analistica/ex-1/tests.c

186 lines
5.2 KiB
C

/* This file contains functions to perform
* statistical tests on the points sampled
* from a Landau distribution.
*/
#include <stdio.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_min.h>
#include <gsl/gsl_sum.h>
#include "landau.h"
/* Kolmogorov distribution CDF
* for sample size n and statistic D
*/
double kolmogorov_cdf(double D, int n) {
double x = sqrt(n) * D;
// trick to reduce estimate error
x += 1/(6 * sqrt(n)) + (x - 1)/(4 * n);
// calculate the first n_terms of the series
// Σ_k=1 exp(-(2k - 1)²π²/8x²)
size_t n_terms = 30;
double *terms = calloc(n_terms, sizeof(double));
for (size_t k=0; k<n_terms; k++) {
terms[k] = exp(-pow((2*(double)(k + 1) - 1)*M_PI/x, 2) / 8);
}
// do a transform to accelerate the convergence
double sum, abserr;
gsl_sum_levin_utrunc_workspace* s = gsl_sum_levin_utrunc_alloc(n_terms);
gsl_sum_levin_utrunc_accel(terms, n_terms, s, &sum, &abserr);
fprintf(stderr, "\n## Kolmogorov CDF\n");
fprintf(stderr, "accel sum: %f\n", sum);
fprintf(stderr, "plain sum: %f\n", s->sum_plain);
fprintf(stderr, "err: %f\n", abserr);
gsl_sum_levin_utrunc_free(s);
free(terms);
return sqrt(2*M_PI)/x * sum;
}
/* This is a high-order function (ie a function that operates
* on functions) in disguise. It takes a function f and produces
* a function that computes -f. In lambda calculus it would be
* the map λf.λx -f(x).
*
* Since there is no notion of lambda functions in C (the
* standard one, at least) we use a trick involving the
* gsl_function struct: `negate_func(x, fp)` takes a point `x`
* and a gsl_function `fp` as the usual void pointer `params`.
* It then calls the function `fp.function` with `x` and their
* `fp.params` and return the negated result.
*
* So, given a `gsl_function f` its negated function is
* contructed as follows:
*
* gsl_function nf;
* nf.function = &negate_func;
* nf.params = &f;
*/
double negate_func(double x, void * fp) {
gsl_function f = *((gsl_function*) fp);
return -f.function(x, f.params);
}
/* Numerically computes the mode of a Landau
* distribution by maximising the derivative.
* The min,max parameters are the initial search
* interval for the optimisation.
*/
double numeric_mode(double min, double max,
gsl_function *pdf) {
/* Negate the PDF to maximise it by
* using a GSL minimisation method.
* (There usually are no maximisation methods)
*/
gsl_function npdf;
npdf.function = &negate_func;
npdf.params = pdf;
// initialize minimization
double guess = 0;
int iter = 0;
int max_iter = 100;
double prec = 1e-7;
int status;
const gsl_min_fminimizer_type * T = gsl_min_fminimizer_brent;
gsl_min_fminimizer * s = gsl_min_fminimizer_alloc(T);
gsl_min_fminimizer_set(s, &npdf, guess, min, max);
// minimisation
do {
iter++;
status = gsl_min_fminimizer_iterate(s);
guess = gsl_min_fminimizer_x_minimum(s);
min = gsl_min_fminimizer_x_lower(s);
max = gsl_min_fminimizer_x_upper(s);
status = gsl_min_test_interval(min, max, prec, prec);
} while (status == GSL_CONTINUE && iter < max_iter);
/* The error is simply given by the width of
* the final interval containing the solution
*/
fprintf(stderr, "mode error: %.3g\n", max - min);
// free memory
gsl_min_fminimizer_free(s);
return guess;
}
/* This is the function to be minimized in `numeric_FWHM`.
*/
double abs_landau_pdf(double x, void* params_) {
double* params = ((double *) params_);
return fabs(gsl_ran_landau_pdf(x) - params[0]);
}
/* Numerically computes the FWHM of Landau
* distribution by maximising the derivative.
* The `min,max` parameters are the initial search
* interval for the optimisation. `mode` can be
* computer with `numeric_mode(min, max)`.
*/
double numeric_fwhm(double min, double max, double mode) {
// create function
gsl_function pdf;
pdf.function = &abs_landau_pdf;
double params [1];
params[0]= gsl_ran_landau_pdf(mode)/2;
pdf.params = params;
// initialize minimization for x₋
double guess = mode - 1;
double fmin, fmax;
int iter = 0;
int max_iter = 100;
double prec = 1e-7;
int status;
const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection;
gsl_min_fminimizer * s = gsl_min_fminimizer_alloc(T);
gsl_min_fminimizer_set(s, &pdf, guess, min, mode);
// minimization
do {
iter++;
status = gsl_min_fminimizer_iterate(s);
guess = gsl_min_fminimizer_x_minimum(s);
fmin = gsl_min_fminimizer_x_lower(s);
fmax = gsl_min_fminimizer_x_upper(s);
status = gsl_min_test_interval(fmin, fmax, prec, prec);
} while (status == GSL_CONTINUE && iter < max_iter);
double x_low = guess;
// initialize minimization for x₊
guess = mode + 1;
gsl_min_fminimizer_set(s, &pdf, guess, mode, max);
// minimization
do {
iter++;
status = gsl_min_fminimizer_iterate(s);
guess = gsl_min_fminimizer_x_minimum(s);
fmin = gsl_min_fminimizer_x_lower(s);
fmax = gsl_min_fminimizer_x_upper(s);
status = gsl_min_test_interval(fmin, fmax, prec, prec);
} while (status == GSL_CONTINUE && iter < max_iter);
double x_upp = guess;
// Free memory
gsl_min_fminimizer_free(s);
return x_upp - x_low;
}