615 lines
16 KiB
C
615 lines
16 KiB
C
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <stdarg.h>
|
||
#include <math.h>
|
||
#include <gsl/gsl_sf_lambert.h>
|
||
#include <gmp.h>
|
||
#include <time.h>
|
||
|
||
/* The Euler-Mascheroni constant is here computed to
|
||
* arbitrary precision using GMP rational numbers
|
||
* and the standard Brent-McMillan algorithm.
|
||
*
|
||
* γ = A(N)/B(N) - C(N)/B(N)² - log(N)
|
||
*
|
||
* where:
|
||
*
|
||
* A(N) = Σ_(k = 1)^(k_max) (N^k/k!)² * H(k)
|
||
* B(N) = Σ_(k = 0)^(k_max) (N^k/k!)²
|
||
* C(N) = 1/4N Σ_(k = 0)^(2N) ((2k)!)^3/((k!)^4*(16N))^2k
|
||
* H(k) = Σ_(j = 1)^(k) (1/k), the k-th harmonic number
|
||
*
|
||
* The error of the estimation is given by
|
||
*
|
||
* Δ(N) = 5/12 √(2π) exp(-8N)/√x
|
||
*
|
||
* so, given a number D of decimal digits to compute we ask
|
||
* that the error be smaller than 10^-D. The smallest integer
|
||
* to solve the inequality can be proven to be
|
||
*
|
||
* N = floor(W(5π/9 10^(2D + 1))/16) + 1
|
||
*
|
||
* where W is the principal value of the Lambert W function.
|
||
*
|
||
* The number of series terms needed to reduce the error, due to
|
||
* to less than 10^-D is α⋅2^p where α is the solution of:
|
||
*
|
||
* α log(α) = 3 + α ⇒ α = exp(W(3e) - 1) ≈ 4.97
|
||
*
|
||
* source: Precise error estimate of the Brent-McMillan algorithm for
|
||
* the computation of Euler's constant, Jean-Pierre Demailly.
|
||
*/
|
||
|
||
/* `mpq_dec_str(z, n)`
|
||
* returns the decimal representation of the
|
||
* rational z as a string, up to n digits.
|
||
*/
|
||
char* mpq_dec_str(mpq_t z, size_t mantissa_size) {
|
||
mpz_t num, den, quot, rem;
|
||
mpz_inits(num, den, quot, rem, NULL);
|
||
|
||
// calculate integral part
|
||
mpq_get_num(num, z);
|
||
mpq_get_den(den, z);
|
||
mpz_tdiv_qr(quot, rem, num, den);
|
||
|
||
// store the integral part
|
||
size_t integral_size = mpz_sizeinbase(quot, 10);
|
||
char* repr = calloc(integral_size + 1 + mantissa_size + 1, sizeof(char));
|
||
mpz_get_str(repr, 10, quot);
|
||
|
||
// add decimal point
|
||
repr[integral_size] = '.';
|
||
|
||
// calculate the mantissa
|
||
mpz_t cur;
|
||
mpz_init(cur);
|
||
size_t digit;
|
||
for (size_t i = 0; i < mantissa_size; i++) {
|
||
// calculate i-th digit as:
|
||
// digit = (remainder * 10) / denominator
|
||
// new_ramainder = (remainder * 10) % denominator
|
||
mpz_set(cur, rem);
|
||
mpz_mul_ui(cur, rem, 10);
|
||
mpz_tdiv_qr(quot, rem, cur, den);
|
||
|
||
// store digit in mantissa
|
||
digit = mpz_get_ui(quot);
|
||
sprintf(repr + integral_size + 1 + i, "%ld", digit);
|
||
}
|
||
|
||
// free memory
|
||
mpz_clears(num, den, quot, rem, cur, NULL);
|
||
|
||
return repr;
|
||
}
|
||
|
||
|
||
void mpq_fprintf(FILE *fp, size_t digits, char* fmt, ...) {
|
||
va_list args;
|
||
va_start(args, fmt);
|
||
|
||
char* str;
|
||
char fmtc[2] = "%x";
|
||
|
||
for (char* p = fmt; *p; p++) {
|
||
if (*p != '%') {
|
||
fprintf(fp, "%c", *p);
|
||
continue;
|
||
}
|
||
switch (*++p) {
|
||
case 's':
|
||
str = va_arg(args, char*);
|
||
fputs(str, fp);
|
||
break;
|
||
case 'l':
|
||
if (*++p == 'd')
|
||
fprintf(fp, "%ld", va_arg(args, size_t));
|
||
break;
|
||
case 'q':
|
||
str = mpq_dec_str(*va_arg(args, mpq_t*), digits);
|
||
fputs(str, fp);
|
||
free(str);
|
||
break;
|
||
default:
|
||
fmtc[1] = *p;
|
||
gmp_fprintf(fp, fmtc, *va_arg(args, mpq_t*));
|
||
}
|
||
}
|
||
va_end(args);
|
||
}
|
||
|
||
|
||
/* `mpq_log2(z, D)`
|
||
* calculate log(2) to D decimal places
|
||
* using the series
|
||
*
|
||
* log(2) = Σ_{k=1} 1/(k 2^k)
|
||
*
|
||
* The error of the n-th partial sum is
|
||
* estimated as
|
||
*
|
||
* Δn = 1/(n(n+2) 2^(n-1)).
|
||
*
|
||
* So to fix the first D decimal places
|
||
* we evaluate up to n terms such that
|
||
*
|
||
* Δn < 1/10^D
|
||
*/
|
||
void mpq_log2(mpq_t rop, size_t digits) {
|
||
mpq_t sum, term;
|
||
mpq_inits(sum, term, NULL);
|
||
|
||
fprintf(stderr, "[mpq_log2] decimal digits: %ld\n", digits);
|
||
|
||
/* calculate n, the number of required terms */
|
||
size_t n;
|
||
mpz_t temp, prec, width; mpz_inits(temp, prec, width, NULL);
|
||
// prec = 10^digits
|
||
mpz_ui_pow_ui(prec, 10, digits + 2);
|
||
|
||
for (n = 1;; n++) {
|
||
// width = n*(n + 2)*2^(n - 1)
|
||
mpz_set_ui(width, n);
|
||
mpz_set_ui(temp, n);
|
||
mpz_add_ui(temp, temp, 2);
|
||
mpz_mul(width, width, temp);
|
||
mpz_sub_ui(temp, temp, 3);
|
||
mpz_mul_2exp(width, width, mpz_get_ui(temp));
|
||
|
||
if (mpz_cmp(width, prec) > 0) break;
|
||
}
|
||
fprintf(stderr, "[mpq_log2] series terms: %ld\n", n);
|
||
|
||
/* Compute the nth partial sum */
|
||
for (size_t i=1; i<=n; i++) {
|
||
mpq_set_ui(term, 1, 1);
|
||
mpz_ui_pow_ui(mpq_denref(term), 2, i);
|
||
mpz_mul_ui(mpq_denref(term), mpq_denref(term), i);
|
||
mpq_add(sum, sum, term);
|
||
}
|
||
|
||
/* Compute upper/lower bounds */
|
||
mpq_t upp, low;
|
||
mpq_inits(upp, low, NULL);
|
||
|
||
// upp = sum + term
|
||
mpq_add(upp, sum, term);
|
||
|
||
// low = sum + term * n/(n+2)
|
||
mpz_mul_ui(mpq_numref(low), mpq_numref(term), n);
|
||
mpz_mul_ui(mpq_denref(low), mpq_denref(term), n+2);
|
||
mpq_canonicalize(low);
|
||
mpq_add(low, sum, low);
|
||
|
||
/* Average the two bounds */
|
||
mpq_add(sum, upp, low);
|
||
mpz_mul_ui(mpq_denref(sum), mpq_denref(sum), 2);
|
||
mpq_canonicalize(sum);
|
||
|
||
size_t d = digits > 50 ? 50 : digits;
|
||
mpq_fprintf(stderr, d+2, "[mpq_log2] upper bound: %q...\n", &upp);
|
||
mpq_fprintf(stderr, d+2, "[mpq_log2] lower bound: %q...\n", &low);
|
||
mpq_fprintf(stderr, d, "[mpq_log2] log(2)=%q...\n", &sum);
|
||
|
||
// return sum
|
||
mpq_set(rop, sum);
|
||
|
||
// free memory
|
||
mpq_clears(sum, term, upp, low, NULL);
|
||
mpz_clears(temp, prec, width, NULL);
|
||
}
|
||
|
||
|
||
/* `mpq_log_ui(z, x, D)`
|
||
* calculates the logarithm of x up
|
||
* to D decimal places using the formula
|
||
*
|
||
* log(x) = log(a(x) * 2^(n-1))
|
||
* = log(a) + (n-1) log(2)
|
||
*
|
||
* where 1<a<2 and n is the number of binary
|
||
* digits of x.
|
||
*
|
||
* log(a) is computed from
|
||
*
|
||
* log((1+y)/(1-y)) = 2Σ_{k=0} y^(2k+1)/(2k+1)
|
||
*
|
||
* where y = (a-1)/(a+1).
|
||
*
|
||
* The error of the n-th partial sum is
|
||
* estimated as:
|
||
*
|
||
* Δ(n, y) = 4y^(2n + 3) /
|
||
* (4n^2y^4 - 8n^2y^2 + 4n^2 + 4ny^4 - 12ny^2 + 8n + y^4 - 4y^2 + 3)
|
||
*
|
||
* So to fix the first D decimal places
|
||
* we evaluate up to n terms such that
|
||
*
|
||
* Δ(n, y) < 1/10^D
|
||
*/
|
||
void mpq_log_ui(mpq_t rop, size_t x, size_t digits) {
|
||
/* calculate `a` such that x = a⋅2^(m-1) */
|
||
mpq_t a; mpq_init(a);
|
||
mpz_t xz, power; mpz_inits(xz, power, NULL);
|
||
mpz_set_ui(xz, x);
|
||
|
||
// m = digits in base 2 of x
|
||
size_t m = mpz_sizeinbase(xz, 2);
|
||
mpz_ui_pow_ui(power, 2, m - 1);
|
||
mpq_set_num(a, xz);
|
||
mpq_set_den(a, power);
|
||
|
||
fprintf(stderr, "[mpq_log_ui] binary digits: %ld\n", m);
|
||
fprintf(stderr, "[mpq_log_ui] a=%g\n", mpq_get_d(a));
|
||
|
||
/* calculate y = (a-1)/(a+1) */
|
||
mpq_t y, temp; mpq_inits(y, temp, NULL);
|
||
|
||
mpq_set(temp, a);
|
||
// decrement: a/b -= b/b
|
||
mpz_submul_ui(mpq_numref(temp),
|
||
mpq_denref(temp), 1);
|
||
mpq_set(y, temp);
|
||
|
||
mpq_set(temp, a);
|
||
// increment: a/b += b/b
|
||
mpz_addmul_ui(mpq_numref(temp),
|
||
mpq_denref(temp), 1);
|
||
mpq_div(y, y, temp);
|
||
|
||
fprintf(stderr, "[mpq_log_ui] y=%g\n", mpq_get_d(y));
|
||
|
||
|
||
/* calculate number of required terms:
|
||
* find smallest n such that Δ(n, y) < 1/10^digits.
|
||
*/
|
||
mpq_t y4, y2, y2n, t1, t2;
|
||
mpq_inits(y4, y2, y2n, t1, t2, NULL);
|
||
|
||
// y4 = y^4
|
||
mpz_pow_ui(mpq_numref(y4), mpq_numref(y), 4);
|
||
mpz_pow_ui(mpq_denref(y4), mpq_denref(y), 4);
|
||
|
||
// y2 = y^2
|
||
mpz_pow_ui(mpq_numref(y2), mpq_numref(y), 2);
|
||
mpz_pow_ui(mpq_denref(y2), mpq_denref(y), 2);
|
||
|
||
size_t n;
|
||
size_t p1, p2, p3;
|
||
|
||
for(n = 0;; n++) {
|
||
// polynomials in n
|
||
p1 = 4*pow(n, 2) + 4*n + 1;
|
||
p2 = 8*pow(n, 2) + 12*n - 4;
|
||
p3 = 4*pow(n, 2) + 3;
|
||
|
||
// t1 = y4 * p1
|
||
mpz_mul_ui(mpq_numref(t1), mpq_numref(y4), p1);
|
||
mpq_canonicalize(t1);
|
||
// t2 = y2 * p2
|
||
mpz_mul_ui(mpq_numref(t2), mpq_numref(y2), p2);
|
||
mpq_canonicalize(t2);
|
||
|
||
// t1 -= t2
|
||
mpq_sub(t1, t1, t2);
|
||
// t1 += p3
|
||
mpz_addmul_ui(mpq_numref(t1), mpq_denref(t1), p3);
|
||
|
||
// y2n = 4*y^(2n + 3)
|
||
mpq_set(y2n, y);
|
||
mpz_pow_ui(mpq_numref(y2n), mpq_numref(y2n), 2*n+3);
|
||
mpz_pow_ui(mpq_denref(y2n), mpq_denref(y2n), 2*n+3);
|
||
mpz_mul_ui(mpq_numref(y2n), mpq_numref(y2n), 4);
|
||
mpq_canonicalize(y2n);
|
||
|
||
// t2 = 10^digits * y2n
|
||
mpq_set_ui(t2, 1, 1);
|
||
mpz_ui_pow_ui(mpq_numref(t2), 10, digits + 1);
|
||
mpq_mul(t2, t2, y2n);
|
||
|
||
if (mpq_cmp(t1, t2) > 0) break;
|
||
}
|
||
|
||
fprintf(stderr, "[mpq_log_ui] series terms: %ld\n", n);
|
||
fprintf(stderr, "[mpq_log_ui] decimal digits: %ld\n", digits);
|
||
|
||
|
||
/* Compute the nth partial sum of
|
||
* log(A) = log((1+y)/(1-y)) = 2 Σ_{k=0} y^(2k+1)/(2k+1)
|
||
*/
|
||
mpq_t sum, term; mpq_inits(sum, term, NULL);
|
||
|
||
for (size_t i = 0; i <= n; i++) {
|
||
// numerator: y^(2i+1)
|
||
mpq_set(temp, y);
|
||
mpz_pow_ui(mpq_numref(temp), mpq_numref(temp), 2*i + 1);
|
||
mpz_pow_ui(mpq_denref(temp), mpq_denref(temp), 2*i + 1);
|
||
mpq_canonicalize(temp);
|
||
mpq_set(term, temp);
|
||
|
||
// denominator: 2i+1
|
||
mpq_set_ui(temp, 2*i + 1, 1);
|
||
mpq_div(term, term, temp);
|
||
|
||
// sum the term
|
||
mpq_add(sum, sum, term);
|
||
}
|
||
|
||
/* Compute the upper and lower bounds */
|
||
mpq_t upp, low;
|
||
mpq_inits(upp, low, NULL);
|
||
|
||
// upp = sum + term * y2/(1-y2)
|
||
mpq_mul(upp, term, y2);
|
||
mpq_set_ui(temp, 1, 1);
|
||
mpq_sub(temp, temp, y2);
|
||
mpq_div(upp, upp, temp);
|
||
mpq_add(upp, sum, upp);
|
||
|
||
// low = sum + term / ((2*n + 3)/(2*n + 1)*y^-2 - 1)
|
||
mpq_set_ui(temp, 2*n + 3, 2*n + 1);
|
||
mpq_div(temp, temp, y2);
|
||
mpz_sub(mpq_numref(temp), mpq_numref(temp), mpq_denref(temp));
|
||
mpq_canonicalize(temp);
|
||
mpq_div(low, term, temp);
|
||
mpq_add(low, sum, low);
|
||
|
||
/* Average the two bounds
|
||
* Note: we don't divive the sum by 2 because we
|
||
* actually need 2 Σ_{k=0} y^(2k+1)/(2k+1).
|
||
*/
|
||
mpq_add(sum, low, upp);
|
||
|
||
size_t d = digits > 50 ? 50 : digits;
|
||
mpq_fprintf(stderr, d+2, "[mpq_log_ui] upper bound: %q...\n", upp);
|
||
mpq_fprintf(stderr, d+2, "[mpq_log_ui] lower bound: %q...\n", low);
|
||
mpq_fprintf(stderr, d, "[mpq_log_ui] series: %q...\n", sum);
|
||
|
||
// calculate log(2)*(m-1)
|
||
mpq_t log2; mpq_init(log2);
|
||
mpq_log2(log2, digits);
|
||
|
||
mpz_mul_ui(mpq_numref(log2), mpq_numref(log2), m-1);
|
||
mpq_canonicalize(log2);
|
||
|
||
// series += log(2)*(m-1)
|
||
mpq_add(sum, sum, log2);
|
||
mpq_set(rop, sum);
|
||
|
||
mpq_fprintf(stderr, digits > 50 ? 50 : digits,
|
||
"[mpq_log_ui] log(%ld)=%q...\n", x, sum);
|
||
|
||
// free memory
|
||
mpq_clears(a, y, temp, sum, term, log2,
|
||
y4, y2, y2n, t1, t2, NULL);
|
||
mpz_clears(xz, power, NULL);
|
||
}
|
||
|
||
|
||
/* A series */
|
||
void a_series(mpq_t rop, size_t N) {
|
||
mpq_t sum, term, factq, harm, recip;
|
||
mpz_t fact, power, stop;
|
||
|
||
mpq_inits(sum, term, factq, harm, recip, NULL);
|
||
mpz_inits(fact, power, stop, NULL);
|
||
mpz_set_ui(stop, N);
|
||
|
||
mpz_set_ui(fact, 1);
|
||
mpz_set_ui(power, 1);
|
||
for (size_t k = 0; k < 5*N; k++) {
|
||
if (k > 0) {
|
||
mpz_mul_ui(fact, fact, k);
|
||
mpz_mul(power, power, stop);
|
||
}
|
||
|
||
mpq_set_z(term, power);
|
||
mpq_set_z(factq, fact);
|
||
mpq_div(term, term, factq);
|
||
mpq_mul(term, term, term);
|
||
|
||
if (k > 0)
|
||
mpq_set_ui(recip, 1, k);
|
||
mpq_add(harm, harm, recip);
|
||
mpq_mul(term, term, harm);
|
||
mpq_add(sum, sum, term);
|
||
}
|
||
|
||
mpq_set(rop, sum);
|
||
|
||
// free memory
|
||
mpq_clears(sum, term, factq, harm, recip, NULL);
|
||
mpz_clears(fact, power, stop, NULL);
|
||
}
|
||
|
||
|
||
/* B series */
|
||
void b_series(mpq_t rop, size_t N){
|
||
mpq_t sum, term, factq;
|
||
mpz_t fact, power, stop;
|
||
|
||
mpq_inits(sum, term, factq, NULL);
|
||
mpz_inits(fact, power, stop, NULL);
|
||
mpz_set_ui(stop, N);
|
||
|
||
mpz_set_ui(fact, 1);
|
||
mpz_set_ui(power, 1);
|
||
for (size_t k = 0; k < 5*N; k++) {
|
||
if (k > 0) {
|
||
mpz_mul_ui(fact, fact, k);
|
||
mpz_mul(power, power, stop);
|
||
}
|
||
|
||
mpq_set_z(term, power);
|
||
mpq_set_z(factq, fact);
|
||
mpq_div(term, term, factq);
|
||
|
||
mpq_mul(term, term, term);
|
||
mpq_add(sum, sum, term);
|
||
}
|
||
|
||
mpq_set(rop, sum);
|
||
|
||
// free memory
|
||
mpq_clears(sum, term, factq, NULL);
|
||
mpz_clears(fact, power, stop, NULL);
|
||
}
|
||
|
||
|
||
/* C series */
|
||
void c_series(mpq_t rop, size_t N) {
|
||
mpq_t sum, term, stop2, fact2q;
|
||
mpz_t fact1, pfact1, fact2, pfact2, power, stop1;
|
||
|
||
mpq_inits(sum, term, stop2, fact2q, NULL);
|
||
mpz_inits(fact1, pfact1, fact2, pfact2, power, stop1, NULL);
|
||
mpq_set_ui(stop2, 4*N, 1);
|
||
|
||
mpz_set_ui(fact1, 1);
|
||
mpz_set_ui(fact2, 1);
|
||
mpz_set_ui(stop1, 1);
|
||
|
||
for (size_t k = 0; k <= 2*N; k++) {
|
||
if (k > 0) {
|
||
mpz_mul_ui(fact1, fact1, 2*k * (2*k - 1));
|
||
mpz_mul_ui(fact2, fact2, k);
|
||
mpz_mul_ui(stop1, stop1, 16*N);
|
||
mpz_mul_ui(stop1, stop1, 16*N);
|
||
}
|
||
mpz_pow_ui(pfact1, fact1, 3);
|
||
mpz_pow_ui(pfact2, fact2, 4);
|
||
mpz_mul(pfact2, pfact2, stop1);
|
||
|
||
mpq_set_z(term, pfact1);
|
||
mpq_set_z(fact2q, pfact2);
|
||
|
||
mpq_div(term, term, fact2q);
|
||
mpq_add(sum, sum, term);
|
||
}
|
||
mpq_div(sum, sum, stop2);
|
||
|
||
mpq_set(rop, sum);
|
||
|
||
// free memory
|
||
mpq_clears(sum, term, stop2, fact2q, NULL);
|
||
mpz_clears(fact1, pfact1, fact2, pfact2, power, stop1, NULL);
|
||
}
|
||
|
||
|
||
int main(int argc, char** argv) {
|
||
/* if no argument is given, show the usage */
|
||
if (argc != 2) {
|
||
fprintf(stderr, "usage: %s D\n", argv[0]);
|
||
fprintf(stderr, "Computes γ up to D decimal places.\n");
|
||
return EXIT_FAILURE;
|
||
}
|
||
|
||
// requested decimal digits
|
||
size_t D = atol(argv[1]);
|
||
// Brent-McMillan number N
|
||
size_t N = gsl_sf_lambert_W0(5*M_PI/9*pow(10, 2*D + 1))/16 + 1;
|
||
|
||
mpq_t exact, indicator;
|
||
mpq_inits(exact, indicator, NULL);
|
||
|
||
// value of γ up to 500 digits
|
||
mpq_set_str(
|
||
exact,
|
||
"47342467929426395252720948664321583815681737620205"
|
||
"78046578043524355342995304421105234825234769529727"
|
||
"60710541774258570118818437511973945213031180449905"
|
||
"77067110892216494927227098092412641670668896104172"
|
||
"59380467495735805599918127376547804186055507379270"
|
||
"09659478275476110597673948659342592173551684412254"
|
||
"47940426607883070678658320829056222506449877887289"
|
||
"02099638646695565284675455912794915138438516540912"
|
||
"22061900908485016328626399040675802962645141413722"
|
||
"567840383761005003563012969560659130635723002086605/"
|
||
"82018681765164048732047980836753451023877954010252"
|
||
"60062364748361667340168652059998708337602423525120"
|
||
"45225158774173869894826877890589130978987229877889"
|
||
"33367849273189687823618289122425446493605087108634"
|
||
"04387981302669131224273324182166778131513056804533"
|
||
"58955006355665628938266331979307689540884269372365"
|
||
"76288367811322713649805442241450184023209087215891"
|
||
"55369788474437679223152173114447113970483314961392"
|
||
"48250188991402851129033493732164230227458717486395"
|
||
"514436574417275149404197774547389507462779807727616",
|
||
10);
|
||
|
||
// number with decimal expansion equal to
|
||
// 0123456789 periodic: useful to count digits
|
||
mpq_set_str(
|
||
indicator,
|
||
"137174210/1111111111",
|
||
10);
|
||
|
||
fprintf(stderr, "[main] N: %ld\n", N);
|
||
|
||
/* calculate series */
|
||
mpq_t A, B, C;
|
||
mpq_inits(A, B, C, NULL);
|
||
|
||
clock_t begin, end;
|
||
double time_a, time_b, time_c, time_log;
|
||
|
||
begin = clock();
|
||
a_series(A, N);
|
||
end = clock();
|
||
time_a = (double)(end - begin)/CLOCKS_PER_SEC;
|
||
fprintf(stderr, "[main] a series time: %gs\n", time_a);
|
||
|
||
begin = clock();
|
||
b_series(B, N);
|
||
end = clock();
|
||
time_b = (double)(end - begin)/CLOCKS_PER_SEC;
|
||
fprintf(stderr, "[main] b series time: %gs\n", time_b);
|
||
|
||
begin = clock();
|
||
c_series(C, N);
|
||
end = clock();
|
||
time_c = (double)(end - begin)/CLOCKS_PER_SEC;
|
||
fprintf(stderr, "[main] c series time: %gs\n", time_c);
|
||
|
||
/* calculate γ... */
|
||
mpq_t gamma, corr, logn;
|
||
mpq_inits(gamma, corr, logn, NULL);
|
||
|
||
begin = clock();
|
||
mpq_log_ui(logn, N, D);
|
||
end = clock();
|
||
time_log = (double)(end - begin)/CLOCKS_PER_SEC;
|
||
fprintf(stderr, "[main] log(n) time: %gs\n", time_log);
|
||
|
||
fprintf(stderr, "[main] total time: %gs\n",
|
||
time_a + time_b + time_c + time_log);
|
||
|
||
mpq_div(gamma, A, B);
|
||
mpq_div(corr, C, B);
|
||
mpq_div(corr, corr, B);
|
||
mpq_sub(gamma, gamma, corr);
|
||
mpq_sub(gamma, gamma, logn);
|
||
|
||
/* calculate difference */
|
||
mpq_t diff;
|
||
mpq_init(diff);
|
||
mpq_sub(diff, gamma, exact);
|
||
|
||
/* print results */
|
||
size_t d = D+1 > 100 ? 100 : D+1;
|
||
|
||
mpq_fprintf(stderr, d, "[main] approx:\t%q...\n", gamma);
|
||
mpq_fprintf(stderr, d, "[main] exact:\t%q...\n", exact);
|
||
mpq_fprintf(stderr, d, "[main] diff:\t%q...\n", diff);
|
||
mpq_fprintf(stderr, d, "[main] digits:\t%q\n", indicator);
|
||
|
||
mpq_fprintf(stdout, D, "%q\n", gamma);
|
||
|
||
// free memory
|
||
mpq_clears(A, B, C, gamma, corr, logn,
|
||
exact, indicator, diff, NULL);
|
||
|
||
return EXIT_SUCCESS;
|
||
}
|