197 lines
5.6 KiB
C
197 lines
5.6 KiB
C
#include "fft.h"
|
|
#include <string.h>
|
|
#include <gsl/gsl_fft_halfcomplex.h>
|
|
|
|
/* These macros are used to extract the
|
|
* real and imaginary parts of a complex
|
|
* vector */
|
|
#define REAL(a,stride,i) ((a)[2*(stride)*(i)])
|
|
#define IMAG(a,stride,i) ((a)[2*(stride)*(i)+1])
|
|
|
|
|
|
/* Computes the (forward) real DFT of a vector
|
|
* and returns the results as a complex vector
|
|
*/
|
|
gsl_vector_complex* vector_fft(gsl_vector *data) {
|
|
/* Create a copy of the input data to
|
|
* preserve it: GSL functions work in-place.
|
|
*/
|
|
gsl_vector *fdata = gsl_vector_alloc(data->size);
|
|
gsl_vector_memcpy(fdata, data);
|
|
|
|
/* Compute the forward Fourier transform */
|
|
gsl_fft_real_wavetable *rtable =
|
|
gsl_fft_real_wavetable_alloc(fdata->size);
|
|
gsl_fft_real_workspace *wspace =
|
|
gsl_fft_real_workspace_alloc(fdata->size);
|
|
|
|
gsl_fft_real_transform(
|
|
fdata->data, // array of data to transform
|
|
fdata->stride, // stride of the array, i.e. # steps between elements
|
|
fdata->size, // number of elements
|
|
rtable, // wavetable (real)
|
|
wspace); // workspace
|
|
|
|
/* The data in `data` is in the half-complex
|
|
* packed format, which reduces memory usage
|
|
* by using the fact that
|
|
*
|
|
* z_i = z̅_(n-i)
|
|
*
|
|
* We unpack it to the normal packing and use
|
|
* the array to define a gsl_vector_complex.
|
|
*/
|
|
gsl_vector_complex *cdata = gsl_vector_complex_calloc(fdata->size);
|
|
gsl_fft_halfcomplex_unpack(
|
|
fdata->data,
|
|
cdata->data,
|
|
cdata->stride,
|
|
fdata->size);
|
|
|
|
// clear memory
|
|
gsl_fft_real_wavetable_free(rtable);
|
|
gsl_fft_real_workspace_free(wspace);
|
|
gsl_vector_free(fdata);
|
|
|
|
return cdata;
|
|
}
|
|
|
|
|
|
/* Inverse function of gsl_fft_halfcomplex_unpack.
|
|
* `gsl_fft_halfcomplex_pack(c, hc, stride, n)`
|
|
* creates a halfcomplex packed version of a
|
|
* complex packaged array `hc` with stride `stride`
|
|
* and `n` elements.
|
|
*/
|
|
int gsl_fft_halfcomplex_pack(
|
|
const gsl_complex_packed_array c,
|
|
double hc[],
|
|
const size_t stride, const size_t n) {
|
|
|
|
hc[0] = REAL(c, stride, 0);
|
|
|
|
size_t i;
|
|
for (i = 1; i < n - i; i++) {
|
|
hc[(2 * i - 1) * stride] = REAL(c, stride, i);
|
|
hc[2 * i * stride] = IMAG(c, stride, i);
|
|
}
|
|
|
|
if (i == n - i)
|
|
hc[(n - 1) * stride] = REAL(c, stride, i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* `fft_deconvolve(data, kernel)` tries to deconvolve
|
|
* `kernel` from `data` by factoring out the `kernel`
|
|
* in the Fourier space.
|
|
*/
|
|
gsl_histogram* fft_deconvolve(
|
|
gsl_histogram *data,
|
|
gsl_histogram *kernel) {
|
|
/* Size of the original data
|
|
* before being convoluted.
|
|
*
|
|
* Notation of sizes:
|
|
* - original: m
|
|
* - kernel: n
|
|
* - "full" convolution: m + n - 1
|
|
*/
|
|
size_t orig_size = data->n - kernel->n + 1;
|
|
|
|
/* Create vector views */
|
|
gsl_vector vdata =
|
|
gsl_vector_view_array(data->bin, data->n).vector;
|
|
gsl_vector vkernel =
|
|
gsl_vector_view_array(kernel->bin, kernel->n).vector;
|
|
|
|
/* 0-pad the kernel to make it the
|
|
* same size as the convoluted data,
|
|
* which is m+n-1:
|
|
*
|
|
* 1. create a new vector
|
|
* 2. create a subvector view to the center
|
|
* 3. copy the kernel to the view
|
|
*/
|
|
gsl_vector *vpadded = gsl_vector_calloc(data->n);
|
|
gsl_vector center = gsl_vector_subvector(
|
|
vpadded, // vector: padded kernel (n+m-1)
|
|
orig_size/2, // offset: half of original data size (m/2)
|
|
kernel->n).vector; // length: kernel size (n)
|
|
gsl_vector_memcpy(¢er, &vkernel);
|
|
|
|
/* Compute the DFT of the data and
|
|
* divide it by the DFT of the kernel.
|
|
*/
|
|
gsl_vector_complex *fdata = vector_fft(&vdata);
|
|
gsl_vector_complex *fkernel = vector_fft(vpadded);
|
|
gsl_vector_complex_div(fdata, fkernel);
|
|
|
|
/* Pack the result in the half-complex
|
|
* format before computing the inverse DFT
|
|
*/
|
|
double *res = calloc(fdata->size, sizeof(double));
|
|
gsl_fft_halfcomplex_pack(fdata->data, res,
|
|
fdata->stride, fdata->size);
|
|
|
|
/* Compute the inverse DFT of the result */
|
|
gsl_fft_halfcomplex_wavetable *htable =
|
|
gsl_fft_halfcomplex_wavetable_alloc(data->n);
|
|
gsl_fft_real_workspace *wspace =
|
|
gsl_fft_real_workspace_alloc(data->n);
|
|
gsl_fft_halfcomplex_inverse(
|
|
res, // array of data to transform
|
|
fdata->stride, // stride of the array
|
|
fdata->size, // number of elements
|
|
htable, // wavetable (complex)
|
|
wspace); // workspace
|
|
|
|
/* Restore the natural order of frequency
|
|
* in the result of the DFT (negative→positive).
|
|
* To do that roll over the array by a half:
|
|
* 1. create a temp array of half size
|
|
* 2. copy first half over to temp
|
|
* 3. copy second half to the first
|
|
* 4. copy back the first to the second half
|
|
*/
|
|
size_t half_size = data->n/2 * sizeof(double);
|
|
double *temp = malloc(half_size);
|
|
memcpy(temp, res, half_size);
|
|
memcpy(res, res + data->n/2, half_size);
|
|
memcpy(res + data->n/2, temp, half_size);
|
|
|
|
/* Create a histogram with the same edges
|
|
* as `data`, but with the original size,
|
|
* to return the cleaned result
|
|
*/
|
|
gsl_histogram *hist = gsl_histogram_calloc(orig_size);
|
|
|
|
/* Set the same bin edges as `data`*/
|
|
double max = gsl_histogram_max(data);
|
|
double min = gsl_histogram_min(data);
|
|
gsl_histogram_set_ranges_uniform(hist, min, max);
|
|
|
|
/* Remove the extra size of the convolution
|
|
* (where the overlap is partial) when copying
|
|
* over the result to the histogram.
|
|
* This amounts to (n-1)/2 on each end of the
|
|
* vector.
|
|
*/
|
|
memcpy(
|
|
hist->bin,
|
|
res + (kernel->n - 1)/2,
|
|
orig_size * sizeof(double));
|
|
|
|
// free memory
|
|
gsl_vector_free(vpadded);
|
|
gsl_vector_complex_free(fdata);
|
|
gsl_vector_complex_free(fkernel);
|
|
gsl_fft_halfcomplex_wavetable_free(htable);
|
|
gsl_fft_real_workspace_free(wspace);
|
|
free(res);
|
|
free(temp);
|
|
|
|
return hist;
|
|
}
|