analistica/ex-6/fft.c
2020-03-06 02:24:32 +01:00

197 lines
5.6 KiB
C

#include "fft.h"
#include <string.h>
#include <gsl/gsl_fft_halfcomplex.h>
/* These macros are used to extract the
* real and imaginary parts of a complex
* vector */
#define REAL(a,stride,i) ((a)[2*(stride)*(i)])
#define IMAG(a,stride,i) ((a)[2*(stride)*(i)+1])
/* Computes the (forward) real DFT of a vector
* and returns the results as a complex vector
*/
gsl_vector_complex* vector_fft(gsl_vector *data) {
/* Create a copy of the input data to
* preserve it: GSL functions work in-place.
*/
gsl_vector *fdata = gsl_vector_alloc(data->size);
gsl_vector_memcpy(fdata, data);
/* Compute the forward Fourier transform */
gsl_fft_real_wavetable *rtable =
gsl_fft_real_wavetable_alloc(fdata->size);
gsl_fft_real_workspace *wspace =
gsl_fft_real_workspace_alloc(fdata->size);
gsl_fft_real_transform(
fdata->data, // array of data to transform
fdata->stride, // stride of the array, i.e. # steps between elements
fdata->size, // number of elements
rtable, // wavetable (real)
wspace); // workspace
/* The data in `data` is in the half-complex
* packed format, which reduces memory usage
* by using the fact that
*
* z_i = z̅_(n-i)
*
* We unpack it to the normal packing and use
* the array to define a gsl_vector_complex.
*/
gsl_vector_complex *cdata = gsl_vector_complex_calloc(fdata->size);
gsl_fft_halfcomplex_unpack(
fdata->data,
cdata->data,
cdata->stride,
fdata->size);
// clear memory
gsl_fft_real_wavetable_free(rtable);
gsl_fft_real_workspace_free(wspace);
gsl_vector_free(fdata);
return cdata;
}
/* Inverse function of gsl_fft_halfcomplex_unpack.
* `gsl_fft_halfcomplex_pack(c, hc, stride, n)`
* creates a halfcomplex packed version of a
* complex packaged array `hc` with stride `stride`
* and `n` elements.
*/
int gsl_fft_halfcomplex_pack(
const gsl_complex_packed_array c,
double hc[],
const size_t stride, const size_t n) {
hc[0] = REAL(c, stride, 0);
size_t i;
for (i = 1; i < n - i; i++) {
hc[(2 * i - 1) * stride] = REAL(c, stride, i);
hc[2 * i * stride] = IMAG(c, stride, i);
}
if (i == n - i)
hc[(n - 1) * stride] = REAL(c, stride, i);
return 0;
}
/* `fft_deconvolve(data, kernel)` tries to deconvolve
* `kernel` from `data` by factoring out the `kernel`
* in the Fourier space.
*/
gsl_histogram* fft_deconvolve(
gsl_histogram *data,
gsl_histogram *kernel) {
/* Size of the original data
* before being convoluted.
*
* Notation of sizes:
* - original: m
* - kernel: n
* - "full" convolution: m + n - 1
*/
size_t orig_size = data->n - kernel->n + 1;
/* Create vector views */
gsl_vector vdata =
gsl_vector_view_array(data->bin, data->n).vector;
gsl_vector vkernel =
gsl_vector_view_array(kernel->bin, kernel->n).vector;
/* 0-pad the kernel to make it the
* same size as the convoluted data,
* which is m+n-1:
*
* 1. create a new vector
* 2. create a subvector view to the center
* 3. copy the kernel to the view
*/
gsl_vector *vpadded = gsl_vector_calloc(data->n);
gsl_vector center = gsl_vector_subvector(
vpadded, // vector: padded kernel (n+m-1)
orig_size/2, // offset: half of original data size (m/2)
kernel->n).vector; // length: kernel size (n)
gsl_vector_memcpy(&center, &vkernel);
/* Compute the DFT of the data and
* divide it by the DFT of the kernel.
*/
gsl_vector_complex *fdata = vector_fft(&vdata);
gsl_vector_complex *fkernel = vector_fft(vpadded);
gsl_vector_complex_div(fdata, fkernel);
/* Pack the result in the half-complex
* format before computing the inverse DFT
*/
double *res = calloc(fdata->size, sizeof(double));
gsl_fft_halfcomplex_pack(fdata->data, res,
fdata->stride, fdata->size);
/* Compute the inverse DFT of the result */
gsl_fft_halfcomplex_wavetable *htable =
gsl_fft_halfcomplex_wavetable_alloc(data->n);
gsl_fft_real_workspace *wspace =
gsl_fft_real_workspace_alloc(data->n);
gsl_fft_halfcomplex_inverse(
res, // array of data to transform
fdata->stride, // stride of the array
fdata->size, // number of elements
htable, // wavetable (complex)
wspace); // workspace
/* Restore the natural order of frequency
* in the result of the DFT (negative→positive).
* To do that roll over the array by a half:
* 1. create a temp array of half size
* 2. copy first half over to temp
* 3. copy second half to the first
* 4. copy back the first to the second half
*/
size_t half_size = data->n/2 * sizeof(double);
double *temp = malloc(half_size);
memcpy(temp, res, half_size);
memcpy(res, res + data->n/2, half_size);
memcpy(res + data->n/2, temp, half_size);
/* Create a histogram with the same edges
* as `data`, but with the original size,
* to return the cleaned result
*/
gsl_histogram *hist = gsl_histogram_calloc(orig_size);
/* Set the same bin edges as `data`*/
double max = gsl_histogram_max(data);
double min = gsl_histogram_min(data);
gsl_histogram_set_ranges_uniform(hist, min, max);
/* Remove the extra size of the convolution
* (where the overlap is partial) when copying
* over the result to the histogram.
* This amounts to (n-1)/2 on each end of the
* vector.
*/
memcpy(
hist->bin,
res + (kernel->n - 1)/2,
orig_size * sizeof(double));
// free memory
gsl_vector_free(vpadded);
gsl_vector_complex_free(fdata);
gsl_vector_complex_free(fkernel);
gsl_fft_halfcomplex_wavetable_free(htable);
gsl_fft_real_workspace_free(wspace);
free(res);
free(temp);
return hist;
}