233 lines
7.0 KiB
C
233 lines
7.0 KiB
C
#include <math.h>
|
||
#include <string.h>
|
||
#include <gsl/gsl_rng.h>
|
||
#include <gsl/gsl_randist.h>
|
||
#include <gsl/gsl_sf.h>
|
||
#include "fft.h"
|
||
#include "rl.h"
|
||
|
||
/* Program options */
|
||
struct options {
|
||
int convolved;
|
||
int deconvolved;
|
||
int original;
|
||
size_t num_events;
|
||
size_t bins;
|
||
double sigma;
|
||
size_t rounds;
|
||
const char* mode;
|
||
double noise;
|
||
};
|
||
|
||
|
||
/* Intensity function parameters */
|
||
struct param {
|
||
double a; // aperture radius
|
||
double k; // wavenumber
|
||
double e; // wave amplitude
|
||
double l; // screen distance
|
||
};
|
||
|
||
|
||
/* Intensity of the EM field at a large distance
|
||
* from a circular aperture diffraction of a plane
|
||
* wave.
|
||
*
|
||
* The intensity is given as a function of θ,
|
||
* the diffraction angle, all the other physical
|
||
* parameter are controlled by the structure `param`.
|
||
*
|
||
* See Fraunhöfer diffraction on "Hect - Optics" for
|
||
* a derivation of the formula.
|
||
*/
|
||
double intensity(double theta, struct param p) {
|
||
double x = p.k * p.a * sin(theta);
|
||
double R = p.l / cos(theta);
|
||
|
||
/* The intensity function has an eliminable
|
||
* discontinuoty at the origin, which must
|
||
* be handled separately.
|
||
*/
|
||
if (fabs(x) < 1e-15) {
|
||
return 0.5 * pow(p.e/R * M_PI * pow(p.a, 2), 2);
|
||
}
|
||
|
||
double y = 2*M_PI*pow(p.a, 2) * gsl_sf_bessel_J1(x) / x;
|
||
return 0.5 * pow(p.e * y/R, 2);
|
||
}
|
||
|
||
|
||
/* `gaussian_for(hist, sigma)` generates a histogram
|
||
* with the same bin width of `hist` but smaller,
|
||
* with a gaussian PDF with μ at the central bin
|
||
* and σ equal to `sigma`.
|
||
*/
|
||
gsl_histogram* gaussian_for(gsl_histogram *hist, double sigma) {
|
||
/* Set the size to 6% of the histogram.
|
||
* Always choose n even to correctly center the
|
||
* gaussian in the middle.
|
||
*/
|
||
size_t n = ((double) hist->n * 6) / 100;
|
||
n = n % 2 ? n+1 : n;
|
||
|
||
/* Calculate the (single) bin width assuming
|
||
* the ranges are uniformely spaced
|
||
*/
|
||
double min, max;
|
||
gsl_histogram_get_range(hist, 0, &min, &max);
|
||
double dx = max - min;
|
||
gsl_histogram *res = gsl_histogram_alloc(n);
|
||
gsl_histogram_set_ranges_uniform(res, 0, dx * n);
|
||
|
||
/* The histogram will be such that
|
||
* the zero falls in the central bin.
|
||
*/
|
||
long int offset = res->n/2;
|
||
|
||
for (long int i = 0; i < (long int)res->n; i++)
|
||
res->bin[i] = gsl_ran_gaussian_pdf(
|
||
((double)(i - offset) + 0.5) * dx, sigma * dx);
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
/* Convolves two histograms while keeping the
|
||
* original bin edges. This is a simple wrapper
|
||
* function around `gsl_vector_convolve`.
|
||
*/
|
||
gsl_histogram* histogram_convolve(gsl_histogram *a, gsl_histogram *b) {
|
||
gsl_histogram *res = gsl_histogram_calloc(a->n + b->n - 1);
|
||
|
||
/* Set the same edges as `a`*/
|
||
double max = gsl_histogram_max(a);
|
||
double min = gsl_histogram_min(a);
|
||
gsl_histogram_set_ranges_uniform(res, min, max);
|
||
|
||
/* Create vector views for everybody */
|
||
gsl_vector_view va = gsl_vector_view_array(a->bin, a->n);
|
||
gsl_vector_view vb = gsl_vector_view_array(b->bin, b->n);
|
||
gsl_vector_view vres = gsl_vector_view_array(res->bin, res->n);
|
||
|
||
gsl_vector_convolve(&va.vector, &vb.vector, &vres.vector);
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
int main(int argc, char **argv) {
|
||
struct options opts;
|
||
/* Set default options */
|
||
opts.convolved = 0;
|
||
opts.deconvolved = 0;
|
||
opts.original = 1;
|
||
opts.num_events = 50000;
|
||
opts.bins = 150;
|
||
opts.sigma = 0.8;
|
||
opts.rounds = 3;
|
||
opts.mode = "fft";
|
||
opts.noise = 0;
|
||
|
||
/* Process CLI arguments */
|
||
for (int i = 1; i < argc; i++) {
|
||
if (!strcmp(argv[i], "-c")) opts.convolved = 1;
|
||
else if (!strcmp(argv[i], "-d")) opts.deconvolved = 1;
|
||
else if (!strcmp(argv[i], "-o")) opts.original = 1;
|
||
else if (!strcmp(argv[i], "-e")) opts.num_events = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-b")) opts.bins = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-s")) opts.sigma = atof(argv[++i]);
|
||
else if (!strcmp(argv[i], "-r")) opts.rounds = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-m")) opts.mode = argv[++i];
|
||
else if (!strcmp(argv[i], "-n")) opts.noise = atof(argv[++i]);
|
||
else {
|
||
fprintf(stderr, "Usage: %s -[cdoebsh]\n", argv[0]);
|
||
fprintf(stderr, "\t-h\t\tShow this message.\n");
|
||
fprintf(stderr, "\t-c\t\tPrint the convolved histogram to stdout.\n");
|
||
fprintf(stderr, "\t-d\t\tAttempt and print the deconvolved histogram.\n");
|
||
fprintf(stderr, "\t-o\t\tPrint the original histogram to stdout.\n");
|
||
fprintf(stderr, "\t-e N\t\tThe number of events.\n");
|
||
fprintf(stderr, "\t-b N\t\tThe number of θ bins.\n");
|
||
fprintf(stderr, "\t-s SIGMA\tThe sigma of gaussian kernel.\n");
|
||
fprintf(stderr, "\t-r N\t\tThe number of RL deconvolution rounds.\n");
|
||
fprintf(stderr, "\t-n MU\t\tThe mean (μ) of Poisson noise to add to the convolution.\n");
|
||
return EXIT_FAILURE;
|
||
}
|
||
}
|
||
|
||
/* Initialize an RNG. */
|
||
gsl_rng_env_setup();
|
||
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
|
||
|
||
gsl_histogram* hist = gsl_histogram_alloc(opts.bins);
|
||
gsl_histogram_set_ranges_uniform(hist, 0, M_PI/2);
|
||
|
||
double theta;
|
||
struct param p = { 0.01, 0.0001, 1e4, 1 };
|
||
|
||
/* Sample events following the intensity
|
||
* of a circular aperture diffraction I(θ)
|
||
* while producing a histogram.
|
||
*/
|
||
fputs("# event sampling\n", stderr);
|
||
fprintf(stderr, "max itensity: %.2f\n", intensity(0, p));
|
||
fprintf(stderr, "1. generating %ld events...", opts.num_events);
|
||
for (size_t i = 0; i < opts.num_events; i++){
|
||
do {
|
||
theta = acos(1 - gsl_rng_uniform(r));
|
||
} while(intensity(0, p) * gsl_rng_uniform(r) > intensity(theta, p));
|
||
gsl_histogram_increment(hist, theta);
|
||
}
|
||
fputs("done\n", stderr);
|
||
|
||
/* Generate the gaussian kernel, convolve the
|
||
* sample histogram with it and try to deconvolve it.
|
||
*/
|
||
fputs("\n# convolution\n", stderr);
|
||
fputs("1. generating gaussian kernel...", stderr);
|
||
gsl_histogram *kernel = gaussian_for(hist, opts.sigma);
|
||
fputs("done\n", stderr);
|
||
|
||
fputs("2. convolving...", stderr);
|
||
gsl_histogram *conv = histogram_convolve(hist, kernel);
|
||
fputs("done\n", stderr);
|
||
|
||
/* Add Poisson noise with μ=opts.noise to
|
||
* the convolution.
|
||
*/
|
||
if (opts.noise > 0) {
|
||
fputs("2.1 adding poisson noise...", stderr);
|
||
for (size_t i = 0; i < conv->n; i++)
|
||
conv->bin[i] += gsl_ran_poisson(r, opts.noise);
|
||
fputs("done\n", stderr);
|
||
}
|
||
|
||
fprintf(stderr, "3. %s deconvolution...", opts.mode);
|
||
gsl_histogram *clean;
|
||
if (!strcmp(opts.mode, "fft"))
|
||
clean = fft_deconvolve(conv, kernel);
|
||
else if (!strcmp(opts.mode, "rl"))
|
||
clean = rl_deconvolve(conv, kernel, opts.rounds);
|
||
else {
|
||
fputs("\n\nerror: invalid mode. select either 'fft' or 'rl'\n", stderr);
|
||
return EXIT_FAILURE;
|
||
}
|
||
fputs("done\n", stderr);
|
||
|
||
/* Print the selected histogram*/
|
||
fputs("\n# histogram \n", stderr);
|
||
gsl_histogram *showing;
|
||
if (opts.convolved) showing = conv;
|
||
else if (opts.deconvolved) showing = clean;
|
||
else if (opts.original) showing = hist;
|
||
gsl_histogram_fprintf(stdout, showing, "%g", "%g");
|
||
|
||
// free memory
|
||
gsl_rng_free(r);
|
||
gsl_histogram_free(hist);
|
||
gsl_histogram_free(kernel);
|
||
gsl_histogram_free(conv);
|
||
gsl_histogram_free(clean);
|
||
|
||
return EXIT_SUCCESS;
|
||
}
|