214 lines
6.7 KiB
C
214 lines
6.7 KiB
C
#include <math.h>
|
||
#include <string.h>
|
||
#include <gsl/gsl_rng.h>
|
||
#include <gsl/gsl_randist.h>
|
||
#include <gsl/gsl_statistics_double.h>
|
||
|
||
#include "common.h"
|
||
#include "fft.h"
|
||
#include "rl.h"
|
||
#include "dist.h"
|
||
|
||
|
||
/* Program options */
|
||
struct options {
|
||
size_t num_events;
|
||
size_t num_exps;
|
||
size_t bins;
|
||
double sigma;
|
||
size_t rounds;
|
||
const char* mode;
|
||
double noise;
|
||
};
|
||
|
||
|
||
/* A pair of `double`s */
|
||
typedef struct {
|
||
double a;
|
||
double b;
|
||
} pair_t;
|
||
|
||
|
||
int show_help(char **argv) {
|
||
fprintf(stderr, "Usage: %s -[hexbsrn]\n", argv[0]);
|
||
fprintf(stderr, " -h\t\tShow this message.\n");
|
||
fprintf(stderr, " -e N\t\tThe number of events. (default: 50000)\n");
|
||
fprintf(stderr, " -x N\t\tThe number of experiments to run. (default: 1000)\n");
|
||
fprintf(stderr, " -b N\t\tThe number of θ bins. (default: 150)\n");
|
||
fprintf(stderr, " -s SIGMA\tThe sigma of gaussian kernel. "
|
||
"(default: 0.8)\n");
|
||
fprintf(stderr, " -r N\t\tThe number of RL deconvolution rounds."
|
||
"(default: 3)\n");
|
||
fprintf(stderr, " -n SIGMA\tThe σ of the gaussian noise to add to "
|
||
"the convolution. (default: 0)\n");
|
||
return EXIT_SUCCESS;
|
||
}
|
||
|
||
/* Performs an experiment consisting in
|
||
*
|
||
* 1. Measuring the distribution I(θ) by reverse
|
||
* sampling from an RNG;
|
||
* 2. Convolving the I(θ) sample with a kernel
|
||
* to simulate the instrumentation response;
|
||
* 3. Applying a gaussian noise with σ=opts.noise
|
||
* 4. Deconvolving the result with both the
|
||
* Richardson-Lucy (RL) algorithm and the Fourier
|
||
* transform (FFT) method;
|
||
* 5. Computing the Earth Mover's Distance (EDM) between
|
||
* the deconvolution results and the original,
|
||
* uncorrupted sample.
|
||
*
|
||
* The function returns a pair of the FFT and RL
|
||
* distances, in this order.
|
||
*/
|
||
pair_t experiment(
|
||
struct options opts,
|
||
gsl_rng *r,
|
||
gsl_histogram *kernel) {
|
||
|
||
struct param p = { 0.01, 0.0001, 1e4, 1 };
|
||
|
||
/* Sample events following the intensity
|
||
* of a circular aperture diffraction I(θ)
|
||
* while producing a histogram.
|
||
*/
|
||
gsl_histogram* hist = gsl_histogram_alloc(opts.bins);
|
||
gsl_histogram_set_ranges_uniform(hist, 0, M_PI/2);
|
||
|
||
for (size_t i = 0; i < opts.num_events; i++){
|
||
double theta;
|
||
do {
|
||
// uniform sphere polar angle
|
||
theta = acos(1 - gsl_rng_uniform(r));
|
||
} while(intensity(0, p) * gsl_rng_uniform(r) > intensity(theta, p));
|
||
gsl_histogram_increment(hist, theta);
|
||
}
|
||
|
||
/* Convolve the hisogram with the kernel */
|
||
gsl_histogram *conv = histogram_convolve(hist, kernel);
|
||
|
||
/* Add gaussian noise with σ=opts.noise */
|
||
if (opts.noise > 0) {
|
||
for (size_t i = 0; i < conv->n; i++)
|
||
conv->bin[i] += conv->bin[i] * gsl_ran_gaussian(r, opts.noise);
|
||
}
|
||
|
||
/* Deconvolve the histogram with both methods: RL and FFT.
|
||
* The FFT is used as reference for the distance.
|
||
*/
|
||
gsl_histogram *fft_clean = fft_deconvolve(conv, kernel);
|
||
gsl_histogram *rl_clean = rl_deconvolve(conv, kernel, opts.rounds);
|
||
|
||
/* Compute the earth mover's distances from the original
|
||
* histogram and store add each one to the respective
|
||
* distance histogram.
|
||
*/
|
||
pair_t dist;
|
||
dist.a = emd_between(hist, fft_clean);
|
||
dist.b = emd_between(hist, rl_clean);
|
||
|
||
// free memory
|
||
gsl_histogram_free(hist);
|
||
gsl_histogram_free(conv);
|
||
gsl_histogram_free(fft_clean);
|
||
gsl_histogram_free(rl_clean);
|
||
|
||
return dist;
|
||
}
|
||
|
||
|
||
int main(int argc, char **argv) {
|
||
struct options opts;
|
||
/* Set default options */
|
||
opts.num_events = 50000;
|
||
opts.num_exps = 1000;
|
||
opts.bins = 150;
|
||
opts.sigma = 0.8;
|
||
opts.rounds = 3;
|
||
opts.mode = "fft";
|
||
opts.noise = 0;
|
||
|
||
/* Process CLI arguments */
|
||
for (int i = 1; i < argc; i++) {
|
||
if (!strcmp(argv[i], "-e")) opts.num_events = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-x")) opts.num_exps = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-b")) opts.bins = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-s")) opts.sigma = atof(argv[++i]);
|
||
else if (!strcmp(argv[i], "-r")) opts.rounds = atol(argv[++i]);
|
||
else if (!strcmp(argv[i], "-n")) opts.noise = atof(argv[++i]);
|
||
else return show_help(argv);
|
||
}
|
||
|
||
/* Initialize an RNG. */
|
||
gsl_rng_env_setup();
|
||
gsl_rng *r = gsl_rng_alloc(gsl_rng_default);
|
||
|
||
/* Generate the gaussian kernel */
|
||
gsl_histogram *kernel = gaussian_kernel(opts.bins, opts.sigma);
|
||
|
||
/* Performs experiments and record the deconvolution
|
||
* EDM distances to the original sample.
|
||
*/
|
||
double* fft_dist = calloc(opts.num_exps, sizeof(double));
|
||
double* rl_dist = calloc(opts.num_exps, sizeof(double));
|
||
|
||
for (size_t i = 0; i < opts.num_exps; i++) {
|
||
pair_t dist = experiment(opts, r, kernel);
|
||
fft_dist[i] = dist.a;
|
||
rl_dist[i] = dist.b;
|
||
}
|
||
|
||
/* Compute some statistics of the EDM */
|
||
// 1 is the array stride.
|
||
double fft_mean = gsl_stats_mean(fft_dist, 1, opts.num_exps);
|
||
double fft_stdev = gsl_stats_sd(fft_dist, 1, opts.num_exps);
|
||
double fft_skew = gsl_stats_skew_m_sd(fft_dist, 1, opts.num_exps, fft_mean, fft_stdev);
|
||
double fft_min, fft_max; gsl_stats_minmax(&fft_min, &fft_max, fft_dist, 1, opts.num_exps);
|
||
|
||
double rl_mean = gsl_stats_mean(rl_dist, 1, opts.num_exps);
|
||
double rl_stdev = gsl_stats_sd(rl_dist, 1, opts.num_exps);
|
||
double rl_skew = gsl_stats_skew_m_sd(rl_dist, 1, opts.num_exps, rl_mean, rl_stdev);
|
||
double rl_min, rl_max; gsl_stats_minmax(&rl_min, &rl_max, rl_dist, 1, opts.num_exps);
|
||
|
||
/* Create EDM distance histograms.
|
||
* Since the distance depends wildly on the noise we can't
|
||
* set a fixed range and therefore use the above values.
|
||
*/
|
||
gsl_histogram *fft_hist = gsl_histogram_alloc(sqrt(opts.num_exps));
|
||
gsl_histogram *rl_hist = gsl_histogram_alloc(sqrt(opts.num_exps));
|
||
gsl_histogram_set_ranges_uniform(fft_hist, fft_min, fft_max);
|
||
gsl_histogram_set_ranges_uniform(rl_hist, rl_min, rl_max);
|
||
|
||
for (size_t i = 0; i < opts.num_exps; i++) {
|
||
gsl_histogram_increment(fft_hist, fft_dist[i]);
|
||
gsl_histogram_increment( rl_hist, rl_dist[i]);
|
||
}
|
||
|
||
// print results to stderr
|
||
fprintf(stderr, "# EDM distance\n\n");
|
||
fprintf(stderr, "## FFT deconvolution\n");
|
||
fprintf(stderr, "- mean: %.2e\n"
|
||
"- stdev: %.1e\n"
|
||
"- skew: %.2f\n", fft_mean, fft_stdev, fft_skew);
|
||
fprintf(stderr, "\n## RL deconvolution\n");
|
||
fprintf(stderr, "- mean: %.2e\n"
|
||
"- stdev: %.1e\n"
|
||
"- skew: %.2f\n", rl_mean, rl_stdev, rl_skew);
|
||
|
||
// print histograms to stdout
|
||
fprintf(stderr, "\n# EDM histogram\n");
|
||
fprintf(stdout, "%d\n", (int)sqrt(opts.num_exps));
|
||
gsl_histogram_fprintf(stdout, fft_hist, "%g", "%g");
|
||
gsl_histogram_fprintf(stdout, rl_hist, "%g", "%g");
|
||
|
||
// free memory
|
||
gsl_rng_free(r);
|
||
gsl_histogram_free(kernel);
|
||
gsl_histogram_free(fft_hist);
|
||
gsl_histogram_free(rl_hist);
|
||
free(fft_dist);
|
||
free(rl_dist);
|
||
|
||
return EXIT_SUCCESS;
|
||
}
|