mirror of
https://github.com/fazo96/AIrium.git
synced 2025-01-24 11:44:21 +01:00
added some groundwork for recurrent neural networks
This commit is contained in:
parent
f6ae99b23a
commit
c37675d7b3
@ -241,6 +241,8 @@ public class World implements Runnable {
|
||||
n = top[first].getBrain().breed(top[sec].getBrain().getMap());
|
||||
} catch (Exception ex) {
|
||||
// Should not happen
|
||||
Log.log(Log.ERROR, "Could not breed: " + ex.getMessage()
|
||||
+ "\nIt is advised to restart the simulation after changing the brain's topology");
|
||||
Logger.getLogger(World.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
Creature ne = spawnCreature(n);
|
||||
|
@ -46,7 +46,7 @@ public class Brain {
|
||||
for (int j = 0; j < brainMap[i].length; j++) { // for each neuron
|
||||
// skip input layer
|
||||
if (neurons[i + 1][j] == null) {
|
||||
neurons[i + 1][j] = new Neuron(j, bias, this, brainMap[i][j]);
|
||||
neurons[i + 1][j] = new Neuron(i + 1, i, bias, this, brainMap[i][j]);
|
||||
} else {
|
||||
neurons[i + 1][j].setWeights(brainMap[i][j]);
|
||||
}
|
||||
@ -63,7 +63,7 @@ public class Brain {
|
||||
for (int i = 0; i < neurons.length; i++) {
|
||||
for (int j = 0; j < neurons[i].length; j++) {
|
||||
// create neuron
|
||||
Neuron n = new Neuron(i, bias, this);
|
||||
Neuron n = new Neuron(i, i - 1, bias, this);
|
||||
neurons[i][j] = n;
|
||||
Log.log(Log.DEBUG, "Adding Layer " + (i + 1) + " Neuron " + (j + 1));
|
||||
}
|
||||
@ -269,10 +269,10 @@ public class Brain {
|
||||
}
|
||||
}
|
||||
|
||||
private void recomputeName(){
|
||||
private void recomputeName() {
|
||||
name = Serializer.nameBrain(getMap());
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Returns an array with pointers to all this brain's neurons.
|
||||
*
|
||||
@ -285,5 +285,5 @@ public class Brain {
|
||||
public String getName() {
|
||||
return name;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
@ -15,7 +15,7 @@ public class Neuron {
|
||||
private NeuronCache cache;
|
||||
private float bias, output;
|
||||
private boolean isInputNeuron;
|
||||
private int layer;
|
||||
private int layer, receivesFromLayer;
|
||||
private Brain brain;
|
||||
|
||||
/**
|
||||
@ -24,10 +24,12 @@ public class Neuron {
|
||||
*
|
||||
* @param layer the layer in which this neuron is positioned
|
||||
* @param bias the bias of this neuron
|
||||
* @param receivesFromLayer the layer to read data from (negative for input
|
||||
* neurons)
|
||||
* @param brain the brain which contains this neuron
|
||||
*/
|
||||
public Neuron(int layer, float bias, Brain brain) {
|
||||
this(layer, bias, brain, null);
|
||||
public Neuron(int layer, int receivesFromLayer, float bias, Brain brain) {
|
||||
this(layer, receivesFromLayer, bias, brain, null);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -35,19 +37,26 @@ public class Neuron {
|
||||
* being the input layer, with given weights
|
||||
*
|
||||
* @param layer the layer in which this neuron is positioned
|
||||
* @param receivesFromLayer the layer to read data from (negative for input
|
||||
* neurons)
|
||||
* @param bias the bias of this neuron
|
||||
* @param brain the brain which contains this neuron
|
||||
* @param weights the weights to use to configure this neuron
|
||||
*/
|
||||
public Neuron(int layer, float bias, Brain brain, float[] weights) {
|
||||
public Neuron(int layer, int receivesFromLayer, float bias, Brain brain, float[] weights) {
|
||||
this.brain = brain;
|
||||
this.layer = layer;
|
||||
if (weights == null) {
|
||||
this.receivesFromLayer = receivesFromLayer;
|
||||
if (receivesFromLayer < 0 || layer == 0) {
|
||||
isInputNeuron = true;
|
||||
} else if (weights == null) {
|
||||
scramble();
|
||||
} else {
|
||||
this.weights = weights;
|
||||
}
|
||||
cache = new NeuronCache(this.weights.length);
|
||||
if (!isInputNeuron) {
|
||||
cache = new NeuronCache(this.weights.length);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -56,8 +65,8 @@ public class Neuron {
|
||||
private void scramble() {
|
||||
// init weights
|
||||
if (layer > 0) {
|
||||
weights = new float[brain.getNeurons()[layer - 1].length];
|
||||
} else { // layer 0
|
||||
weights = new float[brain.getNeurons()[receivesFromLayer].length];
|
||||
} else { // layer 0 or negative
|
||||
isInputNeuron = true;
|
||||
weights = new float[0];
|
||||
}
|
||||
@ -76,7 +85,9 @@ public class Neuron {
|
||||
* @return the output of this neuron.
|
||||
*/
|
||||
public float compute() {
|
||||
if(weights == null || weights.length == 0) isInputNeuron = true;
|
||||
if (weights == null || weights.length == 0) {
|
||||
isInputNeuron = true;
|
||||
}
|
||||
if (isInputNeuron) {
|
||||
return output;
|
||||
}
|
||||
@ -93,7 +104,7 @@ public class Neuron {
|
||||
Logger.getLogger(Neuron.class.getName()).log(Level.SEVERE, null, ex);
|
||||
}
|
||||
} else {
|
||||
Neuron n = brain.getNeurons()[layer - 1][i];
|
||||
Neuron n = brain.getNeurons()[receivesFromLayer][i];
|
||||
float v = n.compute() * weights[i];
|
||||
a += v;
|
||||
cache.put(i, v);
|
||||
|
Loading…
Reference in New Issue
Block a user