analistica/ex-6/main.c
rnhmjoj 67c9d46188 ex-6: fix fft deconvolution
The Fourier transform of the kernel wasn't implemented
correctly and resulted in 0 division when the bins are
odd-numbered, moreover the whole histogram was shifted
by one bin to the right.
2020-07-05 11:35:44 +02:00

234 lines
7.2 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <math.h>
#include <string.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_sf.h>
#include "fft.h"
#include "rl.h"
/* Program options */
struct options {
int convolved;
int deconvolved;
int original;
size_t num_events;
size_t bins;
double sigma;
size_t rounds;
const char* mode;
double noise;
};
/* Intensity function parameters */
struct param {
double a; // aperture radius
double k; // wavenumber
double e; // wave amplitude
double l; // screen distance
};
/* Intensity of the EM field at a large distance
* from a circular aperture diffraction of a plane
* wave.
*
* The intensity is given as a function of θ,
* the diffraction angle. All the other physical
* parameters are controlled by the structure `param`.
*
* See Fraunhöfer diffraction on "Hect - Optics" for
* a derivation of the formula.
*/
double intensity(double theta, struct param p) {
double x = p.k * p.a * sin(theta);
double R = p.l / cos(theta);
/* The intensity function has an eliminable
* discontinuoty at the origin, which must
* be handled separately.
*/
if (fabs(x) < 1e-15) {
return 0.5 * pow(p.e/R * M_PI * pow(p.a, 2), 2);
}
double y = 2*M_PI*pow(p.a, 2) * gsl_sf_bessel_J1(x) / x;
return 0.5 * pow(p.e * y/R, 2);
}
/* `gaussian_for(hist, sigma)` generates a histogram
* with the same bin width of `hist` but smaller,
* with a gaussian PDF with μ at the central bin
* and σ equal to `sigma`.
*/
gsl_histogram* gaussian_for(gsl_histogram *hist, double sigma) {
/* Set the size to 6% of the histogram.
* Always choose n even to correctly center the
* gaussian in the middle.
*/
size_t n = ((double) hist->n * 6) / 100;
n = n % 2 ? n : n+1;
/* Calculate the (single) bin width assuming
* the ranges are uniformely spaced
*/
double min, max;
gsl_histogram_get_range(hist, 0, &min, &max);
double dx = max - min;
gsl_histogram *res = gsl_histogram_alloc(n);
gsl_histogram_set_ranges_uniform(res, 0, dx * n);
/* The histogram will be such that
* the maximum falls in the central bin.
*/
long int offset = (res->n)/2;
for (long int i = 0; i < (long int)res->n; i++)
res->bin[i] = gsl_ran_gaussian_pdf(
((double)(i - offset)) * dx, sigma * dx);
return res;
}
/* Convolves two histograms while keeping the
* original bin edges. This is a simple wrapper
* function around `gsl_vector_convolve`.
*/
gsl_histogram* histogram_convolve(gsl_histogram *a, gsl_histogram *b) {
gsl_histogram *res = gsl_histogram_calloc(a->n + b->n - 1);
/* Set the same edges as `a`*/
double max = gsl_histogram_max(a);
double min = gsl_histogram_min(a);
gsl_histogram_set_ranges_uniform(res, min, max);
/* Create vector views for everybody */
gsl_vector_view va = gsl_vector_view_array(a->bin, a->n);
gsl_vector_view vb = gsl_vector_view_array(b->bin, b->n);
gsl_vector_view vres = gsl_vector_view_array(res->bin, res->n);
gsl_vector_convolve(&va.vector, &vb.vector, &vres.vector);
return res;
}
int main(int argc, char **argv) {
struct options opts;
/* Set default options */
opts.convolved = 0;
opts.deconvolved = 0;
opts.original = 1;
opts.num_events = 50000;
opts.bins = 150;
opts.sigma = 0.8;
opts.rounds = 3;
opts.mode = "fft";
opts.noise = 0;
/* Process CLI arguments */
for (int i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-c")) opts.convolved = 1;
else if (!strcmp(argv[i], "-d")) opts.deconvolved = 1;
else if (!strcmp(argv[i], "-o")) opts.original = 1;
else if (!strcmp(argv[i], "-e")) opts.num_events = atol(argv[++i]);
else if (!strcmp(argv[i], "-b")) opts.bins = atol(argv[++i]);
else if (!strcmp(argv[i], "-s")) opts.sigma = atof(argv[++i]);
else if (!strcmp(argv[i], "-r")) opts.rounds = atol(argv[++i]);
else if (!strcmp(argv[i], "-m")) opts.mode = argv[++i];
else if (!strcmp(argv[i], "-n")) opts.noise = atof(argv[++i]);
else {
fprintf(stderr, "Usage: %s -[cdoebsrmh]\n", argv[0]);
fprintf(stderr, "\t-h\t\tShow this message.\n");
fprintf(stderr, "\t-c\t\tPrint the convolved histogram to stdout.\n");
fprintf(stderr, "\t-d\t\tAttempt and print the deconvolved histogram.\n");
fprintf(stderr, "\t-o\t\tPrint the original histogram to stdout.\n");
fprintf(stderr, "\t-e N\t\tThe number of events. (default: 50000)\n");
fprintf(stderr, "\t-b N\t\tThe number of θ bins. (default: 150)\n");
fprintf(stderr, "\t-s SIGMA\tThe sigma of gaussian kernel.(default: 0.8)\n");
fprintf(stderr, "\t-r N\t\tThe number of RL deconvolution rounds. (default: 3)\n");
fprintf(stderr, "\t-m MODE\t\tThe deconvolution mode: 'fft' or 'rl'. (default: 'fft')\n");
fprintf(stderr, "\t-n MU\t\tThe mean (μ) of Poisson noise to add to the convolution. (default: 0)\n");
return EXIT_FAILURE;
}
}
/* Initialize an RNG. */
gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
gsl_histogram* hist = gsl_histogram_alloc(opts.bins);
gsl_histogram_set_ranges_uniform(hist, 0, M_PI/2);
double theta;
struct param p = { 0.01, 0.0001, 1e4, 1 };
/* Sample events following the intensity
* of a circular aperture diffraction I(θ)
* while producing a histogram.
*/
fputs("# event sampling\n", stderr);
fprintf(stderr, "max itensity: %.2f\n", intensity(0, p));
fprintf(stderr, "1. generating %ld events...", opts.num_events);
for (size_t i = 0; i < opts.num_events; i++){
do {
theta = acos(1 - gsl_rng_uniform(r));
} while(intensity(0, p) * gsl_rng_uniform(r) > intensity(theta, p));
gsl_histogram_increment(hist, theta);
}
fputs("done\n", stderr);
/* Generate the gaussian kernel, convolve the
* sample histogram with it and try to deconvolve it.
*/
fputs("\n# convolution\n", stderr);
fputs("1. generating gaussian kernel...", stderr);
gsl_histogram *kernel = gaussian_for(hist, opts.sigma);
fputs("done\n", stderr);
fputs("2. convolving...", stderr);
gsl_histogram *conv = histogram_convolve(hist, kernel);
fputs("done\n", stderr);
/* Add Poisson noise with μ=opts.noise to
* the convolution.
*/
if (opts.noise > 0) {
fputs("2.1 adding poisson noise...", stderr);
for (size_t i = 0; i < conv->n; i++)
conv->bin[i] += gsl_ran_poisson(r, opts.noise);
fputs("done\n", stderr);
}
fprintf(stderr, "3. %s deconvolution...", opts.mode);
gsl_histogram *clean;
if (!strcmp(opts.mode, "fft"))
clean = fft_deconvolve(conv, kernel);
else if (!strcmp(opts.mode, "rl"))
clean = rl_deconvolve(conv, kernel, opts.rounds);
else {
fputs("\n\nerror: invalid mode. select either 'fft' or 'rl'\n", stderr);
return EXIT_FAILURE;
}
fputs("done\n", stderr);
/* Print the selected histogram*/
fputs("\n# histogram \n", stderr);
gsl_histogram *showing;
if (opts.convolved) showing = conv;
else if (opts.deconvolved) showing = clean;
else if (opts.original) showing = hist;
gsl_histogram_fprintf(stdout, showing, "%g", "%g");
// free memory
gsl_rng_free(r);
gsl_histogram_free(hist);
gsl_histogram_free(kernel);
gsl_histogram_free(conv);
gsl_histogram_free(clean);
return EXIT_SUCCESS;
}