analistica/ex-3/main.c
2020-07-05 11:35:36 +02:00

159 lines
4.7 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "likelihood.h"
#include "chisquared.h"
#include <gsl/gsl_rng.h>
#include <gsl/gsl_histogram2d.h>
/* Options for the program */
struct options {
int show_hist; // whether to print the 2D histogram
int only_hist; // whether to skip the minimisations
size_t num_events; // number of generated events
size_t bins_theta; // number of bins for θ
size_t bins_phi; // number of bins for φ
};
int main(int argc, char **argv) {
/* Set default options */
struct options opts;
opts.num_events = 50000;
opts.show_hist = 0;
opts.only_hist = 0;
opts.bins_theta = 30;
opts.bins_phi = 60;
/* Process CLI arguments */
for (size_t i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-i")) opts.show_hist = 1;
else if (!strcmp(argv[i], "-I")) opts.only_hist = 1;
else if (!strcmp(argv[i], "-n")) opts.num_events = atol(argv[++i]);
else if (!strcmp(argv[i], "-t")) opts.bins_theta = atol(argv[++i]);
else if (!strcmp(argv[i], "-p")) opts.bins_phi = atol(argv[++i]);
else {
fprintf(stderr, "Usage: %s -[hiIntp]\n", argv[0]);
fprintf(stderr, "\t-h\tShow this message.\n");
fprintf(stderr, "\t-i\tPrint the histogram to stdout.\n");
fprintf(stderr, "\t-I\tPrint *only* the histogram.\n");
fprintf(stderr, "\t-n N\tThe number of events to generate.\n");
fprintf(stderr, "\t-t N\tThe number of θ bins.\n");
fprintf(stderr, "\t-p N\tThe number of φ bins.\n");
return EXIT_FAILURE;
}
}
/* Initialize an RNG. */
gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
/* Initialise the sample data structure with
* the number of events and allocate an array
* for the events.
*/
struct sample s = { opts.num_events, NULL };
s.events = calloc(s.size, sizeof(struct event));
/* Prepare a 2D histogram of the sample
* with 30x60 bins.
*/
gsl_histogram2d* hist =
gsl_histogram2d_alloc(opts.bins_theta, opts.bins_phi);
// set the ranges θ∈[0, π] and φ∈[0, 2π]
gsl_histogram2d_set_ranges_uniform(hist, 0,M_PI, 0,2*M_PI);
/* F(θ.φ) parameters we will generate
* a sample with, and later try to recover.
* Note: for this choice max F(θ,φ) ≈ 0.179.
*/
gsl_vector *def_par = gsl_vector_alloc(3);
gsl_vector_set(def_par, 0, 0.65); // α
gsl_vector_set(def_par, 1, 0.06); // β
gsl_vector_set(def_par, 2, -0.18); // γ
/* Generate the points (θ, φ) on the unit sphere
* using the inverse transform:
* θ = acos(1 - 2X)
* φ = 2πY
* where X,Y are random uniform variables in [0,1).
* This ensures that θ,φ are uniformly distributed, then we
* proceed to reject the events as follow:
* 1. generate a y ∈ [0, max F(θ,φ)] uniformly
* 2. reject the sample if y > F(θ,φ) else save it.
*/
fputs("# event sampling\n\n", stderr);
fprintf(stderr, "generating %ld events...", opts.num_events);
struct event *e;
for (size_t i = 0; i < s.size; i++){
e = &s.events[i];
do {
e->th = acos(1 - 2*gsl_rng_uniform(r));
e->ph = 2 * M_PI * gsl_rng_uniform(r);
} while(0.2 * gsl_rng_uniform(r) > distr(def_par, e));
// update the histogram
gsl_histogram2d_increment(hist, e->th, e->ph);
}
fputs("done\n", stderr);
// print histogram to stdout
if (opts.show_hist || opts.only_hist) {
fputs("\n# histogram\n", stderr);
gsl_histogram2d_fprintf(stdout, hist, "%g", "%g");
}
if (!opts.only_hist) {
/* Estimate the parameters α,β,γ by
* the maximum likelihood method.
*/
min_result like = maxLikelihood(&s);
/* Estimate the parameters α,β,γ by
* a minimum χ² method.
*/
struct hist data;
data.h = hist;
data.n = s.size;
min_result chi2 = minChiSquared(data);
/* Compare the results with the original ones
* and check whether they are compatible.
*/
fputs("\n# vector decay compatibility\n", stderr);
fputs("\n## likelihood results\n\n", stderr);
compatibility(def_par, like);
fputs("\n## χ² results\n\n", stderr);
compatibility(def_par, chi2);
/* Test the isotropic decay hypothesys
* with the χ² results
*/
fputs("\n# isotropic hypotesys\n\n", stderr);
/* If the decay is isotropic then F = 1/4π.
* Solving for α,β,γ yields α=1/3,β=γ=0.
*/
gsl_vector *iso_par = gsl_vector_alloc(3);
gsl_vector_set(iso_par, 0, 0.33); // α
gsl_vector_set(iso_par, 1, 0.00); // β
gsl_vector_set(iso_par, 2, 0.00); // γ
compatibility(iso_par, chi2);
// free memory
min_result_free(like);
min_result_free(chi2);
};
// free memory
gsl_rng_free(r);
free(s.events);
gsl_histogram2d_free(hist);
gsl_vector_free(def_par);
return EXIT_SUCCESS;
}