analistica/ex-1/landau.c

102 lines
2.4 KiB
C

/* This file contains functions to
* compute the Landau distribution
* PDF, CDF and QDF functions.
*/
#include <gsl/gsl_roots.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_integration.h>
/* This is a wrapper needed by `landau_cdf` because
* the numerical integration expects a function
* with parameters.
*/
double landau_pdf(double x, void* params) {
return gsl_ran_landau_pdf(x);
}
/* The cumulative function of the Landau distribution
* calculated by numerical integration.
*/
double landau_cdf(double x, void* params) {
// create the integrand
gsl_function pdf;
pdf.function = &landau_pdf;
pdf.params = NULL;
// set up the integration
double res, err;
size_t iter = 500;
gsl_integration_workspace* w =
gsl_integration_workspace_alloc(iter);
// clip values too small
if (x < -200) x = -200;
// We integrate the pdf in [x, +∞) instead
// of (-∞, x] to avoid a singularity and
// then return 1 - P.
gsl_integration_qagiu(
&pdf, // integrand
x, // lower bound
1e-10, 1e-6, // abs and rel error
iter, // max iteration
w, // "workspace"
&res, &err); // result, abs error
// free the memory
gsl_integration_workspace_free(w);
return 1 - res;
}
/* Another wrapper: this time it is needed by
* `landau_qdf` to solve the equation:
* `landau_cdf(x) = p0` for x
*/
double landau_cdf_root(double x, void* params) {
double p0 = *(double*)params;
return p0 - landau_cdf(x, NULL);
}
/* The quantile function (inverse CDF) of the Landau
* distribution calculated by numerical root method.
*/
double landau_qdf(double p0) {
// create function
gsl_function cdf;
cdf.function = &landau_cdf_root;
cdf.params = &p0;
// use the Brent method
gsl_root_fsolver* s =
gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
// search interval
double low = -1000, // lower value
upp = 100000; // upper value
gsl_root_fsolver_set(s, &cdf, low, upp);
// iterative search
size_t iter = 1000; // max iteration
int stat = GSL_CONTINUE;
for (size_t i=0; stat==GSL_CONTINUE && i<iter; i++) {
stat = gsl_root_fsolver_iterate(s);
low = gsl_root_fsolver_x_lower(s);
upp = gsl_root_fsolver_x_upper(s);
stat = gsl_root_test_interval(low, upp, 0, 0.001);
}
fprintf(stderr, "QDF error: %.3g\n", upp - low);
double root = gsl_root_fsolver_root(s);
// free memory
gsl_root_fsolver_free(s);
return root;
}