analistica/ex-7/percep.c

93 lines
2.0 KiB
C

#include "common.h"
#include "percep.h"
#include <math.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>
/* `iterate(data, w, b, d, r)` performs one
* iteration of the perceptron training.
*
* For each point xi compute:
*
* 1. yi = θ((w, xi) + b)
*
* 2. Δi = r⋅(d - yi)
*
* 3. w = w + Δi⋅xi, b = b + Δi
*
* The results are computed in-place.
*/
void iterate(
gsl_matrix *data,
gsl_vector *weight,
double *bias,
int expected,
double rate) {
double proj, delta;
gsl_vector *x = gsl_vector_alloc(2);
for (size_t i = 0; i < data->size1; i++) {
/* Get a vector view of the
* current row in the data matrix.
*/
gsl_vector row = gsl_matrix_const_row(data, i).vector;
gsl_vector_memcpy(x, &row);
/* Project x onto the weight vector. */
gsl_blas_ddot(weight, x, &proj);
/* Calculate Δ
* Note: the step function θ(x) is computed
* by negating the sign bit of the floating
* point.
*/
delta = rate * (expected - !signbit(proj + *bias));
/* Update weight and bias. */
*bias += delta;
gsl_vector_scale(x, delta);
gsl_vector_add(weight, x);
}
gsl_vector_free(x);
}
/* `percep_train(sig, noise, iter, &cut)`
* train a single perceptron to discriminate `sig`
* from `noise`.
*
* The weigths are adjusted `iter` times and
* returned, the bias/threshold is stored in the
* `cut` argument.
*/
gsl_vector *percep_train(
sample_t *signal, sample_t *noise,
int iter, double *cut) {
/* Initially set weights/bias to zero
* and a high learning rate.
*/
gsl_vector *w = gsl_vector_calloc(2);
double bias = 0;
double rate = 0.8;
/* Go trough the sample `iter` times
* and recalculate the weights.
*/
for (int i = 0; i < iter; i++) {
iterate( noise->data, w, &bias, 0, rate);
iterate(signal->data, w, &bias, 1, rate);
}
/* Normalise the weights and force
* positiveness for easier
* comparison with other methods.
*/
double norm = gsl_blas_dnrm2(w);
gsl_vector_scale(w, 1/norm);
*cut = -bias/norm;
return w;
}