c,anv0c
real(wp_), intent(in) :: ak0
real(wp_), intent(in) :: wcsi,weta,rcicsi,rcieta,phiw,phir
real(wp_), dimension(6,nray), intent(out) :: ywrk0,ypwrk0
real(wp_), dimension(3,nray), intent(out) :: gri
real(wp_), dimension(3,3,nray), intent(out) :: ggri
real(wp_), dimension(3,nrayth,nrayr), intent(out) :: xc0,du10
! local variables
integer :: j,k,jk
real(wp_) :: csth,snth,csps,snps,phiwrad,phirrad,csphiw,snphiw,alfak
real(wp_) :: wwcsi,wweta,sk,sw,dk,dw,rci1,ww1,rci2,ww2,wwxx,wwyy,wwxy
real(wp_) :: rcixx,rciyy,rcixy,dwwxx,dwwyy,dwwxy,d2wwxx,d2wwyy,d2wwxy
real(wp_) :: drcixx,drciyy,drcixy,dr,da,ddfu,dcsiw,detaw,dx0t,dy0t
real(wp_) :: x0t,y0t,z0t,dx0,dy0,dz0,x0,y0,z0,gxt,gyt,gzt,gr2
real(wp_) :: gxxt,gyyt,gzzt,gxyt,gxzt,gyzt,dgr2xt,dgr2yt,dgr2zt
real(wp_) :: dgr2x,dgr2y,dgr2z,pppx,pppy,denpp,ppx,ppy
real(wp_) :: anzt,anxt,anyt,anx,any,anz,an20,an0
real(wp_) :: du1tx,du1ty,du1tz,denom,ddr,ddi
real(wp_), dimension(nrayr) :: uj
real(wp_), dimension(nrayth) :: sna,csa
complex(wp_) :: sss,ddd,phic,qi1,qi2,tc,ts,qqxx,qqxy,qqyy,dqi1,dqi2
complex(wp_) :: dqqxx,dqqyy,dqqxy,d2qi1,d2qi2,d2qqxx,d2qqyy,d2qqxy
csth=anv0c(3)
snth=sqrt(one-csth**2)
if(snth > zero) then
csps=anv0c(2)/snth
snps=anv0c(1)/snth
else
csps=one
snps=zero
end if
! Gaussian beam: exp[-ik0 zt] exp[-i k0/2 S(xt,yt,zt)]
! xt,yt,zt, cartesian coordinate system with zt along the beamline and xt in the z = 0 plane
! S(xt,yt,zt) = S_real +i S_imag = Qxx(zt) xt^2 + Qyy(zt) yt^2 + 2 Qxy(zt) xt yt
! (csiw, etaw) and (csiR, etaR) intensity and phase ellipse, rotated by angle phiw and phiR
! S(xt,yt,zt) = csiR^2 / Rccsi +etaR^2 /Rceta - i (csiw^2 Wcsi +etaw^2 Weta)
! Rccsi,eta curvature radius at the launching point
! Wcsi,eta =2/(k0 wcsi,eta^2) with wcsi,eta^2 beam size at the launching point
2015-11-18 17:34:33 +01:00
phiwrad = phiw*degree
phirrad = phir*degree
csphiw = cos(phiwrad)
snphiw = sin(phiwrad)
! csphir = cos(phirrad)
! snphir = sin(phirrad)
wwcsi = two/(ak0*wcsi**2)
wweta = two/(ak0*weta**2)
if(phir/=phiw) then
sk = rcicsi + rcieta
sw = wwcsi + wweta
dk = rcicsi - rcieta
dw = wwcsi - wweta
ts = -(dk*sin(2*phirrad) - ui*dw*sin(2*phiwrad))
tc = (dk*cos(2*phirrad) - ui*dw*cos(2*phiwrad))
phic = half*catand(ts/tc)
ddd = dk*cos(2*(phirrad+phic)) - ui*dw*cos(2*(phiwrad+phic))
sss = sk - ui*sw
qi1 = half*(sss + ddd)
qi2 = half*(sss - ddd)
rci1 = dble(qi1)
rci2 = dble(qi2)
ww1 = -dimag(qi1)
ww2 = -dimag(qi2)
2015-11-18 17:34:33 +01:00
else
rci1 = rcicsi
rci2 = rcieta
ww1 = wwcsi
ww2 = wweta
phic = -phiwrad
qi1 = rci1 - ui*ww1
qi2 = rci2 - ui*ww2
end if
! w01=sqrt(2.0_wp_/(ak0*ww1))
! d01=-rci1/(rci1**2+ww1**2)
! w02=sqrt(2.0_wp_/(ak0*ww2))
! d02=-rci2/(rci2**2+ww2**2)
qqxx = qi1*cos(phic)**2 + qi2*sin(phic)**2
qqyy = qi1*sin(phic)**2 + qi2*cos(phic)**2
qqxy = -(qi1 - qi2)*sin(phic)*cos(phic)
wwxx = -dimag(qqxx)
wwyy = -dimag(qqyy)
wwxy = -dimag(qqxy)
rcixx = dble(qqxx)
rciyy = dble(qqyy)
rcixy = dble(qqxy)
2015-11-18 17:34:33 +01:00
dqi1 = -qi1**2
dqi2 = -qi2**2
d2qi1 = 2*qi1**3
d2qi2 = 2*qi2**3
dqqxx = dqi1*cos(phic)**2 + dqi2*sin(phic)**2
dqqyy = dqi1*sin(phic)**2 + dqi2*cos(phic)**2
dqqxy = -(dqi1 - dqi2)*sin(phic)*cos(phic)
2015-11-18 17:34:33 +01:00
d2qqxx = d2qi1*cos(phic)**2 + d2qi2*sin(phic)**2
d2qqyy = d2qi1*sin(phic)**2 + d2qi2*cos(phic)**2
d2qqxy = -(d2qi1 - d2qi2)*sin(phic)*cos(phic)
dwwxx = -dimag(dqqxx)
dwwyy = -dimag(dqqyy)
dwwxy = -dimag(dqqxy)
d2wwxx = -dimag(d2qqxx)
d2wwyy = -dimag(d2qqyy)
d2wwxy = -dimag(d2qqxy)
drcixx = dble(dqqxx)
drciyy = dble(dqqyy)
drcixy = dble(dqqxy)
2015-11-18 17:34:33 +01:00
if(nrayr > 1) then
dr = rwmax/dble(nrayr-1)
else
dr = one
end if
ddfu = two*dr**2/ak0 ! twodr2 = 2*dr**2 = 2*rwmax/dble(nrayr-1)
do j = 1, nrayr
uj(j) = dble(j-1)
end do
da=2*pi/dble(nrayth)
do k=1,nrayth
alfak = (k-1)*da
sna(k) = sin(alfak)
csa(k) = cos(alfak)
end do
! central ray
jk=1
gri(:,1) = zero
ggri(:,:,1) = zero
ywrk0(1:3,1) = xv0c
ywrk0(4:6,1) = anv0c
ypwrk0(1:3,1) = anv0c
ypwrk0(4:6,1) = zero
do k=1,nrayth
dcsiw = dr*csa(k)*wcsi
detaw = dr*sna(k)*weta
dx0t = dcsiw*csphiw - detaw*snphiw
dy0t = dcsiw*snphiw + detaw*csphiw
du1tx = (dx0t*wwxx + dy0t*wwxy)/ddfu
du1ty = (dx0t*wwxy + dy0t*wwyy)/ddfu
xc0(:,k,1) = xv0c
du10(1,k,1) = du1tx*csps + snps*du1ty*csth
du10(2,k,1) = -du1tx*snps + csps*du1ty*csth
du10(3,k,1) = -du1ty*snth
end do
ddr = zero
ddi = zero
! loop on rays jk>1
j=2
k=0
do jk=2,nray
k=k+1
if(k > nrayth) then
j=j+1
k=1
end if
! csiw=u*dcsiw
! etaw=u*detaw
! csir=x0t*csphir+y0t*snphir
! etar=-x0t*snphir+y0t*csphir
dcsiw = dr*csa(k)*wcsi
detaw = dr*sna(k)*weta
dx0t = dcsiw*csphiw - detaw*snphiw
dy0t = dcsiw*snphiw + detaw*csphiw
x0t = uj(j)*dx0t
y0t = uj(j)*dy0t
z0t = -(half*(rcixx*x0t**2 + rciyy*y0t**2) + rcixy*x0t*y0t)
2015-11-18 17:34:33 +01:00
dx0 = x0t*csps + snps*(y0t*csth + z0t*snth)
dy0 = -x0t*snps + csps*(y0t*csth + z0t*snth)
dz0 = z0t*csth - y0t*snth
x0 = xv0c(1) + dx0
y0 = xv0c(2) + dy0
z0 = xv0c(3) + dz0
gxt = x0t*wwxx + y0t*wwxy
gyt = x0t*wwxy + y0t*wwyy
gzt = half*(x0t**2*dwwxx + y0t**2*dwwyy ) + x0t*y0t*dwwxy
gr2 = gxt*gxt + gyt*gyt + gzt*gzt
gxxt = wwxx
gyyt = wwyy
gzzt = half*(x0t**2*d2wwxx + y0t**2*d2wwyy) + x0t*y0t*d2wwxy
gxyt = wwxy
gxzt = x0t*dwwxx + y0t*dwwxy
gyzt = x0t*dwwxy + y0t*dwwyy
dgr2xt = 2*(gxt*gxxt + gyt*gxyt + gzt*gxzt)
dgr2yt = 2*(gxt*gxyt + gyt*gyyt + gzt*gyzt)
dgr2zt = 2*(gxt*gxzt + gyt*gyzt + gzt*gzzt)
dgr2x = dgr2xt*csps + snps*(dgr2yt*csth + dgr2zt*snth)
dgr2y = -dgr2xt*snps + csps*(dgr2yt*csth + dgr2zt*snth)
dgr2z = dgr2zt*csth - dgr2yt*snth
gri(1,jk) = gxt*csps + snps*(gyt*csth + gzt*snth)
gri(2,jk) = -gxt*snps + csps*(gyt*csth + gzt*snth)
gri(3,jk) = gzt*csth - gyt*snth
ggri(1,1,jk) = gxxt*csps**2 &
+ snps**2 *(gyyt*csth**2 + gzzt*snth**2 + 2*snth*csth*gyzt) &
+2*snps*csps*(gxyt*csth + gxzt*snth)
ggri(2,1,jk) = csps*snps &
*(-gxxt+csth**2*gyyt + snth**2*gzzt + 2*csth*snth*gyzt) &
+(csps**2 - snps**2)*(snth*gxzt + csth*gxyt)
ggri(3,1,jk) = csth*snth*snps*(gzzt - gyyt) + (csth**2 - snth**2) &
*snps*gyzt + csps*(csth*gxzt - snth*gxyt)
ggri(1,2,jk) = ggri(2,1,jk)
ggri(2,2,jk) = gxxt*snps**2 &
+ csps**2 *(gyyt*csth**2 + gzzt*snth**2 + 2*snth*csth*gyzt) &
-2*snps*csps*(gxyt*csth + gxzt*snth)
ggri(3,2,jk) = csth*snth*csps*(gzzt - gyyt) + (csth**2-snth**2) &
*csps*gyzt + snps*(snth*gxyt - csth*gxzt)
ggri(1,3,jk) = ggri(3,1,jk)
ggri(2,3,jk) = ggri(3,2,jk)
ggri(3,3,jk) = gzzt*csth**2 + gyyt*snth**2 - 2*csth*snth*gyzt
du1tx = (dx0t*wwxx + dy0t*wwxy)/ddfu
du1ty = (dx0t*wwxy + dy0t*wwyy)/ddfu
du1tz = half*uj(j)*(dx0t**2*dwwxx + dy0t**2*dwwyy + 2*dx0t*dy0t*dwwxy)/ddfu
du10(1,k,j) = du1tx*csps + snps*(du1ty*csth + du1tz*snth)
du10(2,k,j) = -du1tx*snps + csps*(du1ty*csth + du1tz*snth)
du10(3,k,j) = du1tz*csth - du1ty*snth
pppx = x0t*rcixx + y0t*rcixy
pppy = x0t*rcixy + y0t*rciyy
denpp = pppx*gxt + pppy*gyt
if (denpp/=zero) then
ppx = -pppx*gzt/denpp
ppy = -pppy*gzt/denpp
else
ppx = zero
ppy = zero
end if
anzt = sqrt((one + gr2)/(one + ppx**2 + ppy**2))
anxt = ppx*anzt
anyt = ppy*anzt
anx = anxt*csps + snps*(anyt*csth + anzt*snth)
any =-anxt*snps + csps*(anyt*csth + anzt*snth)
anz = anzt*csth - anyt*snth
an20 = one + gr2
an0 = sqrt(an20)
xc0(1,k,j) = x0
xc0(2,k,j) = y0
xc0(3,k,j) = z0
ywrk0(1,jk) = x0
ywrk0(2,jk) = y0
ywrk0(3,jk) = z0
ywrk0(4,jk) = anx
ywrk0(5,jk) = any
ywrk0(6,jk) = anz
select case(idst)
case(1)
! integration variable: c*t
denom = one
case(2)
! integration variable: Sr
denom = an20
case default ! idst=0
! integration variable: s
denom = an0
end select
ypwrk0(1,jk) = anx/denom
ypwrk0(2,jk) = any/denom
ypwrk0(3,jk) = anz/denom
ypwrk0(4,jk) = dgr2x/(2*denom)
ypwrk0(5,jk) = dgr2y/(2*denom)
ypwrk0(6,jk) = dgr2z/(2*denom)
ddr = anx**2 + any**2 + anz**2 - an20
ddi = 2*(anxt*gxt + anyt*gyt + anzt*gzt)
call print_output(0,jk,zero,one,xc0(:,k,j),-one,zero,ak0,zero,zero,zero, &
zero,zero,zero,zero,zero,0,0,1,ddr,ddi) ! st=0, index_rt=1, Btot=0, psin=-1
2015-11-18 17:34:33 +01:00
end do
end subroutine ic_gb
2015-11-18 17:34:33 +01:00
subroutine rkstep(sox,bres,xgcn,y,yp,dgr,ddgr)
! Runge-Kutta integrator
use const_and_precisions, only : wp_
! use gray_params, only : igrad
use beamdata, only : h,hh,h6
implicit none
real(wp_), intent(in) :: sox,bres,xgcn
real(wp_), dimension(6), intent(inout) :: y
real(wp_), dimension(6), intent(in) :: yp
real(wp_), dimension(3), intent(in) :: dgr
real(wp_), dimension(3,3), intent(in) :: ddgr
real(wp_), dimension(6) :: yy,fk1,fk2,fk3,fk4
real(wp_) :: gr2
real(wp_), dimension(3) :: dgr2
! if(igrad.eq.1) then
gr2 = dgr(1)**2 + dgr(2)**2 + dgr(3)**2
dgr2 = 2*(dgr(1)*ddgr(:,1) + dgr(2)*ddgr(:,2) + dgr(3)*ddgr(:,3))
! end if
fk1 = yp
yy = y + fk1*hh
call rhs(sox,bres,xgcn,yy,gr2,dgr2,dgr,ddgr,fk2)
yy = y + fk2*hh
call rhs(sox,bres,xgcn,yy,gr2,dgr2,dgr,ddgr,fk3)
yy = y + fk3*h
call rhs(sox,bres,xgcn,yy,gr2,dgr2,dgr,ddgr,fk4)
y = y + h6*(fk1 + 2*fk2 + 2*fk3 + fk4)
end subroutine rkstep
2015-11-18 17:34:33 +01:00
subroutine rhs(sox,bres,xgcn,y,gr2,dgr2,dgr,ddgr,dery)
! Compute right-hand side terms of the ray equations (dery)
! used in R-K integrator
use const_and_precisions, only : wp_
implicit none
! arguments
real(wp_), dimension(6), intent(in) :: y
real(wp_), intent(in) :: sox,bres,xgcn,gr2
real(wp_), dimension(3), intent(in) :: dgr2,dgr
real(wp_), dimension(3,3), intent(in) :: ddgr
real(wp_), dimension(6), intent(out) :: dery
! local variables
real(wp_) :: psinv,dens,btot,xg,yg,anpl,anpr,ajphi
real(wp_) :: ddr,ddi,dersdst,derdnm
real(wp_), dimension(3) :: xv,anv,bv,derxg,deryg
real(wp_), dimension(3,3) :: derbv
xv = y(1:3)
call plas_deriv(xv,bres,xgcn,psinv,dens,btot,bv,derbv,xg,yg,derxg,deryg, &
ajphi)
anv = y(4:6)
call disp_deriv(anv,sox,xg,yg,derxg,deryg,bv,derbv,gr2,dgr2,dgr,ddgr, &
dery,anpl,anpr,ddr,ddi,dersdst,derdnm)
end subroutine rhs
2015-11-18 17:34:33 +01:00
subroutine ywppla_upd(xv,anv,dgr,ddgr,sox,bres,xgcn,dery,psinv,dens,btot, &
xg,yg,anpl,anpr,ddr,ddi,dersdst,derdnm,ierr)
2015-11-18 17:34:33 +01:00
! Compute right-hand side terms of the ray equations (dery)
! used after full R-K step and grad(S_I) update
use errcodes, only : pnpl
2015-11-18 17:34:33 +01:00
implicit none
! arguments
real(wp_), dimension(3), intent(in) :: xv,anv
real(wp_), dimension(3), intent(in) :: dgr
real(wp_), dimension(3,3), intent(in) :: ddgr
real(wp_), intent(in) :: sox,bres,xgcn
real(wp_), dimension(6), intent(out) :: dery
real(wp_), intent(out) :: psinv,dens,btot,xg,yg,anpl,anpr
real(wp_), intent(out) :: ddr,ddi,dersdst,derdnm
integer, intent(out) :: ierr
2015-11-18 17:34:33 +01:00
! local variables
real(wp_) :: gr2,ajphi
real(wp_), dimension(3) :: dgr2,bv,derxg,deryg
real(wp_), dimension(3,3) :: derbv
real(wp_), parameter :: anplth1 = 0.99_wp_, anplth2 = 1.05_wp_
2015-11-18 17:34:33 +01:00
gr2 = dgr(1)**2 + dgr(2)**2 + dgr(3)**2
dgr2 = 2*(dgr(1)*ddgr(:,1) + dgr(2)*ddgr(:,2) + dgr(3)*ddgr(:,3))
2015-11-18 17:34:33 +01:00
call plas_deriv(xv,bres,xgcn,psinv,dens,btot,bv,derbv,xg,yg,derxg,deryg,ajphi)
call disp_deriv(anv,sox,xg,yg,derxg,deryg,bv,derbv,gr2,dgr2,dgr,ddgr, &
dery,anpl,anpr,ddr,ddi,dersdst,derdnm)
ierr=0
if( abs(anpl) > anplth1) then
if(abs(anpl) > anplth2) then
ierr=ibset(ierr,pnpl+1)
else
ierr=ibset(ierr,pnpl)
end if
end if
2015-11-18 17:34:33 +01:00
end subroutine ywppla_upd
2015-11-18 17:34:33 +01:00
subroutine gradi_upd(ywrk,ak0,xc,du1,gri,ggri)
use const_and_precisions, only : wp_,zero,half
use beamdata, only : nray,nrayr,nrayth,twodr2
implicit none
real(wp_), intent(in) :: ak0
real(wp_), dimension(6,nray), intent(in) :: ywrk
real(wp_), dimension(3,nrayth,nrayr), intent(inout) :: xc,du1
real(wp_), dimension(3,nray), intent(out) :: gri
real(wp_), dimension(3,3,nray), intent(out) :: ggri
! local variables
real(wp_), dimension(3,nrayth,nrayr) :: xco,du1o
integer :: jk,j,jm,jp,k,km,kp
real(wp_) :: ux,uxx,uxy,uxz,uy,uyy,uyz,uz,uzz
real(wp_) :: dfuu,dffiu,gx,gxx,gxy,gxz,gy,gyy,gyz,gz,gzz
real(wp_), dimension(3) :: dxv1,dxv2,dxv3,dgu
real(wp_), dimension(3,3) :: dgg,dff
! update position and du1 vectors
xco = xc
du1o = du1
jk = 1
do j=1,nrayr
do k=1,nrayth
if(j>1) jk=jk+1
xc(1:3,k,j)=ywrk(1:3,jk)
end do
end do
! compute grad u1 for central ray
j = 1
jp = 2
do k=1,nrayth
if(k == 1) then
km = nrayth
else
km = k-1
end if
if(k == nrayth) then
kp = 1
else
kp = k+1
end if
dxv1 = xc(:,k ,jp) - xc(:,k ,j)
dxv2 = xc(:,kp,jp) - xc(:,km,jp)
dxv3 = xc(:,k ,j) - xco(:,k ,j)
call solg0(dxv1,dxv2,dxv3,dgu)
du1(:,k,j) = dgu
end do
gri(:,1) = zero
! compute grad u1 and grad(S_I) for all the other rays
dfuu=twodr2/ak0 ! twodr2 = 2*dr**2 = 2*(rwmax/(nrayr-1))**2
jm=1
j=2
k=0
dffiu = dfuu
do jk=2,nray
k=k+1
if(k > nrayth) then
jm = j
j = j+1
k = 1
dffiu = dfuu*jm
end if
kp = k+1
km = k-1
if (k == 1) then
km=nrayth
else if (k == nrayth) then
kp=1
end if
dxv1 = xc(:,k ,j) - xc(:,k ,jm)
dxv2 = xc(:,kp,j) - xc(:,km,j)
dxv3 = xc(:,k ,j) - xco(:,k ,j)
call solg0(dxv1,dxv2,dxv3,dgu)
du1(:,k,j) = dgu
gri(:,jk) = dgu(:)*dffiu
end do
! compute derivatives of grad u and grad(S_I) for rays jk>1
ggri(:,:,1) = zero
jm=1
j=2
k=0
dffiu = dfuu
do jk=2,nray
k=k+1
if(k > nrayth) then
jm=j
j=j+1
k=1
dffiu = dfuu*jm
end if
kp=k+1
km=k-1
if (k == 1) then
km=nrayth
else if (k == nrayth) then
kp=1
end if
dxv1 = xc(:,k ,j) - xc(:,k ,jm)
dxv2 = xc(:,kp,j) - xc(:,km,j)
dxv3 = xc(:,k ,j) - xco(:,k ,j)
dff(:,1) = du1(:,k ,j) - du1(:,k ,jm)
dff(:,2) = du1(:,kp,j) - du1(:,km,j)
dff(:,3) = du1(:,k ,j) - du1o(:,k ,j)
call solg3(dxv1,dxv2,dxv3,dff,dgg)
! derivatives of u
ux = du1(1,k,j)
uy = du1(2,k,j)
uz = du1(3,k,j)
uxx = dgg(1,1)
uyy = dgg(2,2)
uzz = dgg(3,3)
uxy = (dgg(1,2) + dgg(2,1))*half
uxz = (dgg(1,3) + dgg(3,1))*half
uyz = (dgg(2,3) + dgg(3,2))*half
! derivatives of S_I and Grad(S_I)
gx = ux*dffiu
gy = uy*dffiu
gz = uz*dffiu
gxx = dfuu*ux*ux + dffiu*uxx
gyy = dfuu*uy*uy + dffiu*uyy
gzz = dfuu*uz*uz + dffiu*uzz
gxy = dfuu*ux*uy + dffiu*uxy
gxz = dfuu*ux*uz + dffiu*uxz
gyz = dfuu*uy*uz + dffiu*uyz
ggri(1,1,jk)=gxx
ggri(2,1,jk)=gxy
ggri(3,1,jk)=gxz
ggri(1,2,jk)=gxy
ggri(2,2,jk)=gyy
ggri(3,2,jk)=gyz
ggri(1,3,jk)=gxz
ggri(2,3,jk)=gyz
ggri(3,3,jk)=gzz
end do
end subroutine gradi_upd
2015-11-18 17:34:33 +01:00
subroutine solg0(dxv1,dxv2,dxv3,dgg)
! solution of the linear system of 3 eqs : dgg . dxv = dff
! input vectors : dxv1, dxv2, dxv3, dff
! output vector : dgg
! dff=(1,0,0)
use const_and_precisions, only : wp_
implicit none
! arguments
real(wp_), dimension(3), intent(in) :: dxv1,dxv2,dxv3
real(wp_), dimension(3), intent(out) :: dgg
! local variables
real(wp_) :: denom,aa1,aa2,aa3
aa1 = (dxv2(2)*dxv3(3) - dxv3(2)*dxv2(3))
aa2 = (dxv1(2)*dxv3(3) - dxv3(2)*dxv1(3))
aa3 = (dxv1(2)*dxv2(3) - dxv2(2)*dxv1(3))
denom = dxv1(1)*aa1 - dxv2(1)*aa2 + dxv3(1)*aa3
dgg(1) = aa1/denom
dgg(2) = -(dxv2(1)*dxv3(3) - dxv3(1)*dxv2(3))/denom
dgg(3) = (dxv2(1)*dxv3(2) - dxv3(1)*dxv2(2))/denom
end subroutine solg0
subroutine solg3(dxv1,dxv2,dxv3,dff,dgg)
! rhs "matrix" dff, result in dgg
use const_and_precisions, only : wp_
implicit none
! arguments
real(wp_), dimension(3), intent(in) :: dxv1,dxv2,dxv3
real(wp_), dimension(3,3), intent(in) :: dff
real(wp_), dimension(3,3), intent(out) :: dgg
! local variables
real(wp_) denom,a11,a21,a31,a12,a22,a32,a13,a23,a33
a11 = (dxv2(2)*dxv3(3) - dxv3(2)*dxv2(3))
a21 = (dxv1(2)*dxv3(3) - dxv3(2)*dxv1(3))
a31 = (dxv1(2)*dxv2(3) - dxv2(2)*dxv1(3))
a12 = (dxv2(1)*dxv3(3) - dxv3(1)*dxv2(3))
a22 = (dxv1(1)*dxv3(3) - dxv3(1)*dxv1(3))
a32 = (dxv1(1)*dxv2(3) - dxv2(1)*dxv1(3))
a13 = (dxv2(1)*dxv3(2) - dxv3(1)*dxv2(2))
a23 = (dxv1(1)*dxv3(2) - dxv3(1)*dxv1(2))
a33 = (dxv1(1)*dxv2(2) - dxv2(1)*dxv1(2))
denom = dxv1(1)*a11 - dxv2(1)*a21 + dxv3(1)*a31
dgg(:,1) = ( dff(:,1)*a11 - dff(:,2)*a21 + dff(:,3)*a31)/denom
dgg(:,2) = (-dff(:,1)*a12 + dff(:,2)*a22 - dff(:,3)*a32)/denom
dgg(:,3) = ( dff(:,1)*a13 - dff(:,2)*a23 + dff(:,3)*a33)/denom
end subroutine solg3
2015-11-18 17:34:33 +01:00
subroutine plas_deriv(xv,bres,xgcn,psinv,dens,btot,bv,derbv, &
xg,yg,derxg,deryg,ajphi)
use const_and_precisions, only : wp_,zero,pi,ccj=>mu0inv
use gray_params, only : iequil
use equilibrium, only : psia,equinum_fpol,equinum_psi,equian,sgnbphi
use coreprofiles, only : density
implicit none
! arguments
real(wp_), dimension(3), intent(in) :: xv
real(wp_), intent(in) :: xgcn,bres
real(wp_), intent(out) :: psinv,dens,btot,xg,yg
real(wp_), dimension(3), intent(out) :: bv,derxg,deryg
real(wp_), dimension(3,3), intent(out) :: derbv
! local variables
integer :: jv
real(wp_) :: xx,yy,zz
real(wp_) :: b2tot,csphi,drrdx,drrdy,dphidx,dphidy,rr,rr2,rrm,snphi,zzm
real(wp_), dimension(3) :: dbtot,bvc
real(wp_), dimension(3,3) :: dbvcdc,dbvdc,dbv
real(wp_) :: brr,bphi,bzz,ajphi,dxgdpsi
real(wp_) :: dpsidr,dpsidz,ddpsidrr,ddpsidzz,ddpsidrz,fpolv,dfpv,ddenspsin
xg = zero
yg = 99._wp_
psinv = -1._wp_
dens = zero
btot = zero
ajphi = zero
derxg = zero
deryg = zero
bv = zero
derbv = zero
if(iequil==0) return
dbtot = zero
dbv = zero
dbvcdc = zero
dbvcdc = zero
dbvdc = zero
xx = xv(1)
yy = xv(2)
zz = xv(3)
! cylindrical coordinates
rr2 = xx**2 + yy**2
rr = sqrt(rr2)
csphi = xx/rr
snphi = yy/rr
bv(1) = -snphi*sgnbphi
bv(2) = csphi*sgnbphi
! convert from cm to meters
zzm = 1.0e-2_wp_*zz
rrm = 1.0e-2_wp_*rr
if(iequil==1) then
call equian(rrm,zzm,psinv,fpolv,dfpv,dpsidr,dpsidz, &
ddpsidrr,ddpsidzz,ddpsidrz)
else
call equinum_psi(rrm,zzm,psinv,dpsidr,dpsidz,ddpsidrr,ddpsidzz,ddpsidrz)
call equinum_fpol(psinv,fpolv,dfpv)
end if
! compute yg and derivative
if(psinv < zero) then
bphi = fpolv/rrm
btot = abs(bphi)
yg = btot/bres
return
end if
! compute xg and derivative
call density(psinv,dens,ddenspsin)
xg = xgcn*dens
dxgdpsi = xgcn*ddenspsin/psia
! B = f(psi)/R e_phi+ grad psi x e_phi/R
bphi = fpolv/rrm
brr =-dpsidz/rrm
bzz = dpsidr/rrm
! bvc(i) = B_i in cylindrical coordinates
bvc(1) = brr
bvc(2) = bphi
bvc(3) = bzz
! bv(i) = B_i in cartesian coordinates
bv(1)=bvc(1)*csphi - bvc(2)*snphi
bv(2)=bvc(1)*snphi + bvc(2)*csphi
bv(3)=bvc(3)
! dbvcdc(iv,jv) = d Bcil(iv) / dxvcil(jv)
dbvcdc(1,1) = -ddpsidrz/rrm - brr/rrm
dbvcdc(2,1) = dfpv*dpsidr/rrm - bphi/rrm
dbvcdc(3,1) = ddpsidrr/rrm - bzz/rrm
dbvcdc(1,3) = -ddpsidzz/rrm
dbvcdc(2,3) = dfpv*dpsidz/rrm
dbvcdc(3,3) = ddpsidrz/rrm
! dbvdc(iv,jv) = d Bcart(iv) / dxvcil(jv)
dbvdc(1,1) = dbvcdc(1,1)*csphi - dbvcdc(2,1)*snphi
dbvdc(2,1) = dbvcdc(1,1)*snphi + dbvcdc(2,1)*csphi
dbvdc(3,1) = dbvcdc(3,1)
dbvdc(1,2) = -bv(2)
dbvdc(2,2) = bv(1)
dbvdc(3,2) = dbvcdc(3,2)
dbvdc(1,3) = dbvcdc(1,3)*csphi - dbvcdc(2,3)*snphi
dbvdc(2,3) = dbvcdc(1,3)*snphi + dbvcdc(2,3)*csphi
dbvdc(3,3) = dbvcdc(3,3)
drrdx = csphi
drrdy = snphi
dphidx = -snphi/rrm
dphidy = csphi/rrm
! dbv(iv,jv) = d Bcart(iv) / dxvcart(jv)
dbv(:,1) = drrdx*dbvdc(:,1) + dphidx*dbvdc(:,2)
dbv(:,2) = drrdy*dbvdc(:,1) + dphidy*dbvdc(:,2)
dbv(:,3) = dbvdc(:,3)
! B magnitude and derivatives
b2tot = bv(1)**2 + bv(2)**2 + bv(3)**2
btot = sqrt(b2tot)
dbtot = (bv(1)*dbv(1,:) + bv(2)*dbv(2,:) + bv(3)*dbv(3,:))/btot
yg = btot/Bres
! convert spatial derivatives from dummy/m -> dummy/cm
! to be used in rhs
! bv(i) = B_i / B ; derbv(i,j) = d (B_i / B) /d x,y,z
deryg = 1.0e-2_wp_*dbtot/Bres
bv = bv/btot
do jv=1,3
derbv(:,jv) = 1.0e-2_wp_*(dbv(:,jv) - bv(:)*dbtot(jv))/btot
end do
derxg(1) = 1.0e-2_wp_*drrdx*dpsidr*dxgdpsi
derxg(2) = 1.0e-2_wp_*drrdy*dpsidr*dxgdpsi
derxg(3) = 1.0e-2_wp_*dpsidz *dxgdpsi
! current density computation in Ampere/m^2, ccj==1/mu_0
ajphi = ccj*(dbvcdc(1,3) - dbvcdc(3,1))
! ajr=ccj*(dbvcdc(3,2)/rrm-dbvcdc(2,3))
! ajz=ccj*(bvc(2)/rrm+dbvcdc(2,1)-dbvcdc(1,2))
end subroutine plas_deriv
2015-11-18 17:34:33 +01:00
subroutine disp_deriv(anv,sox,xg,yg,derxg,deryg,bv,derbv,gr2,dgr2,dgr,ddgr, &
dery,anpl,anpr,ddr,ddi,dersdst,derdnm)
use const_and_precisions, only : wp_,zero,one,half,two
use gray_params, only : idst,igrad
implicit none
! arguments
real(wp_), intent(in) :: xg,yg,gr2,sox
real(wp_), intent(out) :: anpl,anpr,ddr,ddi,derdnm,dersdst
real(wp_), dimension(3), intent(in) :: anv,bv,derxg,deryg
real(wp_), dimension(3), intent(in) :: dgr2,dgr
real(wp_), dimension(3,3), intent(in) :: ddgr,derbv
real(wp_), dimension(6), intent(out) :: dery
! local variables
integer :: iv
real(wp_) :: yg2,anpl2,anpr2,del,dnl,duh,dan2sdnpl,an2,an2s
real(wp_) :: dan2sdxg,dan2sdyg,ddelnpl2,ddelnpl2x,ddelnpl2y,denom,derdel
real(wp_) :: derdom,dfdiadnpl,dfdiadxg,dfdiadyg,fdia,bdotgr !,vgm
real(wp_), dimension(3) :: derdxv,danpldxv,derdnv,dbgr !,vgv
an2 = anv(1)*anv(1) + anv(2)*anv(2) + anv(3)*anv(3)
anpl = anv(1)*bv(1) + anv(2)*bv(2) + anv(3)*bv(3)
anpl2 = anpl**2
dnl = one - anpl2
anpr2 = max(an2-anpl2,zero)
anpr = sqrt(anpr2)
yg2 = yg**2
an2s = one
dan2sdxg = zero
dan2sdyg = zero
dan2sdnpl = zero
del = zero
fdia = zero
dfdiadnpl = zero
dfdiadxg = zero
dfdiadyg = zero
duh = one - xg - yg2
if(xg > zero) then
del = sqrt(dnl**2 + 4.0_wp_*anpl2*(one - xg)/yg2)
an2s = one - xg - half*xg*yg2*(one + anpl2 + sox*del)/duh
dan2sdxg = - half*yg2*(one - yg2)*(one + anpl2 + sox*del)/duh**2 &
+ sox*xg*anpl2/(del*duh) - one
dan2sdyg = - xg*yg*(one - xg)*(one + anpl2 + sox*del)/duh**2 &
+ two*sox*xg*(one - xg)*anpl2/(yg*del*duh)
dan2sdnpl = - xg*yg2*anpl/duh &
- sox*xg*anpl*(two*(one - xg) - yg2*dnl)/(del*duh)
if(igrad > 0) then
ddelnpl2 = two*(two*(one - xg)*(one + 3.0_wp_*anpl2**2) &
- yg2*dnl**3)/yg2/del**3
fdia = - xg*yg2*(one + half*sox*ddelnpl2)/duh
derdel = two*(one - xg)*anpl2*(one + 3.0_wp_*anpl2**2) &
- dnl**2*(one + 3.0_wp_*anpl2)*yg2
derdel = 4.0_wp_*derdel/(yg*del)**5
ddelnpl2y = two*(one - xg)*derdel
ddelnpl2x = yg*derdel
dfdiadnpl = 24.0_wp_*sox*xg*(one - xg)*anpl*(one - anpl2**2) &
/(yg2*del**5)
dfdiadxg = - yg2*(one - yg2)/duh**2 - sox*yg2*((one - yg2) &
*ddelnpl2 + xg*duh*ddelnpl2x)/(two*duh**2)
dfdiadyg = - two*yg*xg*(one - xg)/duh**2 &
- sox*xg*yg*(two*(one - xg)*ddelnpl2 &
+ yg*duh*ddelnpl2y)/(two*duh**2)
end if
end if
bdotgr = bv(1)*dgr(1) + bv(2)*dgr(2) + bv(3)*dgr(3)
do iv=1,3
dbgr(iv) = dgr(1)*derbv(1,iv) + bv(1)*ddgr(1,iv) &
+ dgr(2)*derbv(2,iv) + bv(2)*ddgr(2,iv) &
+ dgr(3)*derbv(3,iv) + bv(3)*ddgr(3,iv)
danpldxv(iv) = anv(1)*derbv(1,iv) + anv(2)*derbv(2,iv) + anv(3)*derbv(3,iv)
end do
derdxv = -(derxg*dan2sdxg + deryg*dan2sdyg + danpldxv*dan2sdnpl + &
igrad*dgr2) &
+ fdia*bdotgr*dbgr + half*bdotgr**2 &
*(derxg*dfdiadxg + deryg*dfdiadyg + danpldxv*dfdiadnpl)
derdnv = two*anv + (half*bdotgr**2*dfdiadnpl - dan2sdnpl)*bv
derdnm = sqrt(derdnv(1)**2 + derdnv(2)**2 + derdnv(3)**2)
derdom = -two*an2 + two*xg*dan2sdxg + yg*dan2sdyg + anpl*dan2sdnpl &
+ two*igrad*gr2 - bdotgr**2*(fdia + xg*dfdiadxg &
+ half*yg*dfdiadyg &
+ half*anpl*dfdiadnpl)
if (idst == 0) then
! integration variable: s
denom = derdnm
else if (idst == 1) then
! integration variable: c*t
denom = -derdom
else
! integration variable: Sr
denom = anv(1)*derdnv(1) + anv(2)*derdnv(2) + anv(3)*derdnv(3)
end if
! coefficient for integration in s
! ds/dst, where st is the integration variable
dersdst = derdnm/denom
! rhs vector
dery(1:3) = derdnv(:)/denom
dery(4:6) = -derdxv(:)/denom
! vgv : ~ group velocity
! vgm=0
! do iv=1,3
! vgv(iv)=-derdnv(iv)/derdom
! vgm=vgm+vgv(iv)**2
! end do
! vgm=sqrt(vgm)
! ddr : dispersion relation (real part)
! ddi : dispersion relation (imaginary part)
ddr = an2 - an2s - igrad*(gr2 - half*bdotgr**2*fdia)
ddi = derdnv(1)*dgr(1) + derdnv(2)*dgr(2) + derdnv(3)*dgr(3)
end subroutine disp_deriv
subroutine alpha_effj(psinv,xg,yg,dens,tekev,ak0,bres,derdnm,anpl,anpr, &
2015-11-18 17:34:33 +01:00
sox,anprre,anprim,alpha,didp,nhmin,nhmax,iokhawa,ierr)
use const_and_precisions, only : wp_,zero,pi,mc2=>mc2_
use gray_params, only : iwarm,ilarm,ieccd,imx
use coreprofiles, only : fzeff
2015-11-18 17:34:33 +01:00
use equilibrium, only : sgnbphi
use dispersion, only : harmnumber, warmdisp
use eccd, only : setcdcoeff,eccdeff,fjch0,fjch,fjncl
use errcodes, only : palph
2015-11-18 17:34:33 +01:00
use magsurf_data, only : fluxval
implicit none
! arguments
real(wp_),intent(in) ::psinv,ak0,bres
real(wp_),intent(in) :: xg,yg,tekev,dens,anpl,anpr,derdnm,sox
2015-11-18 17:34:33 +01:00
real(wp_),intent(out) :: anprre,anprim,alpha,didp
integer, intent(out) :: nhmin,nhmax,iokhawa
integer, intent(out) :: ierr
! local constants
real(wp_), parameter :: taucr=12.0_wp_,xxcr=16.0_wp_,eps=1.e-8_wp_
! local variables
real(wp_) :: rbavi,rrii,rhop
integer :: lrm,ithn,ierrcd
2015-11-18 17:34:33 +01:00
real(wp_) :: amu,ratiovgr,rbn,rbx
real(wp_) :: zeff,cst2,bmxi,bmni,fci
2015-11-18 17:34:33 +01:00
real(wp_), dimension(:), allocatable :: eccdpar
real(wp_) :: effjcd,effjcdav,akim,btot
complex(wp_) :: ex,ey,ez
alpha=zero
anprim=zero
anprre=zero
didp=zero
nhmin=0
nhmax=0
iokhawa=0
ierr=0
if(tekev>zero) then
! absorption computation
amu=mc2/tekev
call harmnumber(yg,amu,anpl,nhmin,nhmax,iwarm)
if(nhmin.gt.0) then
lrm=max(ilarm,nhmax)
call warmdisp(xg,yg,amu,anpl,anpr,sox,lrm,ierr,anprre,anprim, &
iwarm,imx,ex,ey,ez)
akim=ak0*anprim
ratiovgr=2.0_wp_*anpr/derdnm!*vgm
alpha=2.0_wp_*akim*ratiovgr
if(alpha<zero) then
ierr=ibset(ierr,palph)
2015-11-18 17:34:33 +01:00
return
end if
! calcolo della efficienza <j/p>: effjcdav [A m/W ]
if(ieccd>0) then
! current drive computation
zeff=fzeff(psinv)
2015-11-18 17:34:33 +01:00
ithn=1
if(lrm>nhmin) ithn=2
rhop=sqrt(psinv)
call fluxval(rhop,rri=rrii,rbav=rbavi,bmn=bmni,bmx=bmxi,fc=fci)
btot=yg*bres
rbn=btot/bmni
rbx=btot/bmxi
select case(ieccd)
case(1)
! cohen model
call setcdcoeff(zeff,rbn,rbx,cst2,eccdpar)
call eccdeff(yg,anpl,anprre,dens,amu,ex,ey,ez,nhmin,nhmax, &
ithn,cst2,fjch,eccdpar,effjcd,iokhawa,ierrcd)
2015-11-18 17:34:33 +01:00
case(2)
! no trapping
call setcdcoeff(zeff,cst2,eccdpar)
call eccdeff(yg,anpl,anprre,dens,amu,ex,ey,ez,nhmin,nhmax, &
ithn,cst2,fjch0,eccdpar,effjcd,iokhawa,ierrcd)
2015-11-18 17:34:33 +01:00
case default
! neoclassical model
call setcdcoeff(zeff,rbx,fci,amu,rhop,cst2,eccdpar)
call eccdeff(yg,anpl,anprre,dens,amu,ex,ey,ez,nhmin,nhmax, &
ithn,cst2,fjncl,eccdpar,effjcd,iokhawa,ierrcd)
2015-11-18 17:34:33 +01:00
end select
ierr=ierr+ierrcd
2015-11-18 17:34:33 +01:00
!deallocate(eccdpar)
effjcdav=rbavi*effjcd
didp=sgnbphi*effjcdav/(2.0_wp_*pi*rrii)
end if
end if
end if
end subroutine alpha_effj
subroutine set_pol(ywrk0,bres,sox,psipol0,chipol0,ext0,eyt0)
use const_and_precisions, only : wp_,degree,zero,one,half,im
use beamdata, only : nray,nrayth
use equilibrium, only : bfield
use gray_params, only : ipol
use polarization, only : pol_limit, polellipse, stokes_ce, stokes_ell
implicit none
! arguments
real(wp_), dimension(6,nray), intent(in) :: ywrk0
real(wp_), intent(in) :: sox,bres
real(wp_), intent(inout) :: psipol0, chipol0
complex(wp_), dimension(nray), intent(out) :: ext0, eyt0
! local variables
integer :: j,k,jk
real(wp_), dimension(3) :: xmv, anv, bv
real(wp_) :: rm, csphi, snphi, bphi, br, bz, qq, uu, vv, deltapol
j=1
k=0
do jk=1,nray
k=k+1
if(jk == 2 .or. k > nrayth) then
j=j+1
k=1
end if
if(ipol == 0) then
xmv=ywrk0(1:3,jk)*0.01_wp_ ! convert from cm to m
anv=ywrk0(4:6,jk)
rm=sqrt(xmv(1)**2+xmv(2)**2)
csphi=xmv(1)/rm
snphi=xmv(2)/rm
call bfield(rm,xmv(3),bphi,br,bz)
! bv(i) = B_i in cartesian coordinates
bv(1)=br*csphi-bphi*snphi
bv(2)=br*snphi+bphi*csphi
bv(3)=bz
call pol_limit(anv,bv,bres,sox,ext0(jk),eyt0(jk))
if (jk == 1) then
call stokes_ce(ext0(jk),eyt0(jk),qq,uu,vv)
call polellipse(qq,uu,vv,psipol0,chipol0)
psipol0=psipol0/degree ! convert from rad to degree
chipol0=chipol0/degree
end if
else
call stokes_ell(chipol0*degree,psipol0*degree,qq,uu,vv)
if(qq**2 < one) then
deltapol=asin(vv/sqrt(one - qq**2))
ext0(jk)= sqrt(half*(one + qq))
eyt0(jk)= sqrt(half*(one - qq))*exp(-im*deltapol)
else
ext0(jk)= one
eyt0(jk)= zero
end if
endif
end do
end subroutine set_pol
! logical function inside_plasma(rrm,zzm)
! use const_and_precisions, only : wp_, zero, one
! use gray_params, only : iequil
! use equilibrium, only : equian,equinum_psi,zbinf,zbsup
! use coreprofiles, only : psdbnd
! implicit none
! ! arguments
! real(wp_), intent(in) :: rrm,zzm
! ! local variables
! real(wp_) :: psinv
!
! if(iequil.eq.1) then
! call equian(rrm,zzm,psinv)
! else
! call equinum_psi(rrm,zzm,psinv)
! end if
!
! inside_plasma = (psinv >= zero .and. psinv < psdbnd) .and. &
! (psinv >= one .or. (zzm >= zbinf .and. zzm <= zbsup))
! end function inside_plasma
!
!
!
! subroutine vacuum_rt(xv0,anv0,xvend,dstvac,ivac)
! use const_and_precisions, only : wp_
! use beamdata, only : dst
! use limiter, only : rlim,zlim,nlim
! implicit none
! ! arguments
! real(wp_), dimension(3), intent(in) :: xv0,anv0
! real(wp_), dimension(3), intent(out) :: xvend
! real(wp_), intent(out) :: dstvac
! integer, intent(out) :: ivac
! ! local variables
! integer :: i
! real(wp_) :: st,rrm,zzm,smax
! real(wp_), dimension(3) :: walln
! logical :: plfound
!
! ! ivac=1 plasma hit before wall reflection
! ! ivac=2 wall hit before plasma
! ! ivac=-1 vessel (and thus plasma) never crossed
!
! call inters_linewall(xv0/1.0e2_wp_,anv0,rlim(1:nlim),zlim(1:nlim), &
! nlim,smax,walln)
! smax=smax*1.0e2_wp_
! rrm=1.0e-2_wp_*sqrt(xv0(1)**2+xv0(2)**2)
! zzm=1.0e-2_wp_*xv0(3)
! if (.not.inside(rlim,zlim,nlim,rrm,zzm)) then
! ! first wall interface is outside-inside
! if (dot_product(walln,walln)<tiny(walln)) then
! ! wall never hit
! dstvac=0.0_wp_
! xvend=xv0
! ivac=-1
! return
! end if
! ! search second wall interface (inside-outside)
! st=smax
! xvend=xv0+st*anv0
! call inters_linewall(xvend/1.0e2_wp_,anv0,rlim(1:nlim), &
! zlim(1:nlim),nlim,smax,walln)
! smax=smax*1.0e2_wp_+st
! end if
! i=0
! do
! st=i*dst
! xvend=xv0+st*anv0
! rrm=1.0e-2_wp_*sqrt(xvend(1)**2+xvend(2)**2)
! zzm=1.0e-2_wp_*xvend(3)
! plfound=inside_plasma(rrm,zzm)
! if (st.ge.smax.or.plfound) exit
! i=i+1
! end do
!
! if (plfound) then
! ivac=1
! dstvac=st
! else
! ivac=2
! dstvac=smax
! xvend=xv0+smax*anv0
! end if
! end subroutine vacuum_rt
subroutine cniteq(rqgrid,zqgrid,matr2dgrid,nr,nz,h,ncon,npts,icount,rcon,zcon)
use const_and_precisions, only : wp_
! v2.01 12/07/95 -- written by d v bartlett, jet joint undertaking.
! (based on an older code)
use const_and_precisions, only : wp_
implicit none
! arguments
integer, intent(in) :: nr,nz
real(wp_), dimension(nr), intent(in) :: rqgrid
real(wp_), dimension(nz), intent(in) :: zqgrid
real(wp_), dimension(nr,nz), intent(in) :: matr2dgrid
real(wp_), intent(in) :: h
integer, intent(inout) :: ncon, icount
integer, dimension(ncon), intent(out) :: npts
real(wp_), dimension(icount), intent(out) :: rcon,zcon
! local variables
integer :: i,j,k,l,nrqmax,iclast,mpl,ix,jx,mxr,n1,jm,jfor,lda,ldb
integer :: jabs,jnb,kx,ikx,itm,inext,in
integer, dimension(3,2) :: ja
integer, dimension(icount/2-1) :: lx
real(wp_) :: drgrd,dzgrd,ah,adn,px,x,y
real(wp_), dimension(nr*nz) :: a
logical :: flag1
px = 0.5_wp_
a = reshape(matr2dgrid,(/nr*nz/))
rcon = 0.0_wp_
zcon = 0.0_wp_
nrqmax = nr
drgrd = rqgrid(2) - rqgrid(1)
dzgrd = zqgrid(2) - zqgrid(1)
ncon = 0
npts = 0
iclast = 0
icount = 0
mpl = 0
ix = 0
mxr = nrqmax * (nz - 1)
n1 = nr - 1
do jx=2,n1
do jm=jx,mxr,nrqmax
j = jm + nrqmax
ah=a(j)-h
if (ah <= 0.0_wp_ .and. a(jm) > h .or. &
ah > 0.0_wp_ .and. a(jm) <= h) then
ix=ix+1
lx(ix)=-j
end if
if (ah <= 0.0_wp_ .and. a(j-1) > h .or. &
ah > 0.0_wp_ .and. a(j-1) <= h) then
ix=ix+1
lx(ix)=j
end if
end do
end do
do jm=nr,mxr,nrqmax
j = jm + nrqmax
ah=a(j)-h
if (ah <= 0.0_wp_ .and. a(j-1) > h .or. &
ah > 0.0_wp_ .and. a(j-1) <= h) then
ix=ix+1
lx(ix)=j
end if
if (ah <= 0.0_wp_ .and. a(jm) > h .or. &
ah > 0.0_wp_ .and. a(jm) <= h) then
ix=ix+1
lx(ix)=-j
end if
end do
do jm=1,mxr,nrqmax
j = jm + nrqmax
if (a(j) <= h .and. a(jm) > h .or. &
a(j) > h .and. a(jm) <= h) then
ix=ix+1
lx(ix) =-j
end if
end do
do j=2,nr
if (a(j) <= h .and. a(j-1) > h .or. &
a(j) > h .and. a(j-1) <= h) then
ix=ix+1
lx(ix)=j
end if
end do
if(ix<=0) return
bb: do
in=ix
jx=lx(in)
jfor=0
lda=1
ldb=2
do
if(jx<0) then
jabs=-jx
jnb = jabs - nrqmax
else
jabs=jx
jnb=jabs-1
end if
adn=a(jabs)-a(jnb)
if(adn/=0) px=(a(jabs)-h)/adn
kx = (jabs - 1) / nrqmax
ikx = jabs - nrqmax * kx - 1
if(jx<0) then
x = drgrd * ikx
y = dzgrd * (kx - px)
else
x = drgrd * (ikx - px)
y = dzgrd * kx
end if
icount = icount + 1
rcon(icount) = x + rqgrid(1)
zcon(icount) = y + zqgrid(1)
mpl= icount
itm = 1
ja(1,1) = jabs + nrqmax
j=1
if(jx<=0) then
ja(1,1) = -jabs-1
j=2
end if
ja(2,1) = -ja(1,1)
ja(3,1) = -jx + 1 - nrqmax
ja(3,2) = -jx
ja(j,2) = jabs - nrqmax
k= 3-j
ja(k,2) = 1-jabs
if (kx<=0 .or. ikx<=0) then
lda=1
ldb=lda
else if (ikx + 1 - nr >= 0 .and. jx <= 0) then
lda=2
ldb=lda
else if(jfor/=0) then
lda=2
do i=1,3
if(jfor==ja(i,2)) then
lda=1
exit
end if
end do
ldb=lda
end if
flag1=.false.
aa: do k=1,3
do l=lda,ldb
do i=1,ix
if(lx(i)==ja(k,l)) then
itm=itm+1
inext= i
if(jfor/=0) exit aa
if(itm .gt. 3) then
flag1=.true.
exit aa
end if
end if
end do
end do
end do aa
if(.not.flag1) then
lx(in)=0
if(itm .eq. 1) exit
end if
jfor=jx
jx=lx(inext)
in = inext
end do
do
if(lx(ix)/=0) then
if(mpl>=4) then
ncon = ncon + 1
npts(ncon) = icount - iclast
iclast = icount
end if
exit
end if
ix= ix-1
if(ix<=0) exit bb
end do
end do bb
if(mpl >= 4) then
ncon = ncon + 1
npts(ncon) = icount - iclast
iclast = icount
end if
end subroutine cniteq
subroutine print_headers
use units, only : uprj0,uwbm,udisp,ucenr,uoutr,upec,usumm
implicit none
write(uprj0,*) ' #sst j k xt yt zt rt'
write(uprj0+1,*) ' #sst j k xt yt zt rt'
write(uwbm,*) ' #sst w1 w2'
write(udisp,*) ' #sst Dr_Nr Di_Nr'
write(ucenr,*) ' #sst R z phi psin rhot ne Te Btot Nperp Npl ki '// &
'alpha tau Pt dIds nhmax iohkw index_rt ddr'
write(uoutr,*) ' #i k sst x y R z psin tau Npl alpha index_rt'
write(upec,*) ' #rhop rhot Jphi Jcdb dPdV Icdins Pins index_rt'
write(usumm,*) ' #Icd Pa Jphip dPdVp rhotj rhotjava rhotp rhotpav ' // &
'drhotjava drhotpav ratjamx ratjbmx stmx psipol chipol index_rt ' // &
'Jphimx dPdVmx drhotj drhotp'
end subroutine print_headers
subroutine print_prof
use const_and_precisions, only : wp_
use equilibrium, only : psinr,nq,fq,frhotor,tor_curr_psi
use coreprofiles, only : density, temp
use units, only : uprfin
implicit none
! local constants
real(wp_), parameter :: eps=1.e-4_wp_
! local variables
integer :: i
real(wp_) :: psin,rhot,ajphi,dens,ddens
write(uprfin,*) ' #psi rhot ne Te q Jphi'
do i=1,nq
psin=psinr(i)
rhot=frhotor(sqrt(psin))
call density(psin,dens,ddens)
call tor_curr_psi(max(eps,psin),ajphi)
write(uprfin,"(12(1x,e12.5))") psin,rhot,dens,temp(psin),fq(psin),ajphi*1.e-6_wp_
end do
end subroutine print_prof
subroutine print_bres(bres)
use const_and_precisions, only : wp_
use gray_params, only : iequil
use equilibrium, only : rmnm, rmxm, zmnm, zmxm, bfield, nq
use units, only : ubres
implicit none
! arguments
real(wp_) :: bres
! local constants
integer, parameter :: icmx=2002
! local variables
integer :: j,k,n,nconts,nctot
integer, dimension(10) :: ncpts
real(wp_) :: dr,dz,btmx,btmn,zzk,rrj,bbphi,bbr,bbz,bbb
real(wp_), dimension(icmx) :: rrcb,zzcb
real(wp_) :: rv(nq), zv(nq)
real(wp_), dimension(nq,nq) :: btotal
dr = (rmxm-rmnm)/(nq-1)
dz = (zmxm-zmnm)/(nq-1)
do j=1,nq
rv(j) = rmnm + dr*(j-1)
zv(j) = zmnm + dz*(j-1)
end do
! Btotal on psi grid
btmx=-1.0e30_wp_
btmn=1.0e30_wp_
do k=1,nq
zzk=zv(k)
do j=1,nq
rrj=rv(j)
call bfield(rrj,zzk,bbphi,bbr,bbz)
btotal(j,k)=sqrt(bbr**2+bbz**2+bbphi**2)
if(btotal(j,k).ge.btmx) btmx=btotal(j,k)
if(btotal(j,k).le.btmn) btmn=btotal(j,k)
enddo
enddo
! compute Btot=Bres/n with n=1,5
write(ubres,*)'#i Btot R z'
do n=1,5
bbb=bres/dble(n)
if (bbb.ge.btmn.and.bbb.le.btmx) then
nconts=size(ncpts)
nctot=size(rrcb)
call cniteq(rv,zv,btotal,nq,nq,bbb,nconts,ncpts,nctot,rrcb,zzcb)
do j=1,nctot
write(ubres,'(i6,12(1x,e12.5))') j,bbb,rrcb(j),zzcb(j)
end do
end if
write(ubres,*)
end do
end subroutine print_bres
subroutine print_surfq(qval)
use const_and_precisions, only : wp_, one
use equilibrium, only : psinr,nq,fq,frhotor,rmaxis,zmaxis, &
zbsup,zbinf
use magsurf_data, only : contours_psi,npoints,print_contour
use utils, only : locate, intlin
implicit none
! arguments
real(wp_), dimension(:), intent(in) :: qval
! local variables
integer :: ncnt,i1,i
real(wp_) :: rup,zup,rlw,zlw,rhot,psival
real(wp_), dimension(npoints) :: rcn,zcn
real(wp_), dimension(nq) :: qpsi
! build q profile on psin grid
do i=1,nq
qpsi(i) = fq(psinr(i))
end do
! locate psi surface for q=qval
print*
do i=1,size(qval)
call locate(abs(qpsi),nq,qval(i),i1) !!!! check for non monotonous q profile
if (i1>0.and.i1<nq) then
call intlin(abs(qpsi(i1)),psinr(i1),abs(qpsi(i1+1)),psinr(i1+1), &
qval(i),psival)
rup=rmaxis
rlw=rmaxis
zup=(zbsup+zmaxis)/2.0_wp_
zlw=(zmaxis+zbinf)/2.0_wp_
call contours_psi(psival,rcn,zcn,rup,zup,rlw,zlw)
call print_contour(psival,rcn,zcn)
rhot=frhotor(sqrt(psival))
print'(4(a,f8.5))','q = ',qval(i), ' psi = ',psival, &
' rhop = ',sqrt(psival),' rhot = ',rhot
end if
end do
end subroutine print_surfq
subroutine print_projxyzt(st,ywrk,iproj)
use const_and_precisions, only : wp_, comp_huge, zero, one
use beamdata, only : nray, nrayr, nrayth, rayi2jk
use units, only : uprj0,uwbm
implicit none
! arguments
real(wp_), intent(in) :: st
real(wp_), dimension(:,:), intent(in) :: ywrk
integer, intent(in) :: iproj
! local variables
integer :: jk,jkz,uprj
integer, dimension(2) ::jkv
real(wp_), dimension(3) :: xv1,dir,dxv
real(wp_) :: dirm,rtimn,rtimx,csth1,snth1,csps1,snps1,xti,yti,zti,rti
! common/external functions/variables
uprj = uprj0 + iproj
xv1 = ywrk(1:3,1)
dir = ywrk(4:6,1)
dirm = sqrt(dir(1)**2 + dir(2)**2 + dir(3)**2)
dir = dir/dirm
csth1 = dir(3)
snth1 = sqrt(one - csth1**2)
if(snth1 > zero) then
csps1=dir(2)/snth1
snps1=dir(1)/snth1
else
csps1=one
snps1=zero
end if
if(iproj==0) then
jkz = nray - nrayth + 1
else
jkz = 1
end if
rtimn = comp_huge
rtimx = zero
do jk = jkz, nray
dxv = ywrk(1:3,jk) - xv1
xti = dxv(1)*csps1 - dxv(2)*snps1
yti =(dxv(1)*snps1 + dxv(2)*csps1)*csth1 - dxv(3)*snth1
zti =(dxv(1)*snps1 + dxv(2)*csps1)*snth1 + dxv(3)*csth1
rti = sqrt(xti**2 + yti**2)
jkv=rayi2jk(jk)
if(.not.(iproj==0 .and. jk==1)) &
write(uprj,'(1x,e16.8e3,2i5,4(1x,e16.8e3))') st,jkv,xti,yti,zti,rti
if(iproj==1 .and. jkv(2)==nrayth) write(uprj,*)
if(rti>=rtimx .and. jkv(1)==nrayr) rtimx = rti
if(rti<=rtimn .and. jkv(1)==nrayr) rtimn = rti
end do
write(uprj,*)
write(uwbm,'(3(1x,e16.8e3))') st,rtimn,rtimx
end subroutine print_projxyzt
2015-11-18 17:34:33 +01:00
subroutine print_output(i,jk,st,qj,xv,psinv,btot,ak0,anpl,anpr,anprim, &
dens,tekev,alpha,tau,dids,nhf,iokhawa,index_rt,ddr,ddi)
use const_and_precisions, only : degree,zero,one
use equilibrium, only : frhotor
use gray_params, only : istpl0
use beamdata, only : nray,nrayth,jkray1
use units, only : ucenr,uoutr,udisp
2015-11-18 17:34:33 +01:00
implicit none
! arguments
integer, intent(in) :: i,jk,nhf,iokhawa,index_rt
real(wp_), dimension(3), intent(in) :: xv
real(wp_), intent(in) :: st,qj,psinv,btot,ak0,anpl,anpr,anprim
real(wp_), intent(in) :: dens,tekev,alpha,tau,dids,ddr,ddi
! local variables
real(wp_) :: stm,xxm,yym,zzm,rrm,phideg,rhot,akim,pt,didsn
integer :: k
stm=st*1.0e-2_wp_
xxm=xv(1)*1.0e-2_wp_
yym=xv(2)*1.0e-2_wp_
zzm=xv(3)*1.0e-2_wp_
rrm=sqrt(xxm**2 + yym**2)
! print central ray trajectory. dIds in A/m/W, ki in m^-1
2015-11-18 17:34:33 +01:00
if(jk.eq.1) then
phideg=atan2(yym,xxm)/degree
if(psinv>=zero .and. psinv<=one) then
rhot=frhotor(psinv)
else
rhot=1.0_wp_
end if
akim=anprim*ak0*1.0e2_wp_
pt=exp(-tau)
didsn=dids*1.0e2_wp_/qj
write(ucenr,'(16(1x,e16.8e3),3i5,1x,e16.8e3)') stm,rrm,zzm,phideg, &
psinv,rhot,dens,tekev,btot,anpr,anpl,akim,alpha,tau,pt,didsn, &
nhf,iokhawa,index_rt,ddr
2015-11-18 17:34:33 +01:00
end if
! print conservation of dispersion relation
if(jk==nray) write(udisp,'(30(1x,e16.8e3))') st,ddr,ddi
2015-11-18 17:34:33 +01:00
! print outer trajectories
if(mod(i,istpl0)==0) then
k = jk - jkray1 + 1
if(k>0 .and. k<=nrayth) then
write(uoutr,'(2i5,9(1x,e16.8e3),i5)') i,k,stm,xxm,yym,rrm,zzm, &
psinv,tau,anpl,alpha,index_rt
2015-11-18 17:34:33 +01:00
end if
end if
end subroutine print_output
subroutine print_pec(rhop_tab,rhot_tab,jphi,jcd,dpdv,currins,pins,index_rt)
use const_and_precisions, only : wp_
use units, only : upec
implicit none
! arguments
real(wp_), dimension(:), intent(in) :: rhop_tab,rhot_tab,jphi,jcd,dpdv, &
currins,pins
integer, intent(in) :: index_rt
! local variables
integer :: i
do i=1,size(rhop_tab)
write(upec,'(7(1x,e16.8e3),i5)') rhop_tab(i),rhot_tab(i), &
jphi(i),jcd(i),dpdv(i),currins(i),pins(i),index_rt
end do
end subroutine print_pec
subroutine print_finals(pabs,icd,dpdvp,jphip,rhotpav,rhotjava,drhotpav, &
drhotjava,dpdvmx,jphimx,rhotp,rhotj,drhotp,drhotj,ratjamx,ratjbmx, &
stmx,psipol,chipol,index_rt)
use const_and_precisions, only : wp_
use units, only : usumm
implicit none
real(wp_), intent(in) :: pabs,icd,dpdvp,jphip,rhotpav,rhotjava,drhotpav, &
drhotjava,dpdvmx,jphimx,rhotp,rhotj,drhotp,drhotj,ratjamx,ratjbmx, &
stmx,psipol,chipol
integer, intent(in) :: index_rt
write(usumm,'(15(1x,e12.5),i5,4(1x,e12.5))') icd,pabs,jphip,dpdvp, &
rhotj,rhotjava,rhotp,rhotpav,drhotjava,drhotpav,ratjamx,ratjbmx, &
stmx,psipol,chipol,index_rt,jphimx,dpdvmx,drhotj,drhotp
end subroutine print_finals
2015-11-18 17:34:33 +01:00
end module graycore