304 lines
7.7 KiB
C
304 lines
7.7 KiB
C
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <gsl/gsl_roots.h>
|
|
#include <gsl/gsl_rstat.h>
|
|
#include <gsl/gsl_vector.h>
|
|
#include <gsl/gsl_statistics_double.h>
|
|
|
|
#include "bootstrap.h"
|
|
#include "tests.h"
|
|
|
|
|
|
/* Function that compares doubles for sorting:
|
|
* x > y ⇒ 1
|
|
* x == y ⇒ 0
|
|
* x < y ⇒ -1
|
|
*/
|
|
int cmp_double (const void *xp, const void *yp) {
|
|
double x = *(double*)xp,
|
|
y = *(double*)yp;
|
|
return x > y ? 1 : (x == y ? 0 : -1);
|
|
}
|
|
|
|
|
|
/* Returns the (rounded) mean index of all
|
|
* components of `v` that are equal to `x`.
|
|
* This function is used to handle duplicate
|
|
* data (called "ties") in `hsm()`.
|
|
*/
|
|
size_t mean_index(gsl_vector *v, double x) {
|
|
gsl_rstat_workspace *w = gsl_rstat_alloc();
|
|
|
|
for (size_t i = 0; i < v->size; i++) {
|
|
if (gsl_vector_get(v, i) == x)
|
|
gsl_rstat_add((double)i, w);
|
|
}
|
|
int mean = gsl_rstat_mean(w);
|
|
gsl_rstat_free(w);
|
|
|
|
return round(mean);
|
|
}
|
|
|
|
|
|
/* Computes the half-sample mode (also called the Robertson-Cryer
|
|
* mode estimator) of the sample `x` containing `n` observations.
|
|
*
|
|
* It is based on repeatedly finding the modal interval (interval
|
|
* containing the most observations) of half of the sample.
|
|
* This implementation is based on the `hsm()` function from the
|
|
* modeest[1] R package.
|
|
*
|
|
* [1]: https://rdrr.io/cran/modeest/man/hsm.html
|
|
*/
|
|
double hsm(double *x, size_t n) {
|
|
int i, k;
|
|
gsl_vector *diffs_full = gsl_vector_calloc(n-n/2);
|
|
|
|
/* Divide the sample in two halves and compute
|
|
* the paired differences between the upper and
|
|
* lower halves. The index of the min diff. gives
|
|
* the start of the modal interval. Repeat on the
|
|
* new interval until three or less points are left.
|
|
*/
|
|
while (n > 3) {
|
|
k = n/2;
|
|
|
|
// lower/upper halves of x
|
|
gsl_vector upper = gsl_vector_view_array(x+k, n-k).vector;
|
|
gsl_vector lower = gsl_vector_view_array(x, n-k).vector;
|
|
|
|
// restrict diffs_full to length n-k
|
|
gsl_vector diffs = gsl_vector_subvector(diffs_full, 0, n-k).vector;
|
|
|
|
// compute the difference upper-lower
|
|
gsl_vector_memcpy(&diffs, &upper);
|
|
gsl_vector_sub(&diffs, &lower);
|
|
|
|
// find minimum while handling ties
|
|
i = mean_index(&diffs, gsl_vector_min(&diffs));
|
|
|
|
/* If the minumium difference is 0 we found
|
|
* the hsm so we set n=1 to break the loop.
|
|
*/
|
|
x += i;
|
|
n = (gsl_vector_get(&diffs, i) == 0) ? 1 : k;
|
|
}
|
|
|
|
// free memory
|
|
gsl_vector_free(diffs_full);
|
|
|
|
/* If the sample is has three points the hsm
|
|
* is the average of the two closer ones.
|
|
*/
|
|
if (n == 3) {
|
|
if (2*x[1] - x[0] - x[2] > 0)
|
|
return gsl_stats_mean(x+1, 1, 2);
|
|
return gsl_stats_mean(x, 1, 2);
|
|
}
|
|
|
|
/* Otherwise (smaller than 3) the hsm is just
|
|
* the mean of the points.
|
|
*/
|
|
return gsl_stats_mean(x, 1, n);
|
|
}
|
|
|
|
|
|
/* Parameters needed to compute the
|
|
* KDE function of a sample.
|
|
*/
|
|
struct kde_params {
|
|
double n; // sample size
|
|
double var; // sample variance
|
|
double *sample; // sample
|
|
};
|
|
|
|
|
|
/* A KDE (kernel density estimation) is an
|
|
* approximation of a sample PDF obtained by
|
|
* convolving the sample points with a smooth
|
|
* kernel, in this case a standard gaussian.
|
|
*
|
|
* `gauss_kde(x, p)` gives the value of the PDF
|
|
* at `x`, where `p` is a `kde_params` struct.
|
|
*/
|
|
double gauss_kde(double x, void * params) {
|
|
struct kde_params p = *((struct kde_params*) params);
|
|
|
|
/* Apply the Silverman's rule of thumb to the
|
|
* bandwidth estimation. The badwidth is given
|
|
* by the sample variance times a factor which
|
|
* depends on the number of points and dimension.
|
|
*/
|
|
double bw = p.var * pow((double)p.n*3.0/4, -2.0/5);
|
|
|
|
double sum = 0;
|
|
for (size_t i = 0; i < p.n; i++)
|
|
sum += exp(-pow(x - p.sample[i], 2) / (2*bw));
|
|
|
|
return sum / sqrt(2*M_PI*bw) / p.n;
|
|
}
|
|
|
|
|
|
/* Computes an approximation to the asymptotic median
|
|
* and its standard deviation by bootstrapping (ie
|
|
* repeated resampling) the original `sample`, `boots`
|
|
* times.
|
|
*
|
|
* The functions returns an `uncert` pair of mean and
|
|
* stdev of the medians computed on each sample.
|
|
*/
|
|
uncert bootstrap_median(
|
|
const gsl_rng *r,
|
|
double *sample, size_t n,
|
|
int boots) {
|
|
|
|
/* We use a running statistics to not
|
|
* store the full resampled array.
|
|
*/
|
|
gsl_rstat_workspace* w = gsl_rstat_alloc();
|
|
|
|
double *values = calloc(boots, sizeof(double));
|
|
|
|
for (size_t i = 0; i < boots; i++) {
|
|
/* The sampling is simply done by generating
|
|
* an array index uniformly in [0, n-1].
|
|
*/
|
|
for (size_t j = 0; j < n; j++) {
|
|
size_t choice = gsl_rng_uniform_int(r, n);
|
|
gsl_rstat_add(sample[choice], w);
|
|
}
|
|
values[i] = gsl_rstat_median(w);
|
|
}
|
|
|
|
/* Compute mean and stdev of the medians
|
|
* of each newly bootstrapped sample.
|
|
*/
|
|
uncert median;
|
|
median.n = gsl_stats_mean(values, 1, boots);
|
|
median.s = gsl_stats_sd(values, 1, boots);
|
|
|
|
// free memory
|
|
gsl_rstat_free(w);
|
|
free(values);
|
|
|
|
return median;
|
|
}
|
|
|
|
|
|
/* Computes an approximation to the asymptotic mode
|
|
* and its standard deviation by bootstrapping (ie
|
|
* repeated resampling) the original `sample`, `boots`
|
|
* times.
|
|
*
|
|
* The functions returns an `uncert` pair of mean and
|
|
* stddev of the modes computed on each sample.
|
|
*/
|
|
uncert bootstrap_mode(
|
|
const gsl_rng *r,
|
|
double *sample, size_t n,
|
|
int boots) {
|
|
|
|
double *values = calloc(boots, sizeof(double));
|
|
double *boot = calloc(n, sizeof(double));
|
|
|
|
for (size_t i = 0; i < boots; i++) {
|
|
/* The sampling is simply done by generating
|
|
* an array index uniformely in [0, n-1].
|
|
*/
|
|
for (size_t j = 0; j < n; j++) {
|
|
size_t choice = gsl_rng_uniform_int(r, n);
|
|
boot[j] = sample[choice];
|
|
}
|
|
qsort(boot, n, sizeof(double), cmp_double);
|
|
values[i] = hsm(boot, n);
|
|
}
|
|
|
|
/* Compute mean and stddev of the modes
|
|
* of each newly bootstrapped sample.
|
|
*/
|
|
uncert mode;
|
|
mode.n = gsl_stats_mean(values, 1, boots);
|
|
mode.s = gsl_stats_sd(values, 1, boots);
|
|
|
|
// free memory
|
|
free(values);
|
|
free(boot);
|
|
|
|
return mode;
|
|
}
|
|
|
|
|
|
/* Computes an approximation to the asymptotic fwhm
|
|
* and its standard deviation by bootstrapping (ie
|
|
* repeated resampling) the original `sample`, `boots`
|
|
* times.
|
|
*
|
|
* `min,max` are the bounds of interval that is
|
|
* expected to contain the mode of the sample.
|
|
*
|
|
* The functions returns an `uncert` pair of mean and
|
|
* stddev of the fwhms computed on each sample.
|
|
*/
|
|
uncert bootstrap_fwhm(
|
|
const gsl_rng *r,
|
|
double min, double max,
|
|
double *sample, size_t n,
|
|
int boots) {
|
|
/* We use a running statistics to compute
|
|
* a trimmed mean/variance of the sample.
|
|
*/
|
|
gsl_rstat_workspace* w = gsl_rstat_alloc();
|
|
|
|
// fwhm values and resample
|
|
double *values = calloc(boots, sizeof(double));
|
|
double *boot = calloc(n, sizeof(double));
|
|
|
|
// set the size here because it's fixed
|
|
struct kde_params p;
|
|
p.n = n;
|
|
|
|
// struct for numeric_fwhm
|
|
gsl_function pdf;
|
|
pdf.function = &gauss_kde;
|
|
|
|
for (size_t i = 0; i < boots; i++) {
|
|
gsl_rstat_reset(w);
|
|
|
|
/* The sampling is simply done by generating
|
|
* an array index uniformely in [0, n-1].
|
|
*/
|
|
for (size_t j = 0; j < n; j++) {
|
|
double x = sample[gsl_rng_uniform_int(r, n)];
|
|
boot[j] = x;
|
|
/* Remove too extreme values from the
|
|
* the trimmed statistics workspace.
|
|
*/
|
|
if (fabs(x) < 10) gsl_rstat_add(x, w);
|
|
}
|
|
|
|
/* Set the trimmed variance of the sample as
|
|
* the (uncorrected) variance of the gaussian
|
|
* kernel estimator.
|
|
*/
|
|
p.sample = boot;
|
|
p.var = gsl_rstat_variance(w);
|
|
pdf.params = &p;
|
|
|
|
values[i] = numeric_fwhm(min, max, &pdf, 0);
|
|
}
|
|
|
|
/* Compute mean and stddev of the fwhms
|
|
* of each newly bootstrapped sample.
|
|
*/
|
|
uncert fwhm;
|
|
fwhm.n = gsl_stats_mean(values, 1, boots);
|
|
fwhm.s = gsl_stats_sd(values, 1, boots);
|
|
|
|
// free memory
|
|
free(values);
|
|
free(boot);
|
|
gsl_rstat_free(w);
|
|
|
|
return fwhm;
|
|
}
|