210 lines
5.3 KiB
C
210 lines
5.3 KiB
C
#include "lib.h"
|
||
#include <math.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <gsl/gsl_rng.h>
|
||
#include <gsl/gsl_min.h>
|
||
#include <gsl/gsl_deriv.h>
|
||
|
||
|
||
// Process CLI arguments.
|
||
//
|
||
int parser(size_t *N, size_t *n, double *p_max, char argc, char **argv)
|
||
{
|
||
for (size_t i = 1; i < argc; i++)
|
||
{
|
||
if (!strcmp(argv[i], "-n")) *N = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-b")) *n = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-p")) *p_max = atof(argv[++i]);
|
||
else
|
||
{
|
||
fprintf(stderr, "Usage: %s -[hnbp]\n", argv[0]);
|
||
fprintf(stderr, "\t-h\tShow this message.\n");
|
||
fprintf(stderr, "\t-n N\tThe number of events to generate. (default: 50000)\n");
|
||
fprintf(stderr, "\t-b N\tThe number of bins of the histogram. (default: 50)\n");
|
||
fprintf(stderr, "\t-p PMAX\tThe maximum value of momentum. (default: 10)\n");
|
||
return 0;
|
||
}
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
int main(int argc, char **argv)
|
||
{
|
||
|
||
// Set default options.
|
||
//
|
||
size_t N = 50000; // number of events.
|
||
size_t n = 50; // number of bins.
|
||
double p_max = 10; // maximum value of momentum module.
|
||
int res = parser(&N, &n, &p_max, argc, argv);
|
||
if (res == 1)
|
||
{
|
||
printf("\nGenerating histogram with:\n"
|
||
"%ld points\n"
|
||
"%ld bins\n"
|
||
"p_max = %.3f\n\n", N, n, p_max);
|
||
}
|
||
else return EXIT_FAILURE;
|
||
|
||
// printf("step: \t%.5f\n", step);
|
||
|
||
// Initialize an RNG.
|
||
//
|
||
gsl_rng_env_setup();
|
||
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
|
||
|
||
// Generate the angle θ uniformly distributed on a sphere using the
|
||
// inverse transform:
|
||
//
|
||
// θ = acos(1 - 2X)
|
||
//
|
||
// where X is a random uniform variable in [0,1), and the module p of
|
||
// the vector:
|
||
//
|
||
// p² = p_v² + p_h²
|
||
//
|
||
// uniformly distributed between 0 and p_max. The two components are
|
||
// then computed as:
|
||
//
|
||
// p_v = p⋅cos(θ)
|
||
// p_h = p⋅sin(θ)
|
||
//
|
||
// The histogram is updated this way.
|
||
// The j-th bin where p_h goes in is given by:
|
||
//
|
||
// step = p_max / n
|
||
// j = floor(p_h / step)
|
||
//
|
||
// Thus an histogram was created and a structure containing the number of
|
||
// entries in each bin and the sum of |p_v| in each of them is created and
|
||
// filled while generating the events (struct bin).
|
||
//
|
||
struct bin *histo = calloc(n, sizeof(struct bin));
|
||
|
||
// Some useful variables.
|
||
//
|
||
double step = p_max / n;
|
||
struct bin *b;
|
||
double theta;
|
||
double p;
|
||
double p_v;
|
||
double p_h;
|
||
size_t j;
|
||
|
||
for (size_t i = 0; i < N; i++)
|
||
{
|
||
// Generate the event.
|
||
//
|
||
theta = acos(1 - 2*gsl_rng_uniform(r));
|
||
p = p_max * gsl_rng_uniform(r);
|
||
|
||
// Compute the components.
|
||
//
|
||
p_v = p * cos(theta);
|
||
p_h = p * sin(theta);
|
||
|
||
// Update the histogram.
|
||
//
|
||
j = floor(p_h / step);
|
||
b = &histo[j];
|
||
b -> amo++;
|
||
b -> sum += fabs(p_v);
|
||
}
|
||
|
||
// Compute the mean value of each bin and print it to stodut
|
||
// together with other useful things to make the histogram.
|
||
//
|
||
// printf("bins: \t%ld\n", n);
|
||
// printf("step: \t%.5f\n", step);
|
||
for (size_t i = 0; i < n; i++)
|
||
{
|
||
histo[i].sum = histo[i].sum / histo[i].amo; // Average P_v
|
||
//printf("\n%.5f", histo[i].sum);
|
||
};
|
||
|
||
// Compare the histigram with the expected function:
|
||
//
|
||
// x * log(p_max/x)/arctan(sqrt(p_max^2/x^2 - 1))
|
||
//
|
||
// using the χ² test.
|
||
//
|
||
struct parameters params;
|
||
params.histo = histo;
|
||
params.n = n;
|
||
params.step = step;
|
||
|
||
gsl_function func;
|
||
func.function = &chi2;
|
||
func.params = ¶ms;
|
||
|
||
double min_p = 5;
|
||
double max_p = 15;
|
||
|
||
// Initialize minimization.
|
||
//
|
||
double x = 10;
|
||
int max_iter = 100;
|
||
double prec = 1e-7;
|
||
int status = GSL_CONTINUE;
|
||
const gsl_min_fminimizer_type *T = gsl_min_fminimizer_brent;
|
||
gsl_min_fminimizer *s = gsl_min_fminimizer_alloc(T);
|
||
gsl_min_fminimizer_set(s, &func, x, min_p, max_p);
|
||
|
||
// Minimization.
|
||
//
|
||
for (int iter = 0; status == GSL_CONTINUE && iter < max_iter; iter++)
|
||
{
|
||
status = gsl_min_fminimizer_iterate(s);
|
||
x = gsl_min_fminimizer_x_minimum(s);
|
||
min_p = gsl_min_fminimizer_x_lower(s);
|
||
max_p = gsl_min_fminimizer_x_upper(s);
|
||
status = gsl_min_test_interval(min_p, max_p, 0, prec);
|
||
}
|
||
|
||
double result = x;
|
||
double res_chi = chi2(result, ¶ms);
|
||
printf("Results:\n");
|
||
printf("χ² = %.3f\n", res_chi);
|
||
printf("p_max = %.3f\n", result);
|
||
|
||
// Compute the second derivative of χ² in its minimum for the result error.
|
||
//
|
||
// p_max = α
|
||
//
|
||
// (Ei - Oi)²
|
||
// χ² = Σi ----------
|
||
// Ei
|
||
//
|
||
// / Oi² \
|
||
// ∂αχ² = Σi | 1 - --- | ∂αE
|
||
// \ Ei² /
|
||
//
|
||
// / Oi² / Oi² \ \
|
||
// ∂²αχ² = Σi | (∂αE)² 2 --- + ∂²αE | 1 - --- | |
|
||
// \ Ei³ \ Ei² / /
|
||
//
|
||
double expecto, A, B;
|
||
double error = 0;
|
||
for (size_t i = 0; i < n; i++)
|
||
{
|
||
x = (i + 0.5) * step;
|
||
expecto = expected(x, result);
|
||
A = 2 * pow(exp1d(x, result) * histo[i].sum / expecto, 2);
|
||
B = exp2d(x, result) * (1 - pow((histo[i].sum / expecto), 2));
|
||
error = error + A + B;
|
||
};
|
||
error = 1/error;
|
||
printf("ΔP_max = %.3f\n\n", error);
|
||
|
||
|
||
// Free memory.
|
||
//
|
||
gsl_min_fminimizer_free(s);
|
||
gsl_rng_free(r);
|
||
free(histo);
|
||
|
||
return EXIT_SUCCESS;
|
||
}
|